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PREFACE

The concept of electronic (static) power conversion has gained widespread acceptance
in power system applications. As such, electronic power converters are increasingly
employed for power conversion and conditioning, compensation, and active filtering.
The gradual increase in the depth of penetration of distributed energy resource (DER)
units in power systems and further acceptance of new trends and concepts, for ex-
ample, microgirds, active distribution systems, and smart grids, also indicate a wider
role for power-electronic converters in the electric power system.

While a fairly large number of books on various power-electronic converter config-
urations and their principles of operation do exist, there is a gap in terms of modeling,
analysis, and control of power-electronic converters in the context of power systems.
This book addresses this gap and concentrates on power conversion and conditioning
applications and presents the analysis and control design methodologies for a specific
class of high-power electronic converters, namely, the three-phase voltage-sourced
converter (VSC). It provides systematic, comprehensive, unified, and detailed cover-
age of the relevant materials.

This book serves as a reference book for senior undergraduate and graduate stu-
dents in power engineering programs, practicing engineers who deal with grid integra-
tion and operation of DER systems, design engineers, and researchers in the areas of
electric power generation, transmission, distribution, and utilization. The book does
not cover implementation details of controllers; however, it contains adequate details
for system analysts and control designers and

� describes various functions that the VSC can perform in an electric power system,
� introduces different classes of applications of the VSC in electric power systems,
� provides a systematic approach to modeling a VSC-based system with respect

to its class of application,
� presents a comprehensive and detailed control design approach for each class of

applications, and
� illustrates the control design procedures and evaluates the performance, based

on digital computer time-domain simulation studies.

The text is organized in 13 chapters. Chapter 1 provides a brief introduction to the
most commonly used electronic switches and converter configurations in the power
system. The rest of the book is divided into two parts. The first part, Chapters 2–10,
provides theory and presents fundamental modeling and design methodologies. The

xv



xvi PREFACE

second part, Chapters 11–13, covers applications of theory and design methodologies,
through three selected application cases: the static compensator (STATCOM), the
forced-commutated back-to-back HVDC converter system, and the variable-speed
wind-power systems based on the doubly fed asynchronous generator. The second
part could have included more application varieties. However, only three application
cases have been presented to highlight the main concepts, within a limited number
of pages. The PSCAD/EMTDC software package has been used to generate most of
the time-domain simulation results in the text. We would like to emphasize that the
main purpose of the numerical examples in this book is to highlight the concepts and
design methodologies. As such, the numerical values of some parameters may not be
fully consistent with the values typically adopted for specific applications.

The reader is expected to have, at least, an undergraduate-level background in
electric circuits, electric machinery, electric power system fundamentals, and classical
(linear) control. Familiarity with power electronics and the state-space representation
of systems is a bonus but not a necessity. Relevant references are also cited throughout
the book to help the reader trace back the developments to their original sources.
While we have tried to be as comprehensive as possible, it is very likely that we have
missed some important references due to the richness of the technical literature and
the breadth of the subject matter. We would greatly appreciate any comments and
feedback from the readers, for future modifications of the book.

Amirnaser Yazdani
Reza Iravani

London, Ontario, Canada
Toronto, Ontario, Canada
January 2010



ACKNOWLEDGMENTS

I am very grateful to my former Ph.D. supervisor Professor Reza Iravani (the Univer-
sity of Toronto). Without his encouragement and support this book would have never
been envisaged. During the preparation of this book, I have benefited immensely from
many colleagues and friends. In particular, I would like to thank Professors Tarlochan
S. Sidhu and Serguei Primak (the University of Western Ontario) for their mentorship
and support; Professor Rajni V. Patel (the University of Western Ontario) for his dis-
cussions and invaluable insight into the subject of control theory; Professor Richard
Bonert (the University of Toronto) for his enlightening ideas on power electronics and
electromechanical energy conversion; and the late Professor Shashi B. Dewan (DPS
Inc. and University of Toronto) for providing me with the opportunity to further enrich
the book concepts through my exposure to high-power electronic converter systems
at Digital Predictive Systems (DPS) Inc. While teaching and revising the drafts of
this book, I received invaluable feedback from my graduate students to whom I am
thankful.

A. Y.

I would like to express my sincere thanks to the late Professor Shashi B. Dewan
whose generous and unconditional support made this work possible. Many thanks to
Professor R. Mohan Mathur who has always been a source of encouragement, and to
my colleagues Dr. Milan Graovac, Mr. Xiaolin Wang, and Dr. Armen Baronijan for
their invaluable discussions. And finally, thanks to all my former and current graduate
students and postdoctoral fellows whose research work has immensely enriched the
text.

R. I.

xvii





ACRONYMS

AC Alternating current
CSC Current-sourced converter
DC Direct current
DCC Diode-clamped converter
DER Distributed energy resource
DFIG Doubly-fed induction generator
DG Distributed generation
DES Distributed energy storage
FACTS Flexible AC transmission systems
GTO Gate-turn-off thyristor
HVDC High-voltage DC
IGBT Insulated-gate bipolar transistor
IGCT Integrated gate-commutated thyristor
LHP Left half plane
MIMO Multi-input-multi-output
MOSFET Metal-oxide-semiconductor field-effect transistor
NPC Neutral-point clamped
PCC Point of common coupling
PI Proportional-integral
PLL Phase-locked loop
PMSM Permanent-magnet synchronous machine
PWM Pulse-width modulation
pu Per-unit
PV Photovoltaic
RHP Right half plane
SCR Silicon-controlled rectifier
SISO Single-input-single-output
SM Synchronous machine
STATCOM Static compensator
SVC Static VAR compensator
UPS Uninterruptible power supply
VCO Voltage-controlled oscillator
VSC Voltage-sourced converter

xix





1 Electronic Power Conversion

1.1 INTRODUCTION

Historically, power-electronic converters have been predominantly employed in
domestic, industrial, and information technology applications. However, due to ad-
vancements in power semiconductor and microelectronics technologies, their applica-
tion in power systems has gained considerably more attention in the past two decades.
Thus, power-electronic converters are increasingly utilized in power conditioning,
compensation, and power filtering applications.

A power-electronic converter consists of a power circuit—which can be realized
through a variety of configurations of power switches and passive components—and
a control/protection system. The link between the two is through gating/switching
signals and feedback control signals. This chapter briefly introduces power circuits
of the most commonly used power-electronic converters for high-power applica-
tions. In the subsequent chapters, two specific configurations, that is, the two-level
voltage-sourced converter (VSC) and the three-level neutral-point clamped (NPC)
converter, are analyzed in more detail. This book focuses on the modeling and con-
trol aspects of the two-level VSC and the three-level NPC converter. However, the
presented analysis techniques and the control design methodologies are conceptually
also applicable to the other families of power-electronic converters introduced in this
chapter.

1.2 POWER-ELECTRONIC CONVERTERS AND CONVERTER
SYSTEMS

In this book we define a power-electronic (or static) converter as a multiport circuit that
is composed of semiconductor (electronic) switches and can also include auxiliary
components and apparatus, for example, capacitors, inductors, and transformers. The
main function of a converter is to facilitate the exchange of energy between two (or
more) subsystems, in a desired manner, based on prespecified performance specifica-
tions. The subsystems often have different attributes in terms of voltage/current wave-
forms, frequency, phase angle, and number of phases, and therefore cannot be directly

Voltage-Sourced Converters in Power Systems, by Amirnaser Yazdani and Reza Iravani
Copyright © 2010 John Wiley & Sons, Inc.
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2 ELECTRONIC POWER CONVERSION

interfaced with each other, that is, without power-electronic converters. For instance,
a power-electronic converter is required to interface a wind turbine/generator unit,
that is, an electromechanical subsystem that generates a variable-frequency/variable-
voltage electricity, with the constant-frequency/constant-voltage utility grid, that is,
another electromechanical subsystem.

In the technical literature, converters are commonly categorized based on
the type of electrical subsystems, that is, AC or DC, that they interface.
Thus,

� A DC-to-AC or DC/AC converter interfaces a DC subsystem to an AC sub-
system.

� A DC-to-DC or DC/DC converter interfaces two DC subsystems.
� An AC-to-AC or AC/AC converter interfaces two AC subsystems.

Based on the foregoing classification, a DC/AC converter is equivalent to an AC/DC
converter. Hence, in this book, the terms DC/AC converter and AC/DC converter
are used interchangeably. The conventional diode-bridge rectifier is an example of
a DC/AC converter. A DC/AC converter is called a rectifier if the flow of average
power is from the AC side to the DC side. Alternatively, the converter is called an
inverter if the average power flow is from the DC side to the AC side. Specific classes
of DC/AC converters provide bidirectional power-transfer capability, that is, they can
operate either as a rectifier or as an inverter. Other types, for example, the diode-bridge
converter, can only operate as a rectifier.

DC/DC converter and AC/AC converter are also referred to as DC converter and
AC converter, respectively. A DC converter can directly interface two DC subsystems,
or it can employ an intermediate AC link. In the latter case, the converter is composed
of two back-to-back DC/AC converters which are interfaced through their AC sides.
Similarly, an AC converter can be direct, for example, the matrix converter, or it can
employ an intermediate DC link. The latter type consists of two back-to-back DC/AC
converters which are interfaced through their DC sides. This type is also known as
AC/DC/AC converter, which is widely used in AC motor drives and variable-speed
wind-power conversion units.

In this book, we define a power-electronic converter system (or a converter
system) as a composition of one (or more) power-electronic converter(s) and
a control/protection scheme. The link between the converter(s) and the con-
trol/protection scheme is established through gating signals issued for semicon-
ductor switches, and also through feedback signals. Thus, the transfer of energy
in a converter system is accomplished through appropriate switching of the semi-
conductor switches by the control scheme, based on the overall desired perfor-
mance, the supervisory commands, and the feedback from a multitude of system
variables.

This book concentrates on modeling and control of a specific class of converter
systems, this is, the VSC systems. This class is introduced in Section 1.6.
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1.3 APPLICATIONS OF ELECTRONIC CONVERTERS IN POWER
SYSTEMS

For a long time, applications of high-power converter systems in electric power sys-
tems were limited to high-voltage DC (HVDC) transmission systems and, to a lesser
extent, to the conventional static VAR compensator (SVC) and electronic excitation
systems of synchronous machines. However, since the late 1980s, the applications
in electric power systems, for generation, transmission, distribution, and delivery
of electric power, have continuously gained more attention [1–6]. The main rea-
sons are

� Rapid and ongoing developments in power electronics technology and the avail-
ability of various types of semiconductor switches for high-power applications.

� Ongoing advancements in microelectronics technology that have enabled real-
ization of sophisticated signal processing and control strategies and the corre-
sponding algorithms for a wide range of applications.

� Restructuring trends in the electric utility sector that necessitate the use of
power-electronic-based equipment to deal with issues such as power line
congestion.

� Continuous growth in energy demand that has resulted in close-to-the-limit uti-
lization of the electric power utility infrastructure, calling for the employment
of electronic power apparatus for stability enhancement.

� The shift toward further utilization of green energy, in response to the global
warming phenomenon, and environmental concerns associated with centralized
power generation. The trend has gained momentum due to recent technological
developments and has resulted in economic and technical viability of alternative
energy resources and, in particular, renewable energy resources. Such energy
resources are often interfaced with the electric power system through power-
electronic converters.

In addition, development of new operational concepts and strategies, for example,
microgrids, active networks, and smart grids [7], also indicates that the role and
importance of power electronics in electric power systems will significantly grow.
The envisioned future roles of power-electronic converter systems in power systems
include

� Enhancement of efficiency and reliability of the existing power generation, trans-
mission, distribution, and delivery infrastructure.

� Integration of large-scale renewable energy resources and storage systems in
electric power grids.

� Integration of distributed energy resources, both distributed generation and dis-
tributed storage units, primarily, at subtransmission and distribution voltage
levels.
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� Maximization of the depth of penetration of renewable distributed energy
resources.

Power-electronic converter systems are employed in electric power systems for

� Active Filtering: The main function of a power-electronic-based active filter
is to synthesize and inject (or absorb) specific current or voltage compo-
nents, to enhance power quality in the host power system. A comprehen-
sive treatment of the concepts and controls of active power filters is given in
Ref. [8].

� Compensation: The function of a power-electronic (static) compensator, in either
a transmission or a distribution line, is to increase the power-transfer capability
of the line, to maximize the efficiency of the power transfer, to enhance voltage
and angle stability, to improve power quality, or to fulfill a combination of the
foregoing objectives. Various static compensation techniques have been exten-
sively discussed in the technical literature under the general umbrella of flexible
AC transmission systems (FACTS) and custom-power controllers [1–6]. The
FACTS controllers include, but are not limited to, the static synchronous com-
pensator (STATCOM), the static synchronous series compensator (SSSC), the
intertie power flow controller (IPFC), the unified power flow controller (UPFC),
and the semiconductor-controlled phase shifter.

� Power Conditioning: The main function of an electronic power conditioner
is to enable power exchange between two electrical (or electromechanical)
subsystems in a controlled manner. The power conditioner often has to
ensure that specific requirements of subsystems, for example, the frequency,
voltage magnitude, power factor, and velocity of the rotating machines, are met.
Examples of electronic power conditioning systems include but are not limited to

1. the back-to-back HVDC system that interfaces two AC subsystems that can
be synchronous, asynchronous, or even of different frequencies [9];

2. the HVDC rectifier/inverter system that transfers electrical power through a
DC tie line between two electrically remote AC subsystems [10, 11];

3. the AC/DC/AC converter system that transfers the AC power from a
variable-frequency wind-power unit to the utility grid; and

4. the DC/AC converter system that transfers the DC power from a DC
distributed energy resource (DER) unit, for example, a photovoltaic (PV)
solar array, a fuel cell, or a battery storage unit, to the utility grid [12, 13].

1.4 POWER-ELECTRONIC SWITCHES

Power-electronic semiconductor switches (or electronic switches) are the main build-
ing blocks of power-electronic converters. A power-electronic switch is a semicon-
ductor device that can permit and/or interrupt the flow of current through a branch
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of the host circuit, by the application of a gating signal.1 This is in contrast to the
operation of a mechanical switch in which the on/off transition is achieved through a
mechanical process, for example, the movement of a mechanical arm. A mechanical
switch

� is slow and thus not intended for repetitive switching;
� essentially includes moving parts and therefore is subject to loss of lifetime dur-

ing each switching action and thus, compared to an electronic switch, provides
a limited number of on/off operations; and

� introduces relatively low power loss during conduction, such that it can be prac-
tically considered as a closer representation to an ideal switch.

By contrast, an electronic switch

� is fast and intended for continuous switching;
� includes no moving part and thus is not subject to loss of lifetime during turn-on

and turn-off processes; and
� introduces switching and conduction power losses.

The above-mentioned characteristics of the mechanical and electronic switches indi-
cate that for some applications a combination of mechanical and electronic switches
can provide an optimum solution in terms of switching speed and power loss. How-
ever, the trend in the development of power semiconductor switches [14, 15] points
toward ever-increasing utilization of electronic switches. The effort to increase the
maximum permissible switching frequency and to minimize switching and conduc-
tion losses is the subject of major research and development programs of the power
semiconductor switch industry.

1.4.1 Switch Classification

The characteristics of a power-electronic converter mainly depend on the type of
its semiconductor switches. It is therefore warranted to briefly review different
switch types. Further details regarding the operation and characteristics of the most
commonly used switches can be found in Refs. [16, 17].

1.4.1.1 Uncontrollable Switches The power diode is a two-layer semiconductor
device and the only uncontrollable switch. It is uncontrollable since the current con-
duction and interruption instants are determined by the host electrical circuit. Power

1The only exception is diode that conducts current based on the conditions of the host circuit and not in
response to a gating signal.
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diodes are extensively used in power-electronic converter circuits as stand-alone com-
ponents, and/or as integral parts of other switches.

1.4.1.2 Semicontrollable Switches The most widely used semicontrollable elec-
tronic switch is the thyristor or the silicon-controlled rectifier (SCR). The thyristor
is a four-layer semiconductor device that is half- or semicontrollable, since only the
instant at which its current conduction starts can be determined by a gating signal,
provided that the device is properly voltage biased. However, the current interruption
instant of the thyristor is determined by the host electrical circuit. The thyristor has
been, and even currently is, the switch of choice for HVDC converters, although in
recent years fully controllable switches have also been considered and utilized for
HVDC applications.

1.4.1.3 Fully Controllable Switches The current conduction and interruption in-
stants of a fully controllable switch can be determined by means of a gating command.
Most widely used fully controllable switches include

� Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET): The MOSFET
is a three-layer semiconductor device. Compared to other fully controllable
power switches, current and voltage ratings of power MOSFETs are fairly lim-
ited. Consequently, the application of power MOSFETs is confined to relatively
lower power converters where a high switching frequency is the main require-
ment.

� Insulated-Gate Bipolar Transistor (IGBT): The IGBT is also a three-layer semi-
conductor device. The power IGBT has significantly evolved since the early
1990s, in terms of the switching frequency, the current rating, and the voltage
rating. At present, it is used for a broad spectrum of applications in electric power
systems.

� Gate-Turn-Off Thyristor (GTO): The GTO is structurally a four-layer semicon-
ductor device and can be turned on and off by external gating signals. The GTO
requires a relatively large, negative current pulse to turn off. This requirement
calls for an elaborate and lossy drive scheme. Among the fully controllable
switches, the GTO used to be the switch of choice for high-power applications
in the late 1980s and early 1990s. However, it has lost significant ground to the
IGBT in the last several years.

� Integrated Gate-Commutated Thyristor (IGCT): The IGCT conceptually and
structurally is a GTO switch with mitigated turn-off drive requirements. In addi-
tion, the IGCT has a lower on-state voltage drop and can also be switched faster
compared to the GTO. In recent years, the IGCT has gained considerable atten-
tion for high-power converters due to its voltage/current handling capabilities.

In terms of voltage/current handling capability, the semicontrollable and fully con-
trollable switches are classified as follows:
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� Unidirectional Switch: A unidirectional switch can conduct current in only one
direction. Hence, the switch turns off and assumes a reverse voltage when its
current crosses zero and attempts to go negative. A unidirectional switch can be
bipolar (symmetrical) or unipolar (asymmetrical). A bipolar switch can with-
stand a relatively large reverse voltage. The thyristor is an example of a bipolar,
unidirectional switch. A unipolar switch, however, has a relatively small reverse
breakdown voltage; thus, a voltage exceeding the switch reverse breakdown volt-
age results in a reverse in-rush current that can damage the switch. Therefore,
to prevent the reverse breakdown and the consequent damage, a diode can be
connected in antiparallel with the unipolar switch that also makes the switch
reverse conducting. The GTO and the IGCT are commercially available in both
unipolar and bipolar types. The current-sourced converter (CSC), described in
Section 1.5.2, requires bipolar, unidirectional switches.

� Reverse-Conducting Switch: A reverse-conducting switch is realized when a
unidirectional switch, whether unipolar or bipolar, is connected in antiparallel
with a diode. Hence, a reverse-conducting switch can be regarded as a unipolar
switch whose reverse breakdown voltage is approximately equal to the forward
voltage drop of a diode. Thus, a reverse-conducting switch starts to conduct
in the opposite direction if it is reverse biased by only a few volts. The IGBT
and the power MOSFET are examples of reverse-conducting switches. Reverse-
conducting IGCT switches are also commercially available. In this book, we refer
to a fully controllable reverse-conducting switch also as a switch cell, generically
illustrated in Figure 1.1(a). The VSC, defined later in this chapter, requires
reverse-conducting switches (switch cells). Figure 1.1(b) shows two common
symbolic representations of a switch cell in which the gate control terminal is
not shown.

� Bidirectional Switch: A bidirectional switch can conduct and interrupt the cur-
rent in both directions. Essentially, a bidirectional switch is also a bipolar switch
since in the off state it must withstand both forward and reverse voltage bi-
ases. An example of a (semicontrollable) bidirectional switch are two thyristors
that are connected in antiparallel. It should be pointed out that, to date, there

FIGURE 1.1 (a) Generic schematic diagram of a switch cell. (b) Symbolic representations
of a switch cell.
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exists no fully controllable bidirectional single-device switch technology. Hence,
such a switch must be realized through antiparallel connection of two bipolar
unidirectional switches. Fully controllable bidirectional switches are required
for matrix converters [18].

1.4.2 Switch Characteristics

In the context of electronic power conversion, semiconductor switches are almost
exclusively used in the switching mode, that is, the switch is either in the on state or in
the off state. The steady-state and switching properties of an electronic switch are con-
ventionally illustrated and characterized by, respectively, the switch current/voltage
waveforms and the characteristic curves in the current-versus-voltage (v–i) plane.
For system studies and control design purposes, especially for high-power converters
where the switching frequencies are typically low, simplified switch models are
often adopted. Such models retain the device features relevant to the study, while
considerably reduce the modeling, analytical, and computational burden. However,
depending on the objectives of a specific investigation, the accuracy of waveforms
and results can be enhanced if more elaborate switch models are employed. For
example, if the switching loss of a converter is of interest, the diode reverse recovery
and the transistor tailing current effects [16] must be included in the model of
switches.

In this book, the on- and off-state characteristics of an electronic switch are ap-
proximated by corresponding straight lines in the v–i plane. Thus, transient switch-
ing processes such as the reverse recovery, the tailing current, and so on are
ignored, and transition from one state to the other is generally assumed to be instan-
taneous. However, to demonstrate the methodology, in Section 2.6 we employ more
detailed models of switches to estimate the power loss of a DC/AC voltage-sourced
converter.

1.5 CLASSIFICATION OF CONVERTERS

There are a variety of approaches to classification of power-electronic converters. This
section introduces two categorization methods relevant to high-power applications.

1.5.1 Classification Based on Commutation Process

One widely used approach to the categorization of converters is based on the com-
mutation process, defined as the transfer of current from branch i to branch j of a
circuit, when the switch of branch i turns off while that of branch j turns on. Based on
this definition, the following two classes of converters are identified in the technical
literature:

� Line-Commutated Converter: For a line-commutated (naturally-commutated)
converter, the electrical AC system dictates the commutation process. Thus,


