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This book marries the principles of solid-state physics with the mathematics of 
time-retarded solutions to Maxwell’s equations. It includes the quantum mechanical 
nature of magnetism in thermal equilibrium with materials to explain how electro-
magnetic waves propagate in solid materials and across boundaries between dielec-
trics and insulators. The text uses electromagnetic scattering analysis to show how 
electromagnetic fi elds induce electric and magnetic multipoles in “good” conductors 
and how that process leads to delay, attenuation, and dispersion of signals in trans-
mission lines. The text explains the basis for boundary conditions used with the 
vector forms of Maxwell’s equations to describe analytic problems that can be 
solved by the fi rst and second Born approximation for real-world applications 
through successive approximations of

• perfect fl at boundaries to boundaries with nanometer deviations,

• perfect electric conductors to materials with fi nite conductivity, and

• inclusions of multiple impurities in otherwise homogeneous media.

Finally, the text gives examples of how system-level printed circuit board  
(PCB) geometries can use these principles to numerically simulate solutions for very 
complex systems.

This book is intended to be a foundation for the discipline of electricity and 
magnetism upon which measurements, simulations, and “rules-of-thumb” are built 
through the rigorous application of Maxwell’s equations. Assumptions are stated 
when they are employed, and the set of steps known as the Born approximations is 
used to show the relative magnitude of neglected terms. In that sense, this is intended 
to be a book that takes carefully applied theory to practice. It is written in the lan-
guage of an electrical engineer rather than a mathematician or physicist and is 
intended to support engineering practice.*

PROBLEMS ADDRESSED

As bit rates of computers have increased into the tens of gigahertz, scientists and 
engineers have recognized that a less-than-rigorous knowledge of electromagnetic 

Preface

* Textbooks that support design practices are Advanced Signal Integrity for High-Speed Digital 
Designs by Stephen H. Hall and Howard L. Heck (John Wiley & Sons, 2009); High-Speed Digital 
System Design by Stephen H. Hall, Garrett W. Hall, and James A. McCall (John Wiley & Sons, 2000); 
and High-Speed Signal Propagation: Advanced Black Magic by Howard Johnson and Martin Graham 
(Prentice Hall, 2003).
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fi eld propagation can yield incomplete or even contradictory concepts about attenu-
ation, phase, and dispersion of received electric signals that represent information. 
Many books present concepts of electricity and magnetism via models of transmitted 
power in terms of low-frequency harmonic potentials and currents that then yield 
“rules-of-thumb” that are extended to higher frequencies by modifying the defi nition 
of resistance, capacitance, or inductance. Simulation codes often neglect the rela-
tively slow propagation of electromagnetic fi elds in conductors when solving for 
propagation of those quantities in a dielectric medium. On physically large circuit 
boards, the propagation speed of electric signals requires dozens or even hundreds 
of bits of information to be “on their way” from a transmitter to a receiver, so that 
timing budgets require picoseconds precision. Some solutions are made by using 
quasistatic (or other) approximations that are forgotten when applied to situations 
that violate those assumptions; for numerical simulation software, the assumptions 
are often not even stated. Most engineering models that are chosen to represent “real-
world” transmission lines, vias, or packages make simplifying assumptions that 
cannot be justifi ed based on the complexity of microscopic examination. Power 
losses on printed circuit boards are so large at high frequencies that signal-to-noise 
ratio is unacceptable to preserve targeted bit error rates or to recommend new pro-
cedures or processes for fabrication needed for higher speed applications. In short, 
many intuitive concepts that are learned in undergraduate courses for simple trans-
verse electromagnetic (TEM) fi eld propagations simply do not carry over into the 
real world of conducting boundaries when employing microwave frequencies is tried.

Most existing texts on signal integrity do not provide a foundational basis of 
signal integrity principles based on the propagation of electromagnetic fi elds but 
base explanations on traditional circuit theory parameter (resistance, inductance, 
conductance, capacitance—RLGC) models with plausibility arguments that are 
comforting to the intuition. However, some of these plausible explanations lead to 
incorrect pictures of behavior of currents, which cause conundrums for the students. 
These texts do not explain how electron charge and currents physically distribute 
themselves in space and time for a complex transmission line that includes “good” 
conductors and “complex dielectrics.” The nonrigorous solutions can also lead stu-
dents to causal contradictions, conduction electrons that travel faster than the speed 
of light, and nonsense phrases like currents that “rush-over” imperfections or 
“crowd” at discontinuous surfaces.

FEATURES OF THE BOOK

Causal electric and magnetic fi eld quantities are color coordinated throughout the 
book. For example, electric charge density, electric fi eld intensity, electric fl ux 
density, scalar electric potential, and vector electric potential, versus current density,
magnetic fi eld intensity, magnetic fl ux density, scalar magnetic potential, and vector
magnetic potential are consistently identifi ed, along with the symbols that pertain to 
those quantities in equations and vector lines that correspond in fi gures. It is reveal-
ing to see that time derivatives of those quantities (e.g., dq/dt) change their causal 
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character and that it is equivalent to state that electric charge causes electric fi eld 
intensity (current causes magnetic fi eld intensity) or vice versa. Electric and mag-
netic fi eld intensity is shown inside conductors in the quasistatic approximation, and 
an analysis of how they move with time is shown to yield dynamic properties that 
cause them to be conservative (close on themselves).

By using colors, Maxwell’s equations are seen to be even more beautifully 
symmetric than in their black-and-white formats.

RECOGNITION

The author owes a debt of gratitude to Dr. Yinchao Chen of the Electrical Engineering 
Department at the University of South Carolina, Columbia. Dr. Chen has published 
articles with the author and has had many discussions on the techniques and meaning 
of the solutions to Maxwell’s equations and their applications. Other USC professors 
who contributed to the physical and chemical understanding of PCB materials were 
Michael Myrick of the Chemistry Department and Richard Webb of the Physics 
Department.

Huray, Chen, and three Signal Integrity engineers (Brian Knotts, Hao Li, and 
Richard Mellitz) from the Intel Corporation (Columbia, SC) created the fi rst graduate 
Signal Integrity program in 2003, which has since produced more than 80 practicing 
Signal Integrity engineers, many of whom read and corrected early drafts of this text.

Huray conducts industrial research on a part-time basis with the Intel Corporation 
in the area of high-speed electromagnetic signals. In this work, he has had the privi-
lege to work closely with Richard Mellitz and Stephen Hall, on applications of 
electromagnetism for practical use. It was their penetrating questions that prompted 
many of the explanations in this text. Another Intel employee, Dan Hua, provided 
a sequence of exchanged articles on the evaluation of scattering and absorption 
in the language of vector spherical harmonics; it was through these discussions that 
the sections on absorption by small good conducting spheres arose. Gary Brist taught 
the author (and many of his graduate students) about the process of manufacturing 
PCB stack-ups and stimulated many of the questions that are sprinkled throughout 
the book. Anusha Moonshiram and Chaitanya Sreerema conducted many of the 
high-frequency vector network analyzer (VNA) measurements in this text. Femi 
Oluwafemi conducted many of the numerical simulations on phase analysis to iden-
tify time-dependent fi elds inside good conductors and provided many of the fi nal 
comparisons to the VNA data. Guy Barnes and Paul Hamilton provided the Fabry–
Perot measurements of permittivity. Brandon Gore helped work on magnetic losses, 
and David Aerne assisted the analysis of spherical composition profi les and near-
neighbor interference effects. Peng Ye was a sounding board for arguments about 
the analytical analysis associated with electromagnetic fi eld dynamics. Kevin 
Slattery introduced the author to near-fi eld scanning electromagnetic probes and 
helped direct the work of two USC graduate students, Jason Ramage and Christy 
Madden Jones, whose work on proof of Snell’s law at microwave frequencies and 
absorption by impurities appears in the text. Intel engineers such as Howard Heck, 
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Richard Kunze, Ted Ballou, Steve Krooswyk, Matt Hendrick, David Blakenbeckler, 
and Johnny Gibson passed through USC during the writing of this text to present 
lectures to the author’s Signal Integrity classes and to build richness into the intel-
lectual atmosphere. Mark Fitzmaurice was always ready to help make the Signal 
Integrity program at USC a success through his support for measurement equipment, 
student internships, and common sense.

Many USC undergraduate and graduate students contributed to the testing and 
writing of this book. Steven Pytel worked with the author on scanning electron 
microscope SEM and analysis measurements at the Oak Ridge National Laboratory 
in Oak Ridge, TN, and, while working for Intel, was the sounding board for many 
of the arguments presented here. After receiving his PhD, he became an employee 
of the Ansoft Corporation, Pittsburg, PA, where he became an applications engineer 
for Signal Integrity tools. He is primarily responsible for the material in Chapter 8 
on numerical simulations. Ken Young helped with editing, Fisayo Adepetun pro-
vided assistance with fi gures, and David London supported Web pages for testing 
and transmittal of the chapters. Tom McDonough gave lectures to the Signal Integrity 
classes on the use of Synopsys Corporation, Boston, MA HSPICE software and 
helped in the analysis of ceramic capacitor fi elds.

John Fatcheric of the Oak Mitsui Corporation, Camden, SC, assisted the pre-
sentation on copper surface production. Bob Helsby, Charles Banyon, and Zol 
Cendes of the Ansoft Corporation supported the use of forefront numerical solutions 
to Maxwell’s equations. James Rautio of Sonnet Software, Syracuse, NY, assisted 
on the history of Maxwell and the use of his portrait. Mike Resso of Agilent 
Corporation, Santa Rosa, CA, supported a joint Intel–Agilent VNA donation. Lee 
Riedinger, Harry M. Meyer III, Larry Walker, and Marc Garland of the Oak Ridge 
National Laboratory assisted in making qualitative and quantitative measurements 
of PCB components by SEM and Auger analysis. José E. Rayas Sánchez of ITESO, 
Guadalajara, Mexico, James Gover of Kettering University, Flint, MI, and John 
David Jackson of UC-Berkeley and LBL, Berkeley, CA, provided discussions on 
Maxwell’s interpretations and Signal Integrity of high-speed circuits.

This book is dedicated to the author’s lifelong partner:

Susan Lyons Huray
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The Foundations of Signal Integrity is intended to be a text for a one-semester 
course in Signal Integrity, under the assumption that the students have a solid foun-
dation in the development and solution techniques of Maxwell’s equations. A pre-
liminary text by the author1 presents that information at a relatively complete level, 
but it is recognized that students may have had other textbooks for that material. 
This book presents equations, words, and fi gures in a consistent, color-coded format 
so that students can see the relationship between variables of a common type or 
color. Generally, other textbooks will have used either the symmetric or the asym-
metric form of Maxwell’s equations as defi ned below but may have used other 
symbols for the variables, and they will not generally be color-coded. This section 
thus presents the form of Maxwell’s equations used in The Foundations of Signal 
Integrity with enough introduction that the text may be used by itself.

The Foundations of Signal Integrity concentrates on the solutions to Maxwell’s 
equations in a variety of media and with a variety of boundary conditions. Here, 
techniques that show how to obtain analytic solutions to Maxwell’s equations for 
ideal materials and boundary conditions are presented. These solutions are then used 
as a benchmark for the student to solve “real world” problems via computational 
techniques; fi rst confi rming that a computational technique gives the same answer 
as the analytic solution for an ideal problem.

This information is presented to 21st-century students* in the hope that they 
will consider mathematical and physical concepts as integral. The student is chal-
lenged not to accept uncertainty but to be honest within him- or herself in appreciat-
ing and understanding the derivations of the electromagnetic giants. After the 
mathematical solution has been obtained, we hope the student will ask, “What are 
these equations telling me?” and “How could I use this in some other application?” 
Perhaps the student will delve even deeper to ask, “What are the physical phenom-
enon that cause fi elds to exist, to move, to refl ect or to transmit through materials?” 
With such an armada of knowledge, the student can take these electromagnetic 
concepts to further applications and to further “stand on the shoulders of giants”†

Intent of the Book

* One reader from the Physics Web poll that rated Maxwell’s equations as the most beautiful 
equations ever derived recalled how he learned Maxwell’s equations during his second year as an 
undergraduate student. “I still vividly remember the day I was introduced to Maxwell’s equations in 
vector notation,” he wrote. That these four equations should describe so much was extraordinary ... 
For the fi rst time, I understood what people meant when they talked about elegance and beauty in 
mathematics or physics. It was spine-tingling and a turning point in my undergraduate career.”
† The quote “If I have seen farther than others, it is because I have stood on the shoulders of giants” 
was attributed to Sir Isaac Newton because it appeared in a letter he wrote to Robert Hooke in 1675, 
but it was also used by an 11th-century monk named John of Salisbury, and there is evidence he may 
have read it in an older text while studying with Abelard in France.
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(perhaps for monetary gain). Sometimes, open-ended questions are asked so that the 
student questions the giants or questions his or her own set of learned models.

In Maxwell’s Equations, the justifi cation for using the symmetric form of the 
equations given in the following table was developed.

Symmetric Form of Maxwell’s Equations

Differential form Integral form Name

∇
�
 × E

�
 = −J

�
 − ∂B

�
/∂t

� � ��
� E Idl t dsB

C S
⋅ = − ∂ ∂( )⋅−∫ ∫∫ Faraday’s law

∇
�
 × H

�
 = J

�
 + ∂D

�
/∂t

� � ��
� H Idl t dsD

C S
⋅ = + ∂ ∂( )⋅∫ ∫∫ Ampere’s law

∇
�
 · D

�
 = ρV

� �� D Qds
S

⋅ =∫∫ Gauss’s law for electric 
charge

∇
�
 · B

�
 = ρV

� �
� B Qds

S
⋅ =∫∫ Gauss’s law for magnetic 

charge

The symmetric form of Maxwell’s equations represents the vector fi eld quantities:

E
�
 = Electric fi eld intensity (Volts/meter).

H
�
 = Magnetic fi eld intensity (Ampere/meter)

D
�
 = Electric fl ux density (Coulombs/meter2)

B
�
 = Magnetic fl ux density (Weber/meter2 or Tesla)

ρV = Electric charge density (Coulomb/meter3)
ρV = Magnetic charge density (Weber/meter3)
J
�
 = Magnetic current density (Volts/meter2)

J
�
 = Electric current density (Ampere/meter2)

with the units of the new fi eld quantities in SI units shown in parenthesis.
The equation of continuity was developed for both electric and magnetic charge 

density by using conservation of charge to write the symmetric forms2:
� �
∇⋅ = − ∂ ∂J tVρ
� �
∇⋅ = − ∂ ∂J tVρ

Based on the symmetric equations, we can see that, in a magnetic charge-free 
region of space, B

�
 is solenoidal (∇

�
 · B

�
 = 0), and, because the divergence of the curl 

of any vector fi eld is identically zero, we can thus assume that B
�
 may be written in 

terms of another vector fi eld, A
�
, called the magnetic vector potential:

� ��
B A= ∇ × .

In a magnetic current-free region of space, the symmetric equations are the same as 
the asymmetric equations most physicists use as Maxwell’s equations.

In an electric charge-free region of space, D
�
 is solenoidal (∇

�
 · D

�
 = 0), and we 

can assume that D
�
 may be written in terms of another vector fi eld, A

�
, called the 

electric vector potential:
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� ��
D A= ∇ ×

For charge and current density-free space (ρV = 0, ρV = 0, J
�
 = 0 and J

�
 = 0), 

a unique defi nition of the vector fi elds, A
�
 and A

�
, may be specifi ed through additional 

restrictions (∇
�
 × E

�
 = −∂B

�
/∂t) and (∇

�
 × H

�
 = ∂D

�
/∂t), so we can write

� � �� �� �
∇ × = −∂ ∇ ×( ) ∂ ∇ × + ∂ ∂( ) =E EA At tor 0
� � �� �� �
∇ × = −∂ ∇ ×( ) ∂ ∇ × + ∂ ∂( ) =H HA At tor 0

One can also show that ∇
�
 × (−∇

�
V) = 0 for any scalar fi eld.3 Thus, because the 

curl of the vector fi eld shown in parentheses above is zero, then that fi eld can be 
written as the negative gradient of another scalar fi eld that is successively called the 
electric scalar potential, V, and the magnetic scalar potential, V, with

� �� �� �
E V E VA At t+ ∂ ∂ = −∇ = −∇ − ∂ ∂or
� �� �� �
H V H VA At t+ ∂ ∂ = −∇ = −∇ − ∂ ∂or

We can see from the fi rst of these equations that the electric fi eld intensity, E
�
, 

can be written in terms of the electric scalar potential, V, and the time derivative of 
the magnetic vector potential, A

�
. As long as these scalar and vector potentials are 

unique, the electric fi eld intensity produced by them will also be unique. Note: In 
the special case of static (time independent) fi elds and potentials, ∂A

�
/∂t = 0, and 

∂A
�
/∂t = 0 the electric and magnetic fi eld intensities reduce to E

�
 = −∇

�
V and H

�
  = −∇

�
V 

as Maxwell originally proposed.
For homogeneous media in time-varying fi elds (B

�
 = μH

�
 and D

�
 = εE

�
), the 

symmetric forms yield ∇
�
 × B

�
 = μJ

�
 + με ∂E

�
/∂t or ∇

�
 × (∇

�
 × A

�
) = μJ

�
 + με ∂E

�
/∂t or 

∇
�
 × ∇

�
 × A

�
 = μJ

�
 + με ∂(−∇

�
V − ∂A

�
/∂t)/∂t, and using identity ∇

�
 × ∇

�
 × A

�
 = 

∇
�
(∇
�
 · A

�
) − ∇

�
2A
�

� � � �� � � �
∇ ∇⋅( ) − ∇ = − ∇ ∂ ∂( ) − ∂ ∂A A J AV t t2 2 2μ με με or

� � �� � � �
∇ − ∂ ∂ = − + ∇ ∇⋅ + ∂ ∂( )2 2 2A A J At tVμε μ με .

Likewise, the symmetric form ∇
�
 × E

�
 = −J

�
 − ∂B

�
/∂t or ∇

�
 × (∇

�
 × A

�
) = −εJ

�
 − ε∂B

�
/∂t 

or ∇
�
 × ∇

�
 × A

�
 = εJ

�
 + με ∂(−∇

�
V − ∂A

�
/∂t)/∂t and using identity ∇

�
 × ∇

�
 × A

�
 = 

∇
�
(∇
�
 · A

�
) −∇

�
2A
�

� � � �� � � �
∇ ∇⋅( ) − ∇ = − ∇ ∂ ∂( ) − ∂ ∂A A J AV t t2 2 2ε με με or

� � �� � � �
∇ − ∂ ∂ = − + ∇ ∇⋅ + ∂ ∂( )2 2 2A A J At tVμε ε με

Now, the defi nition of a unique vector fi eld A
�
 or A

�
 requires an additional restric-

tion or gauge. One way to provide this restriction (gauge) is to specify their diver-
gence. Lorenz used the now-called Lorenz gauge to write4
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� �
∇⋅ + ∂ ∂ =A V tμε 0
� �
∇⋅ + ∂ ∂ =A V tμε 0

From a mathematical solutions perspective, that choice is convenient because 
it requires A

�
 and A

�
 to satisfy second-order, linear, inhomogeneous partial differential 

equations (PDEs):

� � � �
∇ − ∂ ∂ = −2 2 2A A Jtμε μ
� � � �
∇ − ∂ ∂ = −2 2 2A A Jtμε ε ,

which are called the inhomogeneous wave equation for the magnetic vector potential 
and the inhomogeneous wave equation for the electric vector potential. To solve 
these equations for A

�
 or A

�
, the current density, J

�
 or J

�
, is needed.

A corresponding wave equation for the electric scalar potential can be found by 
using Gauss’s law ∇

�
 · D

�
 = ρV and ∇

�
 · E

�
 = ρV/ε ⇒∇

�
 · (∇

�
V + ∂A

�
/∂t) = −ρV/ε, which 

leads to ∇
�

2V + ∂(∇
�
 · A

�
)/∂t = −ρV/ε, and, by using the Lorenz gauge (∇

�
 · A

�
 + με∂V/∂t 

= 0), we see that the electric scalar potential, V, also satisfi es the inhomogeneous 
wave equation

�
∇ − ∂ ∂ = −2 2 2V V t Vμε ερ

This equation needs only ρV to solve for the electric scalar potential, V.
Likewise, a corresponding wave equation for the magnetic scalar potential can 

be found by using Gauss’s law ∇
�
 · B

�
 = ρV and ∇

�
 · H

�
 = μρV ⇒∇

�
 · (∇

�
V + ∂A

�
/∂t) = −μρV 

or ∇
�

2V + ∂(∇
�
 · A

�
)/∂t = −μρV, and, by using the Lorenz gauge (∇

�
 · A

�
 + με ∂V/∂t = 0), 

we see that the magnetic scalar potential, V, also satisfi es the inhomogeneous wave 
equation

�
∇ − ∂ ∂ = −2 2 2V V t Vμε μρ

This equation needs only ρV to solve for the magnetic scalar potential, V.

Symmetric Form Conclusion

With a prior knowledge of ρV , ρV, J
�
, and J

�
, we can separate the x, y, and z compo-

nents of the wave equations and solve for V and V and each component of A
�
 and A

�
 

independently of the others. All four of these equations are of in the form of the 
same inhomogeneous wave equation and are independent of one another. Thus, 
given the electric charge density, the magnetic charge density, the vector electric 
current density, and the vector magnetic current density, we can solve the inhomo-
geneous wave equation (subject to boundary conditions specifi ed by a particular 
application) to fi nd the potentials V, V, A

�
, and A

�
 from which we can then fi nd all of 
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the components of the electric fi eld intensity and magnetic fi eld intensity. The 
inhomogeneous wave equations for V, V, A

�
, and A

�
 form a set of four equations 

equivalent in all respects to the symmetric Maxwell’s equations (subject to the 
restriction of the Lorenz gauge). However, unlike Maxwell’s equations, these four 
inhomogeneous PDEs are independent of one another so they are often easier to 
solve.

NOTE Using the electric vector potential and the magnetic vector potential results 
in electric and magnetic fi elds that originate from B

�
 = ∇

�
 × A

�
, D

�
 = ∇

�
 × A

�
, E

�
 = −∇

�
V 

− ∂A
�
/∂t, and H

�
 = −∇

�
V − ∂A

�
/∂t. The resulting electric and magnetic fi eld intensity is 

the vector sum as a result of both potentials: E
�

total = −∇
�
V − ∂A

�
/∂t + ∇

�
 × A

�
/ε and 

H
�

total = −∇
�
V − ∂A

�
/∂t + ∇

�
 × A

�
/μ.

Engineers sometimes use electric vector potential and magnetic vector potential 
to develop solutions because they are easier to fi nd via the inhomogeneous wave 
equations with boundary conditions. The solutions can be chosen to have boundary 
conditions so that one part of the solution yields a transverse electromagnetic (TEM), 
transverse electric (TE), or transverse magnetic (TM) solution in a particular coor-
dinate system. However, this approximation is poor when considering fi elds in the 
microscopic near-fi eld regime so that the two-vector potential technique will not 
suffi ce for the analysis of crystal fi eld effects or fi elds internal to atoms or 
molecules.

The physics community usually assumes that there is no such thing as magnetic 
charge density or magnetic current density so that ρV = 0 and J

�
 = 0. In this formal-

ism, Maxwell’s equations are equivalent to their asymmetric form shown below. 
Because we will often evaluate near-fi elds, the asymmetric form of Maxwell’s equa-
tions will be used in this book to fi nd solutions to applied problems in Signal 
Integrity.

Asymmetric Form of Maxwell’s Equations‡,5

Differential form Integral form
� �

�
∇ × = − ∂

∂
E

B

t

� �
� E dl

d

dtC

B⋅ = −∫
Φ

� � �
�

∇ × = + ∂
∂

H J
D

t

� � �
�

� H Idl
t

ds
D

C S
⋅ = + ∂

∂
⋅∫ ∫

∇
�
 · D

�
 = ρV

� �
� D Qds

C
⋅ =∫

∇
�
 · B

�
 = 0

� �
� B ds

S
⋅ =∫ 0

For the special case of source-free problems (i.e., ρV = 0 and J
�
 = 0), we can see that 

both the symmetric and asymmetric forms of Maxwell’s equations reduce to:

‡ Oliver Heaviside reformulated Maxwell’s equations (originally in quaternion format) to this 
asymmetric vector form.
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Maxwell’s Equations for Source-Free Problems

Differential form Integral form Name of law

∇
�
 × E

�
 = −∂B

�
/∂t

� � ��
� E dl t dsB

C S
⋅ = − ∂ ∂( )⋅∫ ∫∫ Faraday’s law

∇
�
 × H

�
 = ∂D

�
/∂t

� � ��
� H dl t dsD

C S
⋅ = ∂ ∂( )⋅∫ ∫∫ Ampere’s law

∇
�
 · D

�
 = 0

� �
� D ds

S
⋅ =∫ 0 Gauss’s law

∇
�
 · B

�
 = 0

� �
� B ds

S
⋅ =∫ 0 No isolated magnetic charge

So if we take the curl of Faraday’s law, ∇
�
 × ∇

�
 × E

�
 = −∇

�
 × ∂B

�
/∂t or ∇

�
(∇
�
 · E

�
) − ∇

�
2E
�
 

= −μ∂(∇
�
 × H

�
)/∂t and substitute Gauss’s law (∇

�
 · E

�
 = 0) and Ampere’s Law, we see

� � �
∇ − ∂ ∂ =2 2 2 0E E tμε

Likewise, taking the curl of Ampere’s law,

� � � � � � �� � �� �
∇ × ∇ × = ∇ × ∂ ∂ ∇ ∇⋅( ) − ∇ = ∂ ∇ ×( ) ∂H H HD Dt tor 2 ε

and using (∇
�
 · H

�
 = 0) with Faraday’s law, we see

� � �
∇ − ∂ ∂ =2 2 2 0H H tμε

Asymmetric Form Conclusion

In source-free space, V, all of the components of A
�
, all of the components of V

�
, and 

all of the components of H
�
 satisfy the homogeneous wave equation, and we will 

label με = 1/u2
p and μ0ε0 = 1/c2.

TIME-RETARDED SOLUTIONS TO MAXWELL’S EQUATIONS

The solution of the inhomogeneous wave equation is a linear combination of the 
general solution to the homogeneous equation (with coeffi cients determined by 
boundary conditions) plus a particular solution of the inhomogeneous wave equa-
tion. For the equations above,

� �∇ − ∂ ∂ = ( )2 2 2ψ με ψ t f x t,

where f x t x t x t x tV
� � � �
, , , ,( ) = − ( ) ( ) = ( )ρ ε ψwhen and

f x t x t x t x tJ Ai i
� � � �
, , , ,( ) = − ( ) ( ) = ( )μ ψwhen

for each of the i components of the magnetic vector potential in Cartesian 
coordinates.
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Any technique that provides a solution of the inhomogeneous part provides the 
solution because the particular solution is unique. Some authors (e.g., Matthews and 
Walker) use an informed guess technique, and others (e.g., Jackson) use a formal 
Green’s function technique to obtain an answer. Using the latter Green’s function 
technique for time-varying fi elds, we can fi nd the solution for an inhomogeneous 
PDE by fi rst taking its Fourier transform with respect to the variable t.

In 1824, George Green claimed that, if we solve the equation (∇
�

2 − με ∂2/∂t2)
G(x

�
, t; x

�′, t′) = δ(x
�
 − x

�′)δ(t − t′), then (in infi nite space with no boundary surfaces) 
the solution will be

ψ � � � �
x t G x t x t f x t d x dt, , ; , ,( ) = ′ ′( ) ′ ′( ) ′ ′∫∫∫∫ 3

To solve the differential equation with delta functions on the right-hand side, 
we can insert the four-dimensional Fourier transform of the Green’s function, g(k

�
, 

ω), on the left-hand side of the equation and the four-dimensional delta function 
representation on the right-hand side of the equation as follows:

G x t x t d k d g k e ejk x x j t t� � � � � �
, ; , ,′ ′( ) = ( ) ⋅ − ′( ) − − ′( )∫∫∫∫ 3 ω ω ω

δ δ π ω ω� � � � �
x x t t d k d e ejk x x j t t− ′( ) − ′( ) = ( ) ⋅ − ′( ) − − ′( )∫∫∫∫1 2 4 3

The result is a simple algebraic equation:

g k k k c
�
, ω π μεω π ω( ) = ( )⎡⎣ ⎤⎦ −( ) = ( )⎡⎣ ⎤⎦ −( )− −

1 2 1 24 2 2 1 4 2 2 2 1

and the answer is

G x t x t x x t t x x c
� � � � � �
, ; ,′ ′( ) = − − ′( ) − ′( ) − − ′( )1 4π δ

This Green’s function is called the Retarded Green’s function because it exhib-
its causal behavior associated with the propagation of a wave source to a response 
location; that is, an effect observed at a point x

�
 as a result of a source at a point x

�′ 
and time t′ will not occur until the wave has had time to propagate the distance 
⎪x
�
 − x

�′⎪, traveling at speed c = 1 με .
Finally, we can use the Green’s function to fi nd the solution to the inhomoge-

neous wave equation in the absence of boundary conditions as

ψ δ
π

�
� �

� �
�

x t
t t x x c

x x
f x t d x dt, ,( ) = − − ′( ) − − ′( )

− ′
′ ′( ) ′ ′∫∫∫∫ 4

3

The integration over dt′ can be performed to yield the “retarded potential 
solution”

ψ
π

�
�

� �x t
f x t

x x
d xretarded,

,( ) = −
′ ′( )[ ]

− ′
′∫∫∫ 4

3
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The electric potential due to an electric charge distribution, ρV, over a volume V′ is 
then

V R t
t R c

R
d xV

V
,( ) = ( ) −( )

′
′∫∫∫1 4 3πε ρ

called the retarded electric scalar potential, which indicates that the scalar potential 
at (R,t) depends on the value of electric charge at an earlier time (t − R/c).

Similarly, we can obtain the retarded magnetic vector potential

�
�

A
J

R t
t R c

R
d x

V
,( ) = ( ) −( )

′
′∫∫∫μ π4 3

The time-retarded electric fi eld intensity and magnetic fi eld intensity are then found 
from

� � �
E V A t= −∇ − ∂ ∂

and
� � �
H V A t= −∇ − ∂ ∂

Time-retarded information is often neglected in applications problems involving 
microscopic distances of μm because time delay at the speed of light in a vacuum, 
c = 1 0 0μ ε , is considered to be negligible over those distances. We have shown6 
that time-retarded potentials at microscopic distances in a dielectric medium 2 with 
c2 2 21= μ ε  are also negligible for ordinary values of permittivity and permeability. 
However, when electromagnetic waves propagate in a conductor with conductivity, 
σ, their phase velocity decreases to u cp = σ ωε2 0 , and the time delay, even over 
a one-micrometer distance, can be substantial for good conductors at some 
frequencies.

We will see that time-retarded effects infl uence signals propagating in mixed 
media that include conductors. Those signals will be measurably delayed, attenuated, 
and dispersed as determined by the solutions to Maxwell’s equations in propagating 
media with conducting boundaries, and this will affect our ability to produce infor-
mation signals with integrity (signals that transmit information between two points 
reliably). In these applications, we will see that Maxwell’s equations form the foun-
dations of Signal Integrity.

ENDNOTES

1. Paul G. Huray, Maxwell’s Equations (Hoboken, NJ: John Wiley & Sons, 2009).
2. Ibid., 7.120 and 7.121.
3. Ibid., Chapter 3.
4. L. V. Lorenz, “Eichtransformationen, und die Invarianz der Felder unter solchen Transformationen 

nennt man Eichinvarianz,” Phil. Mag. Series 4, no. 34 (1867): 287–301.
5. James Clerk Maxwell, “A Dynamical Theory of the Electromagnetic Field,” Philosophical Transactions 

of the Royal Society of London 155 (1865): 459–512.
6. Huray, Maxwell’s Equations, Chapter 7.
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Plane Electromagnetic Waves

LEARNING OBJECTIVES

• Develop and understand the spatial and temporal relationships between electric and 
magnetic fi elds for propagating waves

• Relate the spatial and temporal relationships between electric and magnetic fi elds for 
polarized waves

• Use dielectric, magnetic, and conduction properties of a medium to modify plane 
wave fi eld properties

• Use the relative velocity between a source and receiver to fi nd the relativistically 
accurate frequency shift (Doppler Shift) of harmonic E&M waves

• Recognize the difference between group and phase velocity and relate them to the 
transmission of power and transfer of momentum

• Describe the properties of plane waves that are incident on a boundary between two 
media with differing permittivity, permeability, and conductivity

• Show how E&M pulses attenuate and disperse in common transmission materials 
such as copper, glass, and liquids

Chapter 1

INTRODUCTION

In the development of the solutions to Maxwell’s equations (see Intent of the Book), 
we have used the scalar electric potential, V(x, y, z, t), the magnetic vector potential, 
A
�
(x, y, z, t), and the Lorenz gauge to uncouple the differential equations and to write 

an equivalent pair of inhomogeneous partial differential equations (PDEs) for V and  
A
�
:

 
�
∇ − ∂

∂
= −2

2

2
V

V

t
Vμε

ε
ρ

 (1.1a)

 
� �

�
�

∇ −
∂
∂

= −2
2

2
A

A
J

t
με μ  (1.1b)
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We have found that these PDEs can be solved independently to fi nd a particular 
solution in terms of the time-harmonic source electric charge density, ρ(x, y, z, t) = 
ρs(x

�
)ejωt, and the source current density, J

�
(x, y, z, t) = J

�
s(x

�
)ejωt, as

 V x x t
x e

x x
d x eS

jk x x
j t

V

� � �
� �

� �

, ,′( ) =
′( )
− ′

′
− − ′

′∫∫∫
1

4
3

πε
ρ ω  (1.2a)

 
�

�
� �

�
� �

� �

A
J

x x t
x e

x x
d x eS

jk x x
j t

V
, ,′( ) =

′( )
− ′

′
− − ′

′∫∫∫
μ
π

ω

4
3  (1.2b)

The most general form of the solution is then a linear combination of the general 
solutions to the homogeneous PDEs (Equation 1.1 in which ρ = 0 and J

�
= 0) and 

Equation 1.2. Knowing the relationship between electric fi eld E
�
(x
�
, t) = E

�
S(x

�
)ejωt and 

magnetic fi eld, H
�
(x
�
, t) = H

�
S(x

�
)ejωt and the scalar electric and magnetic vector poten-

tials, we then develop an understanding of the behavior of those fi elds in a homo-
geneous material medium with electric permittivity, ε, electric conductivity, σ, and 
magnetic permeability, μ (where B

�
 = μH

�
 and D

�
 = εE

�
):

 
� ��
H AS S= ∇×1

μ
 (1.3a)

 
� � �
E V j AS S S= −∇ − ω  (1.3b)

These solutions satisfy the time-harmonic form of Maxwell’s equations

 
� � �
∇× = −E j HS Sωμ  (1.4a)

 
� � � �
∇× = +H J j ES S Sωε  (1.4b)

 
� �
∇ ⋅ =ES

Sρ
ε

 (1.4c)

 
� �
∇ ⋅ =HS 0  (1.4d)

so we are free to use these relationships where they are convenient. For example, if 
we use Equation 1.3a to fi nd H

�
S in source-free space, we may use Equation 1.4b (in 

the absence of current density, J
�

S) to fi nd E
�

S without having to fi nd Vs.

1.1 PROPAGATING PLANE WAVES

We begin by considering the propagation of a magnetic vector potential in a source-
free region of space:

 
� �� �
A A A Ax t x e x y e a x y eS z z

j t j k z t
z

j k zz z, , ,( ) = ( ) = ( ) + ( )+ −− −( ) +ω ω ωωt
za( ) ˆ ,ˆ  (1.5)

which is a linear combination of the two independent solutions to the homogeneous 
PDE 1.1b. Here, we have expressed the plane wave in terms of its motion along the 
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z-axis because we are at liberty to orient the Cartesian coordinates in a direction of 
our choice. By incrementing the time t in this expression from t′ to t′ + dt, we can 
follow a point of constant phase, (kzz − ωt) = constant, to see that the fi rst term 
represents the propagation of a wave in the z-direction (along the positive z-axis), 
with speed u dz dt kp z= = =ω με1  (also called the phase velocity). The second 
term in Equation 1.5 represents the propagation of a wave along the negative z-axis 
with the same phase velocity. To simplify our understanding of the wave propagation 
and the relative position of the resulting electric and magnetic fi elds, we will assume 
that the boundary conditions require the coeffi cient of the second term to be zero; 
that is, we will consider only propagation in the positive z-direction. Such a fi eld 
might, for example, be created by current sources in a region of space in which the 
electric current density is forced by boundary conditions to have a component only 
in the z-direction.

Relative Directions and Magnitudes of E
�

 and H
�

For the special case with Az
−(x, y) = 0, we can use Equation 1.3a to see that

 

� ��
H A

A
A

a a a

x y z
x y e

S S

z

z

x y z

jk zz

+ +

+

+

−

= ∇× = ∂
∂

∂
∂

∂
∂

( )

= ∂

1 1

0 0
1

μ μ

μ

ˆ ˆ ˆ

,

∂∂
− ∂

∂
− −

+

y
e a

x
e a

Ajk z
x

jk z
y

zz zˆ ˆ
1

μ
 (1.6a)

We can also use Equation 1.4b to see that

 

� � �
E

j j

a a a

x y z

y
e

H

A A

S S

z z

x y z

jk zz

+ +

+ +
−

= ∇ × =
∂
∂

∂
∂

∂
∂

∂
∂

−
∂
∂

1 1

ωε ωεμ

ˆ ˆ ˆ

xx
e

j

e

x z
a

j

e

y z

A A

jk z

jk z

x

jk z
z z

z

z z

−

− −+ +

=
∂ ( )

∂ ∂
+

∂ ( )
∂ ∂

0

1 12 2

ωεμ ωεμ
ˆ ˆ̂

ˆ ˆ

a

k

x
e a

k

y
e a

A A

y

z jk z
x

z jk z
y

z zz z=
− ∂

∂
+

− ∂
∂

+ +
− −

ωεμ ωεμ
 (1.6b)

We may now see that

 
� �
H AS S

+ +⋅ = 0  (1.7a)

 
� �
E AS S

+ +⋅ = 0  (1.7b)

 
� �
H ES S

+ +⋅ = 0  (1.7c)
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Conclusion

In this special case, the propagating electric fi eld intensity waves, magnetic 
fi eld intensity waves, and magnetic vector potential waves are all orthogonal to 
one another. We call such propagating waves transverse electric (TEz) and transverse 
magnetic (TMz) because they are moving in the z-direction, in phase with the 
magnetic vector potential. When both TE and TM waves occur in the same propa-
gation (as they do here), the waves are transverse electromagnetic and labeled TEMz 
waves.

Relative Magnitudes

We can also use the relationship kz = ω με  to compare the components of the 
electric and magnetic fi eld intensity for TEMz waves as

 
E

H
ZS x

S y
W

,

,

+

+
+= = =μ

ε
η  (1.8a)

 − = = =
+

+
+E

H
ZS y

S x
W

,

,

μ
ε

η  (1.8b)

The quantity η is called the intrinsic impedance of the medium because it is a func-
tion only of the permeability and permittivity of the medium. Some texts call this 
ratio, ZW, which they call the wave impedance, to remind us that the ratio of an 
electric fi eld intensity and magnetic fi eld intensity has units of ohms. Thus, this 
quantity is a measure of the impedance of the medium; the ratio is labeled Z0 in the 
case of waves propagating in a vacuum. In air or a vacuum, ε = ε0 ≈ (1/36π) × 10−9

F/m or (s/Ωm) and μ = μ0 = 4π × 10−7H/m or (Ωs/m) so η = Z0 ≈ 120π Ω = 377Ω. 
This is called the intrinsic impedance of free space.

Physical Meaning of the Propagating Wave Equations

Equations 1.6 give us the relative vector directions, phase, and magnitude of E
�
 and 

H
�
 relative to the magnetic vector potential, A

�
. Without some knowledge of how A

�
 

varies with x and y, we cannot take the partial derivatives. However, the x-direction 
is just as arbitrary as the z-direction, which we choose to be in the direction of 
propagation of A

�
. We can therefore choose the x-direction to be in the direction of 

the electric fi eld intensity vector, in which case, we write

 
� �
E Ex t e aj k z t

x
z+ + − −( )( ) =, 0

ω ˆ  (1.9a)

 
� �
H x t e aE j k z t

y
z+ + − −( ) = ( ), ( )

0 η ω ˆ  (1.9b)

Here, we have chosen the component of H
�
 to satisfy the ratio condition required 

by Equation 1.8a.



1.1 Propagating Plane Waves 5

Assuming the coeffi cient in 1.9a is a real number, let us now diagram the 
propagating waves for the real part of the functions 1.9:

 Re , cos
� �
E Ex t k z t az x

+ +( )[ ] = −( )0 ω ˆ  (1.10a)

 Re , cos
� �
H x t k z t aE z y

+ +( )[ ] = ( ) −( )0 η ω ˆ  (1.10b)

A graph of these functions is shown in Figure 1.1 at time t = 0.
In Figure 1.1, we see that, at time t = 0, both the electric fi eld intensity and the 

magnetic fi eld intensity are distributed under a cosine curve envelope in space with 
a wavelength λ = 2π/kz and both envelopes are propagating along the positive z-axis 
with velocity u fp = =λ με1 .

In this fi gure, the x-axis direction has been chosen to lie in the direction of 
the electric fi eld, and Equations 1.7 thus require that the magnetic fi eld must lie in 
the y-direction. We may use the right-hand rule to see that E

�
 × H

�
 lies in the direction 

of A
�
 (the z-direction) at every point in space. Furthermore, the electric fi eld intensity 

and the magnetic fi eld intensity remain in phase with one another (both are a 
maximum at the same point in space and both are zero at the same point). For later 
values of time, both continue to point in their respective x- and y-directions so we 
say that they are linearly polarized. Finally, we note that the magnitude of the mag-
netic fi eld envelope H +

0 = E+
0/η, where E+

0 is the magnitude of the electric fi eld inten-
sity envelope and η μ ε=  is the intrinsic impedance of the medium in which the 
wave is propagating.

Propagation Direction

E
+
0

H
+
0

âx

ây

âz

E 
�

H 
�

λ

z

(z, t)

(z, t)

Figure 1.1 Plot of the real parts of the electric and magnetic fi eld intensity as a function of position 
z, at time t = 0 when the x-axis is chosen to lie in the direction of the electric fi eld intensity vector.
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NOTE Some texts prefer to graph the magnetic fl ux density B
�
 = μH

�
 rather than 

the magnetic fi eld intensity

 B E E
E

uP
0 0 0

0+ + +
+

= = =μ ε
μ

με  (1.11)

because, in the special case when the propagating medium (e.g., air) has the same 
permeability and permittivity of free space, B+

0 = E+
0 /c, where c is the speed of light 

in a vacuum, 2.99792458 × 108 m/s. When the electric fi eld intensity of an electro-
magnetic wave remains in the same direction as it propagates in a medium, it is said 
to be linearly polarized. Of course, the relations above show that the magnetic fi eld 
intensity associated with the wave is also linearly polarized.

1.2 POLARIZED PLANE WAVES

An observer located along the z-axis at a position of maximum electric fi eld (i.e., at 
position z = nλ with n = an integer at t = 0) looking back in the −z direction (as 
shown in Figure 1.2a) would see the electric and magnetic fi eld intensity, as shown 
in Figure 1.2b.

As a function of time, an observer at z = nλ would measure the electric fi eld 
intensity to be a maximum (in the x-direction) at time t = 0, as shown in Figure 1.2b, 
then observe it to decrease to zero by time t = (1/4)(λ/c), then observe it to further 
decrease to its maximum negative value by time t = (1/2)(λ/c), then increase back 
to zero by t = (3/4)(λ/c), then increase back to its maximum positive value by t = 
λ/c, and so forth in a cosinusoidal manner with time. The magnetic fi eld intensity 

Propagation Direction

E+
0

H+
0 â

y

â
x

â
z

E 
�

H 
�

λ
(z, t)

(z, t)

z = nl

Figure 1.2 (a) Observer at z = nλ (n = integer); 
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E+
0

H+
0

yâ

xâ

Figure 1.2 (b) electric and magnetic fi eld intensity components observed 
at time t = 0.

would be behaving in a similar manner except it would occur only in the y-direction, 
and its amplitude would be H+

0 = E+
0 /η.

More General Case

If we express the fi eld intensity in the general case (not choosing the x-axis to lie in 
the direction of the electric fi eld intensity), Equations 1.6a and 1.6b specify their 
components:
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where the components of E
�
 and H

�
 obey the relations 1.8a and 1.8b, E+

0,x = H+
0,y = η, 

and E+
0,y /H+

0,x = −η. In this case, we can draw the electric fi eld measured by the 
observer at position z = nλ (n = integer) at time t = 0 to be that shown in Figure 1.3.

As seen from a point z = nλ on the z-axis, the two components of electric fi eld 
would add vectorally to form a resultant vector E

�
+
0,R whose components would vary 

with time cosinusoidally. Thus, E
�

+
0,R would be seen as a linearly polarized fi eld at 

angle

âx

ây

q

E0,x
+

E0,y
+

E0,R
+

�

Figure 1.3 Components of the electric fi eld intensity observed at 
time t = 0 (components of the magnetic fi eld intensity are orthogonal to 
these components but are not shown).
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 θ = ( )− + +tan , ,
1

0 0E Ey x  (1.13)

with respect to the x-axis. We would say that the two components of the electric 
fi eld are in space quadrature with one another. While both of the measured com-
ponents change with time in a cosωt manner, the angle θ remains constant so the 
resultant polarized electric fi eld oscillates in amplitude with the same orientation 
with respect to the x-axis.

A simple way to picture the resultant of two components is to picture them as 
originating from two orthogonal sources such as the two dipole antennas shown in 
Figure 1.4.

Even More General Case

If the two dipole antennas that create the two space quadrature polarized electric 
fi eld intensities are displaced from one another along the z-axis by an amount z = 
λ/4, as shown in Figure 1.5 and are driven at the same frequency and in the same 
phase, the resulting electric fi eld intensities will be displaced from one another in 
phase by one quarter of a cycle. As seen by the observer at z = nλ, the second electric 
fi eld intensity (oriented in the y-direction) will be delayed in time from the fi rst 
(oriented in the x-direction) by t = (π/2)/ω.

The equivalent equation for the observed electric fi elds at point z is

 Re ( , ) Re , ,
( )

�
�E E Ez t e a e aS x y

j k z t
x

j k z t
z

z+ + +− − − − −⎛
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2ω ω π

�� y

⎡

⎣
⎢

⎤

⎦
⎥ or  (1.14)
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⎝

⎞
⎠0 0

2
ω ω π

== −( ) − −( )+ +E Ek z t a k z t ax yz x z y0 0, ,cos sinω ω� �  (1.15)

Propagation direction

z  =  nl

E  x(z,t)

+
+
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+
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+

E  y(z,t)+

âz
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Figure 1.4 Two electric fi eld intensities produced by orthogonal dipole antennas operating at the 
same frequency and with the same phase.


