LATENT CLASS AND LATENT TRANSITION ANALYSIS
LATENT CLASS AND LATENT TRANSITION ANALYSIS

With Applications in the Social, Behavioral, and Health Sciences

Linda M. Collins
Stephanie T. Lanza
The Pennsylvania State University
For David and Kathy
with admiration
(LMC)

For Dad
my first math teacher
(STL)
CONTENTS

List of Figures xvi
List of Tables xxi
Acknowledgments xxxi
Acronyms xxxiii

PART I FUNDAMENTALS

1 General Introduction 3
 1.1 Overview 3
 1.2 Conceptual foundation and brief history of the latent class model 4
 1.2.1 LCA and other latent variable models 6
 1.2.2 Some historical milestones in LCA 7
 1.2.3 LCA as a person-oriented approach 8
 1.3 Why select a categorical latent variable approach? 8
 1.4 Scope of this book 9
 1.5 Empirical example of LCA: Adolescent delinquency 10
 1.6 Empirical example of LTA: Adolescent delinquency 14
 1.7 About this book 17
1.7.1 Using this book
1.8 The examples in this book
1.8.1 Empirical data sets
1.9 Software
1.10 Additional resources: The book's web site
1.11 Suggested supplemental readings
1.12 Points to remember
1.13 What's next

2 The latent class model

2.1 Overview
2.2 Empirical example: Pubertal development
2.2.1 An initial look at the data
2.2.2 Why conduct LCA on the pubertal development data?
2.2.3 Latent classes in the pubertal development data
2.3 The role of item-response probabilities in interpreting latent classes
2.3.1 A hypothetical example
2.3.2 Interpreting the item-response probabilities to label the latent classes in the pubertal development example
2.3.3 Qualitative and quantitative differences among the pubertal development latent classes
2.4 Empirical example: Health risk behaviors
2.4.1 An initial look at the data
2.4.2 LCA of the health risk behavior data
2.5 LCA: Model and notation
2.5.1 Fundamental expressions
2.5.2 The local independence assumption
2.6 Suggested supplemental readings
2.7 Points to remember
2.8 What's next

3 The relation between the latent variable and its indicators

3.1 Overview
3.2 The latent class measurement model
3.2.1 Parallels with factor analysis
3.2.2 Two criteria for evaluating item-response probabilities for a single variable
3.2.3 Hypothetical and empirical examples of independence and weak relations 53
3.2.4 Hypothetical and empirical examples of strong relations 55
3.3 Homogeneity and latent class separation 56
 3.3.1 Homogeneity 56
 3.3.2 Latent class separation 57
 3.3.3 Hypothetical examples of homogeneity and latent class separation 58
 3.3.4 How homogeneity and latent class separation are related 64
 3.3.5 Homogeneity, latent class separation, and the number of response patterns observed 64
 3.3.6 Homogeneity and latent class separation in empirical examples 65
3.4 The precision with which the observed variables measure the latent variable 67
 3.4.1 Why posterior probabilities of latent class membership are of interest 67
 3.4.2 Bayes’ theorem 68
 3.4.3 What homogeneity and latent class separation imply about posterior probabilities and classification uncertainty 69
 3.4.4 Posterior classification uncertainty even with a high degree of homogeneity and latent class separation 72
3.5 Expressing the degree of uncertainty: Mean posterior probabilities and entropy 73
3.6 Points to remember 75
3.7 What’s next 76

4 Parameter estimation and model selection 77
 4.1 Overview 77
 4.2 Maximum Likelihood estimation 78
 4.2.1 Estimating model parameters 78
 4.2.2 Options for treatment of individual parameters: Parameter restrictions 79
 4.2.3 Missing data and estimation 80
 4.3 Model fit and model selection 81
 4.3.1 Absolute model fit 82
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.2 The likelihood-ratio statistic G^2 and its degrees of freedom</td>
<td>83</td>
</tr>
<tr>
<td>4.3.3 Relative model fit</td>
<td>86</td>
</tr>
<tr>
<td>4.3.4 Cross-validation</td>
<td>88</td>
</tr>
<tr>
<td>4.4 Finding the ML solution</td>
<td>89</td>
</tr>
<tr>
<td>4.4.1 Overview of model identification issues</td>
<td>89</td>
</tr>
<tr>
<td>4.4.2 Visualizing identification, underidentification, and unidentification</td>
<td>89</td>
</tr>
<tr>
<td>4.4.3 Identification and information</td>
<td>92</td>
</tr>
<tr>
<td>4.4.4 How to find the ML solution</td>
<td>92</td>
</tr>
<tr>
<td>4.4.5 Label switching</td>
<td>94</td>
</tr>
<tr>
<td>4.4.6 User-provided starting values</td>
<td>94</td>
</tr>
<tr>
<td>4.5 Empirical example of using many starting values</td>
<td>95</td>
</tr>
<tr>
<td>4.6 Empirical examples of selecting the number of latent classes</td>
<td>97</td>
</tr>
<tr>
<td>4.6.1 Positive health behaviors</td>
<td>97</td>
</tr>
<tr>
<td>4.6.2 Past-year delinquency</td>
<td>98</td>
</tr>
<tr>
<td>4.6.3 Female pubertal development</td>
<td>99</td>
</tr>
<tr>
<td>4.6.4 Health risk behaviors</td>
<td>100</td>
</tr>
<tr>
<td>4.7 More about parameter restrictions</td>
<td>102</td>
</tr>
<tr>
<td>4.7.1 Reasons for using parameter restrictions</td>
<td>102</td>
</tr>
<tr>
<td>4.7.2 Parameter restrictions and model fit</td>
<td>103</td>
</tr>
<tr>
<td>4.7.3 Using parameter restrictions to achieve positive degrees of freedom</td>
<td>103</td>
</tr>
<tr>
<td>4.8 Standard errors</td>
<td>106</td>
</tr>
<tr>
<td>4.9 Suggested supplemental readings</td>
<td>108</td>
</tr>
<tr>
<td>4.10 Points to remember</td>
<td>108</td>
</tr>
<tr>
<td>4.11 What's next</td>
<td>110</td>
</tr>
</tbody>
</table>

PART II ADVANCED LCA

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Multiple-group LCA</td>
<td>113</td>
</tr>
<tr>
<td>5.1 Overview</td>
<td>113</td>
</tr>
<tr>
<td>5.2 Introduction</td>
<td>114</td>
</tr>
<tr>
<td>5.3 Multiple-group LCA: Model and notation</td>
<td>114</td>
</tr>
<tr>
<td>5.4 Computing the number of parameters estimated</td>
<td>116</td>
</tr>
<tr>
<td>5.5 Expressing group differences in the LCA model</td>
<td>116</td>
</tr>
<tr>
<td>5.6 Measurement invariance</td>
<td>117</td>
</tr>
<tr>
<td>5.7 Establishing whether the number of latent classes is identical across groups</td>
<td>119</td>
</tr>
</tbody>
</table>
CONTENTS

5.7.1 Empirical example: Adolescent delinquency 120

5.8 Establishing invariance of item-response probabilities across groups 121
 5.8.1 Specifying parameter restrictions 122
 5.8.2 Test of measurement invariance in the delinquency example 125

5.9 Interpretation when measurement invariance does not hold 126

5.10 Strategies when measurement invariance does not hold 129
 5.10.1 Partial measurement invariance 129
 5.10.2 When measurement invariance holds in a subset of groups 131

5.11 Significant differences and important differences 131
 5.11.1 Empirical example: Positive health behaviors 133

5.12 Testing equivalence of latent class prevalences across groups 139
 5.12.1 Empirical example: Adolescent delinquency 140
 5.12.2 Empirical example: Health risk behaviors 141

5.13 Suggested supplemental readings 147

5.14 Points to remember 147

5.15 What’s next 148

6 LCA with Covariates 149

6.1 Overview 149

6.2 Empirical example: Positive health behaviors 150

6.3 Preparing to conduct LCA with covariates 151
 6.3.1 Preparing variables for use as covariates 151

6.4 LCA with covariates: Model and notation 153
 6.4.1 What is estimated 154
 6.4.2 Treatment of item-response probabilities in LCA with covariates 154

6.5 Hypothesis testing in LCA with covariates 154

6.6 Interpretation of the intercepts and regression coefficients 155
 6.6.1 Understanding odds and odds ratios 155
 6.6.2 The correspondence between regression coefficients and odds/odds ratios 157

6.7 Empirical examples of LCA with a single covariate 159
 6.7.1 Results of logistic regression using gender as a covariate 159
 6.7.2 Results of logistic regression using maternal education as a covariate 161
PART III LATENT CLASS MODELS FOR LONGITUDINAL DATA

7 RMLCA and LTA

7.1 Overview 181
7.2 RMLCA 182
 7.2.1 Adding a grouping variable 185
 7.2.2 RMLCA and growth mixture modeling 186
7.3 LTA 187
 7.3.1 Empirical example: Adolescent delinquency 187
 7.3.2 Why conduct LTA on the adolescent delinquency data? 188
 7.3.3 Estimation and assessing model fit 189
 7.3.4 Model fit in the adolescent delinquency example 190
7.4 LTA model parameters 192
 7.4.1 Latent status prevalences 192
 7.4.2 Item-response probabilities 193
 7.4.3 Transition probabilities 195
7.5 LTA: Model and notation 196
 7.5.1 Fundamental expression 198
7.6 Degrees of freedom associated with latent transition models 199
7.6.1 Computing the number of latent status prevalences estimated 199
7.6.2 Computing the number of item-response probabilities estimated 200
7.6.3 Computing the number of transition probabilities estimated 200

7.7 Empirical example: Adolescent depression 201
7.7.1 Latent status prevalences 203
7.7.2 Item-response probabilities 204
7.7.3 Transition probabilities 205

7.8 Empirical example: Dating and sexual risk behavior 207

7.9 Interpreting what a latent transition model reveals about change 209

7.10 Parameter restrictions in LTA 211

7.11 Testing the hypothesis of measurement invariance across times 212
7.11.1 Empirical example: Adolescent depression 213

7.12 Testing hypotheses about change between times 214

7.13 Relation between RMLCA and LTA 217
7.13.1 Relation between RMLCA and LTA when there are two times 217
7.13.2 Relation between RMLCA and LTA when there are three or more times 218
7.13.3 When to use RMLCA versus LTA 220

7.14 Invariance of the transition probability matrix 221

7.15 Suggested supplemental readings 221

7.16 Points to remember 223

7.17 What’s next 224

8 Multiple-Group LTA and LTA with Covariates 225

8.1 Overview 225

8.2 LTA with a grouping variable 226
8.2.1 Empirical example: Adolescent depression 226

8.3 Multiple-group LTA: Model and notation 226

8.4 Computing the number of parameters estimated in multiple-group latent transition models 228

8.5 Hypothesis tests concerning group differences: General considerations 229

8.6 Overall hypothesis tests about group differences in LTA 230
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.6.1</td>
<td>Empirical example: Cohort differences in adolescent depression</td>
<td>230</td>
</tr>
<tr>
<td>8.6.2</td>
<td>Empirical example: Gender differences in adolescent depression</td>
<td>233</td>
</tr>
<tr>
<td>8.7</td>
<td>Testing the hypothesis of equality of latent status prevalences</td>
<td>235</td>
</tr>
<tr>
<td>8.7.1</td>
<td>Empirical example: Gender differences in adolescent depression</td>
<td>236</td>
</tr>
<tr>
<td>8.7.2</td>
<td>Empirical example: Gender differences in dating and sexual risk behavior</td>
<td>237</td>
</tr>
<tr>
<td>8.8</td>
<td>Testing the hypothesis of equality of transition probabilities</td>
<td>238</td>
</tr>
<tr>
<td>8.8.1</td>
<td>Empirical example: Gender differences in adolescent depression</td>
<td>240</td>
</tr>
<tr>
<td>8.9</td>
<td>Incorporating covariates in LTA</td>
<td>241</td>
</tr>
<tr>
<td>8.9.1</td>
<td>Missing data and preparing variables for use as covariates</td>
<td>241</td>
</tr>
<tr>
<td>8.10</td>
<td>LTA with covariates: Model and notation</td>
<td>242</td>
</tr>
<tr>
<td>8.10.1</td>
<td>Predicting latent status membership</td>
<td>243</td>
</tr>
<tr>
<td>8.10.2</td>
<td>Predicting transitions between latent statuses</td>
<td>243</td>
</tr>
<tr>
<td>8.10.3</td>
<td>Hypothetical example of LTA with covariates</td>
<td>244</td>
</tr>
<tr>
<td>8.10.4</td>
<td>What is estimated</td>
<td>245</td>
</tr>
<tr>
<td>8.11</td>
<td>Hypothesis testing in LTA with covariates</td>
<td>246</td>
</tr>
<tr>
<td>8.11.1</td>
<td>Empirical example of predicting latent status membership at Time 1: Adolescent depression</td>
<td>247</td>
</tr>
<tr>
<td>8.11.2</td>
<td>Empirical example of predicting latent status membership at Time 1: Dating and sexual risk behavior</td>
<td>250</td>
</tr>
<tr>
<td>8.11.3</td>
<td>Empirical example of predicting transitions between latent statuses: Adolescent depression</td>
<td>252</td>
</tr>
<tr>
<td>8.11.4</td>
<td>Empirical example of predicting transitions between latent statuses: Dating and sexual risk behavior</td>
<td>256</td>
</tr>
<tr>
<td>8.12</td>
<td>Including both a grouping variable and a covariate in LTA</td>
<td>257</td>
</tr>
<tr>
<td>8.12.1</td>
<td>Empirical example: Dating and sexual risk behavior</td>
<td>258</td>
</tr>
<tr>
<td>8.13</td>
<td>Binomial logistic regression</td>
<td>258</td>
</tr>
<tr>
<td>8.13.1</td>
<td>Empirical example: Adolescent depression</td>
<td>259</td>
</tr>
<tr>
<td>8.13.2</td>
<td>Empirical example: Dating and sexual risk behavior</td>
<td>261</td>
</tr>
<tr>
<td>8.14</td>
<td>The relation between multiple-group LTA and LTA with a covariate</td>
<td>263</td>
</tr>
<tr>
<td>8.15</td>
<td>Suggested supplemental readings</td>
<td>263</td>
</tr>
<tr>
<td>8.16</td>
<td>Points to remember</td>
<td>264</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>Topic Index</td>
<td>279</td>
<td></td>
</tr>
<tr>
<td>Author Index</td>
<td>283</td>
<td></td>
</tr>
</tbody>
</table>
This Page Intentionally Left Blank
List of Figures

1.1 Latent variable with three observed variables as indicators. 5

1.2 Adolescent delinquency latent class membership probabilities (Add Health public-use data, Wave I; \(N = 2,087 \)). Note that the four probabilities sum to 1. 13

1.3 Probability of a “Yes” response to each delinquency item conditional on latent class membership (Add Health public-use data, Wave I; \(N = 2,087 \)). 14

1.4 Probability of a “Yes” response to each delinquency item conditional on latent status membership (Add Health public-use data, Waves I and II; \(N = 2,087 \)). 16

2.1 Latent class prevalences in pubertal development example (Add Health public-use data, Wave I; \(N = 469 \)). 28

2.2 Item-response probabilities for measurement of Delayed Pubertal Onset latent class (Add Health public-use data, Wave I; \(N = 469 \)). Response category labels appear in Table 2.5. 32

xvii
2.3 Item-response probabilities for measurement of Biologically Mature latent class (Add Health public-use data, Wave I; $N = 469$). Response category labels appear in Table 2.5. 32

2.4 Item-response probabilities for measurement of Visibly Mature latent class (Add Health public-use data, Wave I; $N = 469$). Response category labels appear in Table 2.5. 33

2.5 Item-response probabilities for measurement of Mature latent class (Add Health public-use data, Wave I; $N = 469$). Response category labels appear in Table 2.5. 33

2.6 Probability of endorsing alcohol and tobacco use items conditional on latent class membership (Youth Risk Behavior Survey, 2005; $N = 13,840$). 36

2.7 Probability of endorsing other drug use items conditional on latent class membership (Youth Risk Behavior Survey, 2005; $N = 13,840$). 37

2.8 Probability of endorsing sexual behavior items conditional on latent class membership (Youth Risk Behavior Survey, 2005; $N = 13,840$). 37

2.9 Prevalence of health risk behavior latent classes (Youth Risk Behavior Survey, 2005; $N = 13,840$). 38

2.10 Figure 1.1, repeated here for convenience. Latent variable with three observed variables as indicators. This figure illustrates local independence. There are arrows connecting observed variables X_1, X_2, and X_3 to the latent variable but no other arrows connecting any components of the observed variables to each other. This signifies that the three observed variables are related only through the latent variable. 44

2.11 Latent variable with three observed variables as indicators. This figure illustrates a violation of local independence. Observed variables X_2 and X_3 are related to each other not only through the latent variable, but also through their error components (e’s). 45

3.1 Probability of endorsing tobacco use behavior items conditional on latent class membership. Hypothetical data from Table 3.5 exhibit high homogeneity and high latent class separation. 59
3.2 Probability of endorsing tobacco use behavior items conditional on latent class membership. Hypothetical data from Table 3.6 exhibit high homogeneity overall and low separation between the Regular I and II latent classes. 61

3.3 Probability of endorsing tobacco use behavior items conditional on latent class membership. Hypothetical data from Table 3.7 exhibit low homogeneity and low latent class separation. 63

4.1 Unimodal likelihood function for a single parameter θ, indicative of good identification. 90

4.2 Multimodal likelihood function for a single parameter θ, indicative of underidentification. 91

4.3 Likelihood function for a single parameter θ. This function has a flat region, which suggests that the model being fit is unidentified. 91

4.4 Distribution of log-likelihood values for five-latent-class model of positive health behaviors based on 100 random sets of starting values (Monitoring the Future data, 2004; $N = 2,065$). 96

4.5 G^2, AIC, and BIC for models of positive health behaviors (Monitoring the Future data, 2004; $N = 2,065$). 98

4.6 G^2, AIC, and BIC for models of female pubertal development (Add Health public-use data, Wave I; $N = 469$). 101

4.7 G^2, AIC, and BIC for models of health risk behaviors (Youth Risk Behavior Survey, 2005; $N = 13,840$). 102

5.1 Prevalence of latent classes of positive health behaviors by gender (Monitoring the Future data, 2004; $N = 2,065$). 139

5.2 Prevalence of health risk behavior latent classes for each grade (Youth Risk Behavior Survey, 2005; $N = 13,840$). 144

6.1 Overall effect of one-standard-deviation increase in maternal education in positive health behavior example (Monitoring the Future data, 2004; $N = 2,065$). The Typical latent class is the reference group. 162

6.2 Effect of one-standard-deviation increase in maternal education for males and females in positive health behavior example (Monitoring the Future data, 2004; $N = 2,065$). 165
6.3 Effect of one-standard-deviation increase in maternal education on odds of membership in Healthy latent class as compared to membership in other latent classes combined, by gender (Monitoring the Future data, 2004; \(N = 2,065 \)).

7.1 Patterns of heavy drinking across four developmental periods, corresponding to the latent classes in Table 7.2 (from Lanza and Collins, 2006). Note that more precise values for item-response probabilities appear in Table 7.1.

7.2 \(G^2 \), AIC, and BIC for latent transition models of adolescent delinquency (Add Health public-use data, Waves I and II; \(N = 2,087 \)).

7.3 \(G^2 \), AIC, and BIC for latent transition models of adolescent depression (Add Health public-use data, Waves I and II; \(N = 2,061 \)).

7.4 Transition probabilities for latent transition model of adolescent depression (Add Health public-use data, Waves I and II; \(N = 2,061 \)).

8.1 Prevalences of latent statuses of adolescent depression at Time 1 by gender (Add Health public-use data, Waves I and II; \(N = 2,061 \)).

8.2 Odds ratios associated with current cigarette use and lifetime marijuana use. Although not estimated, the odds ratio of 1 associated with the reference latent status, Not Depressed, is shown here for comparison purposes (Add Health public-use data, Waves I and II; \(N = 2,061 \)).
List of Tables

1.1 Four Different Latent Variable Models ... 7
1.2 Proportion of Adolescents Responding “Yes” to Questions About Delinquent Behaviors (Add Health Public-Use Data, Wave I; \(N = 2,087 \)) ... 11
1.3 Four-Latent-Class Model of Past-Year Delinquency (Add Health Public-Use Data, Wave I; \(N = 2,087 \)) ... 12
1.4 Five-Latent-Status Model of Past-Year Delinquency (Add Health Public-Use Data, Waves I and II; \(N = 2,087 \)) ... 15
2.1 Marginal Response Proportions for Female Pubertal Development Variables (Add Health Public-Use Data, Wave I; \(N = 469 \)) ... 24
2.2 Response Patterns and Frequencies for Add Health Pubertal Development Data (Add Health Public-Use Data, Wave I; \(N = 469 \)) ... 26
2.3 Item-Response Probabilities for a Hypothetical Two-Latent-Class Model ... 30
2.4 Item-Response Probabilities for a Hypothetical Three-Latent-Class Model ... 30
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>Four-Latent-Class Model of Female Pubertal Development in Seventh Grade (Add Health Public-Use Data, Wave I; (N = 469))</td>
<td>31</td>
</tr>
<tr>
<td>2.6</td>
<td>Proportion of Students Reporting Each Health Risk Behavior (Youth Risk Behavior Survey, 2005; (N = 13,840))</td>
<td>35</td>
</tr>
<tr>
<td>2.7</td>
<td>Five-Latent-Class Model of Health Risk Behaviors (Youth Risk Behavior Surveillance System Data; (N = 13,840))</td>
<td>39</td>
</tr>
<tr>
<td>2.8</td>
<td>Hypothetical Example with Two Latent Classes and Two Observed Variables</td>
<td>42</td>
</tr>
<tr>
<td>2.9</td>
<td>Response Pattern Probabilities for Hypothetical Example in Table 2.8</td>
<td>44</td>
</tr>
<tr>
<td>3.1</td>
<td>Item-Response Probabilities from Four-Latent-Class Model of Female Pubertal Development (Add Health Public-Use-Data, Wave I; (N = 469). From Table 2.5; repeated here for convenience)</td>
<td>52</td>
</tr>
<tr>
<td>3.2</td>
<td>Hypothetical Item-Response Probabilities Reflecting Independence of Observed Variables and Latent Variable</td>
<td>53</td>
</tr>
<tr>
<td>3.3</td>
<td>Item-Response Probabilities from Five-Latent-Class Model of Health Risk Behaviors (Youth Risk Behavior Survey, 2005; (N = 13,840). From Table 2.7; repeated here for convenience)</td>
<td>54</td>
</tr>
<tr>
<td>3.4</td>
<td>Item-Response Probabilities for a Hypothetical Three-Latent-Class Model</td>
<td>55</td>
</tr>
<tr>
<td>3.5</td>
<td>Item-Response Probabilities for a Hypothetical Three-Latent-Class Model with High Homogeneity and High Latent Class Separation</td>
<td>58</td>
</tr>
<tr>
<td>3.6</td>
<td>Item-Response Probabilities for a Hypothetical Three-Latent-Class Model with High Homogeneity and Low Latent Class Separation</td>
<td>60</td>
</tr>
<tr>
<td>3.7</td>
<td>Item-Response Probabilities for a Hypothetical Three-Latent-Class Model with Low Homogeneity and Low Latent Class Separation</td>
<td>62</td>
</tr>
<tr>
<td>4.1</td>
<td>Marginal Response Proportions for Indicators of Positive Health Behavior (Monitoring the Future Data, 2004; (N = 2,065))</td>
<td>95</td>
</tr>
<tr>
<td>4.2</td>
<td>Summary of Information for Selecting Number of Latent Classes of Positive Health Behaviors (Monitoring the Future Data, 2004; (N = 2,065))</td>
<td>97</td>
</tr>
<tr>
<td>Table</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.3</td>
<td>Summary of Information for Selecting Number of Latent Classes of Past-Year Delinquency (Add Health Public-Use Data, Wave I; (N = 2,087))</td>
<td>99</td>
</tr>
<tr>
<td>4.4</td>
<td>Summary of Information for Selecting Number of Latent Classes of Female Pubertal Development (Add Health Public-Use Data, Wave I; (N = 469))</td>
<td>100</td>
</tr>
<tr>
<td>4.5</td>
<td>Summary of Information for Selecting Number of Latent Classes of Health Risk Behaviors (Youth Risk Behavior Survey, 2005; (N = 13,840))</td>
<td>101</td>
</tr>
<tr>
<td>4.6</td>
<td>Item-Response Probabilities for a Hypothetical Three-Latent-Class Model (Table 3.4 repeated for convenience)</td>
<td>104</td>
</tr>
<tr>
<td>4.7</td>
<td>Type A and Type B Errors for Hypothetical Three-Latent-Class Model in Table 4.6</td>
<td>105</td>
</tr>
<tr>
<td>5.1</td>
<td>Four-Latent-Class Model of Past-Year Delinquency (Add Health Public-Use Data, Wave I; (N = 2,087); Table 1.3 repeated for convenience)</td>
<td>115</td>
</tr>
<tr>
<td>5.2</td>
<td>Selecting Number of Latent Classes in Multiple-Group Delinquency Example (Add Health Public-Use Data, Wave I; (N = 2,087))</td>
<td>121</td>
</tr>
<tr>
<td>5.3</td>
<td>Parameter Restrictions Specifying Item-Response Probabilities Are Equal Across Grades in Adolescent Delinquency Example</td>
<td>123</td>
</tr>
<tr>
<td>5.4</td>
<td>Parameter Restrictions for Testing Measurement Invariance When Other Parameter Restrictions Are Present</td>
<td>124</td>
</tr>
<tr>
<td>5.5</td>
<td>Fit Statistics for Test of Measurement Invariance for Adolescent Delinquency Example (Add Health Public-Use Data, Wave I; (N = 2,087))</td>
<td>125</td>
</tr>
<tr>
<td>5.6</td>
<td>Hypothetical Item-Response Probabilities for Delinquency Example Illustrating Pronounced Group Differences in Measurement</td>
<td>127</td>
</tr>
<tr>
<td>5.7</td>
<td>Hypothetical Item-Response Probabilities for Delinquency Example Illustrating Moderate Group Differences in Measurement</td>
<td>128</td>
</tr>
<tr>
<td>5.8</td>
<td>Parameter Restrictions Constraining Most, But Not All, Item-Response Probabilities to Be Equal Across Cohorts in Adolescent Delinquency Example</td>
<td>130</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td>Parameter Restrictions Constraining Item-Response Probabilities to Be Equal Across Cohorts for a Subset of Variables in Adolescent Delinquency Example</td>
<td></td>
</tr>
<tr>
<td>5.10</td>
<td>Parameter Restrictions Constraining Item-Response Probabilities to Be Equal Across Only Grades 10 and 11 in a Hypothetical Adolescent Delinquency Example with Three Grades</td>
<td></td>
</tr>
<tr>
<td>5.11</td>
<td>Five Latent Classes of Positive Health Behaviors (Monitoring the Future Data, 2004; $N = 2,065$)</td>
<td></td>
</tr>
<tr>
<td>5.12</td>
<td>Fit Statistics for Test of Measurement Invariance Across Genders for Latent Class Model of Positive Health Behaviors (Monitoring the Future Data, 2004; $N = 2,065$)</td>
<td></td>
</tr>
<tr>
<td>5.13</td>
<td>Latent Class Prevalences for Model of Positive Health Behaviors with Item-Response Probabilities Allowed to Vary Across Genders (Monitoring the Future Data, 2004; $N = 2,065$)</td>
<td></td>
</tr>
<tr>
<td>5.14</td>
<td>Item-Response Probabilities Allowed to Vary Across Genders for Model of Positive Health Behaviors (Monitoring the Future Data, 2004; $N = 2,065$)</td>
<td></td>
</tr>
<tr>
<td>5.15</td>
<td>Latent Class Model of Positive Health Behaviors with Item-Response Probabilities Constrained Equal Across Genders (Monitoring the Future Data, 2004; $N = 2,065$)</td>
<td></td>
</tr>
<tr>
<td>5.16</td>
<td>Fit Statistics for Test of Gender Differences in Latent Class Prevalences for Latent Class Model of Positive Health Behaviors (Monitoring the Future Data, 2004; $N = 2,065$)</td>
<td></td>
</tr>
<tr>
<td>5.17</td>
<td>Latent Class Prevalences Across Cohorts in Four-Latent-Class Model of Past-Year Delinquency (Add Health Public-Use Data, Wave I; $N = 2,087$)</td>
<td></td>
</tr>
<tr>
<td>5.18</td>
<td>Parameter Restrictions Constraining Latent Class Prevalences to Be Equal Across Cohorts in the Adolescent Delinquency Example (Add Health Public-Use Data, Wave I; $N = 2,087$)</td>
<td></td>
</tr>
<tr>
<td>5.19</td>
<td>Fit Statistics for Test of Cohort Differences in Latent Class Prevalences for Adolescent Delinquency Example (Add Health Public-Use Data, Wave I; $N = 2,087$)</td>
<td></td>
</tr>
<tr>
<td>5.20</td>
<td>Proportion of Students in Each Cohort Reporting Each Health Risk Behavior (Youth Risk Behavior Survey, 2005; $N = 13,840$)</td>
<td></td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>5.21</td>
<td>Latent Class Prevalences Across Grades in Five-Latent-Class Model of Health Risk Behaviors (Youth Risk Behavior Survey, 2005; N = 13,840)</td>
<td>143</td>
</tr>
<tr>
<td>5.22</td>
<td>Freely Estimated and Restricted Latent Class Prevalences for Models of Health Risk Behaviors (Youth Risk Behavior Survey, 2005; N = 13,840)</td>
<td>145</td>
</tr>
<tr>
<td>5.23</td>
<td>Examination of the Impact of Parameter Restrictions on Model Fit for Model of Health Risk Behaviors (Youth Risk Behavior Survey, 2005; N = 13,840)</td>
<td>146</td>
</tr>
<tr>
<td>5.24</td>
<td>Hypothesis Tests of Equality of Latent Class Prevalences Across Grades in Health Risk Behavior Example (Youth Risk Behavior Survey, 2005; N = 13,840)</td>
<td>147</td>
</tr>
<tr>
<td>6.1</td>
<td>Latent Class Prevalences and Log-Likelihoods from Previously Fit Models of Positive Health Behaviors (Monitoring the Future Data, 2004; N = 2,065)</td>
<td>150</td>
</tr>
<tr>
<td>6.2</td>
<td>Example Coding Scheme to Represent a Covariate with Three Response Categories</td>
<td>152</td>
</tr>
<tr>
<td>6.3</td>
<td>Gender as a Predictor of Membership in Latent Classes of Positive Health Behaviors (Monitoring the Future Data, 2004; N = 2,065)</td>
<td>159</td>
</tr>
<tr>
<td>6.4</td>
<td>Maternal Education as a Predictor of Membership in Latent Classes of Positive Health Behaviors (Monitoring the Future Data, 2004; N = 2,065)</td>
<td>162</td>
</tr>
<tr>
<td>6.5</td>
<td>Gender and Maternal Education as Predictors of Membership in Latent Classes of Positive Health Behaviors (Monitoring the Future Data, 2004; N = 2,065)</td>
<td>164</td>
</tr>
<tr>
<td>6.6</td>
<td>Hypothesis Tests for Gender, Maternal Education, and Their Interaction for Model of Positive Health Behaviors Reported in Table 6.5 (Monitoring the Future Data, 2004; N = 2,065)</td>
<td>164</td>
</tr>
<tr>
<td>6.7</td>
<td>Maternal Education as a Predictor of Membership in Latent Classes of Positive Health Behaviors, with Gender as a Grouping Variable (Monitoring the Future Data, 2004; N = 2,065)</td>
<td>168</td>
</tr>
<tr>
<td>6.8</td>
<td>Binomial Logistic Regression with Gender as a Covariate in Model of Positive Health Behaviors (Monitoring the Future Data, 2004; N = 2,065)</td>
<td>173</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>6.9</td>
<td>Binomial Logistic Regression Model with Gender and Maternal Education as Covariates (Monitoring the Future Data, 2004; (N = 2,065))</td>
<td>174</td>
</tr>
<tr>
<td>6.10</td>
<td>Hypothesis Tests for Gender, Maternal Education, and Their Interaction for Model in Table 6.9 (Monitoring the Future Data, 2004; (N = 2,065))</td>
<td>174</td>
</tr>
<tr>
<td>6.11</td>
<td>Binomial Logistic Regression with Gender as a Grouping Variable and Maternal Education as a Covariate in Model of Positive Health Behavior (Monitoring the Future Data, 2004; (N = 2,065))</td>
<td>175</td>
</tr>
<tr>
<td>7.1</td>
<td>Eight-Latent-Class Model of Heavy Drinking at Six Different Ages (NLSY; (N = 1,265)) (from Lanza and Collins, 2006)</td>
<td>183</td>
</tr>
<tr>
<td>7.2</td>
<td>Patterns of Heavy Drinking over Time Corresponding to Eight Latent Classes (NLSY; (N = 1,265)) (from Lanza and Collins, 2006)</td>
<td>185</td>
</tr>
<tr>
<td>7.3</td>
<td>Prevalences of Latent Classes Representing Patterns of Heavy Drinking over Time for Those Enrolled in College and Those Not Enrolled in College (NLSY; (N = 1,265)) (from Lanza and Collins, 2006)</td>
<td>186</td>
</tr>
<tr>
<td>7.4</td>
<td>Prevalence of Heavy Drinking at Each Developmental Period for Those Enrolled in College and Those Not Enrolled in College (NLSY; (N = 1,265)) (from Lanza and Collins, 2006)</td>
<td>186</td>
</tr>
<tr>
<td>7.5</td>
<td>Marginal Response Proportions for Past-Year Delinquency Questionnaire Items (Add Health Public-Use Data, Waves I and II; (N = 2,087))</td>
<td>188</td>
</tr>
<tr>
<td>7.6</td>
<td>Summary of Information for Selecting Number of Latent Statuses of Adolescent Delinquency at Two Times (Add Health Public-Use Data, Waves I and II, (N = 2,087))</td>
<td>191</td>
</tr>
<tr>
<td>7.7</td>
<td>Five-Latent-Status Model of Past-Year Delinquency (Add Health Public-Use Data, Waves I and II; (N = 2,087); Table 1.4 repeated for convenience)</td>
<td>193</td>
</tr>
<tr>
<td>7.8</td>
<td>Marginal Response Proportions for Adolescent Past-Week Depression Questionnaire Items (Add Health Public-Use Data, Waves I and II; (N = 2,061))</td>
<td>201</td>
</tr>
<tr>
<td>7.9</td>
<td>Summary of Information for Selecting Number of Latent Statuses of Adolescent Depression (Add Health Public-Use Data, Waves I and II; (N = 2,061))</td>
<td>203</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>7.10</td>
<td>Five-Latent-Status Model of Adolescent Depression (Add Health Public-Use Data, Waves I and II; $N = 2,061$)</td>
<td>204</td>
</tr>
<tr>
<td>7.11</td>
<td>Summary of Information for Selecting Number of Latent Statuses of Dating and Sexual Risk Behavior (NLSY, Rounds 2–4, $N = 2,937$)</td>
<td>207</td>
</tr>
<tr>
<td>7.12</td>
<td>Five-Latent-Status Model of Dating and Sexual Risk Behavior (NLSY, Rounds 2–4, $N = 2,937$)</td>
<td>208</td>
</tr>
<tr>
<td>7.13</td>
<td>Parameter Restrictions Constraining Item-Response Probabilities to Be Equal Across Times for Adolescent Depression Example</td>
<td>214</td>
</tr>
<tr>
<td>7.14</td>
<td>Fit Statistics for Test of Measurement Invariance Across Times for Adolescent Depression Example (Add Health Public-Use Data, Waves I and II; $N = 2,061$)</td>
<td>214</td>
</tr>
<tr>
<td>7.15</td>
<td>Fixed Transition Probability Parameter Values Expressing a Model of No Change in the Five-Latent-Status Model of Adolescent Depression</td>
<td>215</td>
</tr>
<tr>
<td>7.16</td>
<td>Fit Statistics for Test of Hypothesis That Latent Status Membership Is Identical at Times 1 and 2 for Adolescent Depression Example (Add Health Public-Use Data, Waves I and II; $N = 2,061$)</td>
<td>216</td>
</tr>
<tr>
<td>7.17</td>
<td>Fixed Transition Probability Parameter Values Expressing a Model in Which There Is No Movement Between Sad and Disliked in the Five-Latent-Status Model of Adolescent Depression</td>
<td>216</td>
</tr>
<tr>
<td>7.18</td>
<td>Fixed Transition Probability Parameter Values Expressing a Model in Which There Is Only Increasing Depression Across Time in the Five-Latent-Status Model of Adolescent Depression</td>
<td>217</td>
</tr>
<tr>
<td>7.19</td>
<td>Parameter Restrictions Constraining Transition Probabilities to Be Equal Across Three Times in a Hypothetical Five-Latent-Status Model of Adolescent Depression</td>
<td>222</td>
</tr>
<tr>
<td>7.20</td>
<td>Five-Latent-Status Model of Dating and Sexual Risk Behavior with Transition Probability Matrices Constrained Equal Across Three Times (NLSY, Rounds 2–4, $N = 2,937$)</td>
<td>222</td>
</tr>
<tr>
<td>7.21</td>
<td>Fit Statistics for Test of Invariance of Transition Probability Matrices in the Dating and Sexual Risk Behavior Example (NLSY, Rounds 2–4, $N = 2,937$)</td>
<td>223</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>8.1</td>
<td>Latent Status Prevalences and Transition Probabilities for Five-Latent-Status Model of Adolescent Depression, by Cohort (Add Health Public-Use Data, Waves I and II; N = 2,061)</td>
<td>227</td>
</tr>
<tr>
<td>8.2</td>
<td>Varying Types of Equivalence Across Groups in Latent Transition Models</td>
<td>229</td>
</tr>
<tr>
<td>8.3</td>
<td>Parameter Restrictions Constraining Latent Status Prevalences and Transition Probabilities to Be Equal Across Cohorts in Adolescent Depression Example</td>
<td>231</td>
</tr>
<tr>
<td>8.4</td>
<td>Latent Status Prevalences and Transition Probabilities Constrained Equal Across Cohorts for Five-Latent-Status Model of Adolescent Depression (Add Health Public-Use Data, Waves I and II; N = 2,061)</td>
<td>232</td>
</tr>
<tr>
<td>8.5</td>
<td>Fit Statistics for Test of Cohort Differences in Latent Status Prevalences and Transition Probabilities for Adolescent Depression Example (Add Health Public-Use Data, Waves I and II; N = 2,061)</td>
<td>233</td>
</tr>
<tr>
<td>8.6</td>
<td>Latent Status Prevalences and Transition Probabilities for Five-Latent-Status Model of Adolescent Depression, by Gender (Add Health Public-Use Data, Waves I and II; N = 2,061)</td>
<td>234</td>
</tr>
<tr>
<td>8.7</td>
<td>Fit Statistics for Test of Gender Differences in Latent Status Prevalences and Transition Probabilities for Adolescent Depression Example (Add Health Public-Use Data, Waves I and II; N = 2,061)</td>
<td>234</td>
</tr>
<tr>
<td>8.8</td>
<td>Fit Statistics for Two Approaches to Test of Gender Differences in Latent Status Prevalences for Adolescent Depression Example (Add Health Public-Use Data, Waves I and II; N = 2,061)</td>
<td>236</td>
</tr>
<tr>
<td>8.9</td>
<td>Fit Statistics for Test of Gender Differences in Latent Status Prevalences Across Gender for Dating and Sexual Risk Behavior Example (NLSY, Rounds 2–4; N = 2,937)</td>
<td>238</td>
</tr>
<tr>
<td>8.10</td>
<td>Latent Status Prevalences and Transition Probabilities for Five-Latent-Status Model of Dating and Sexual Risk Behavior, by Gender (NLSY, Rounds 2–4; N = 2,937)</td>
<td>239</td>
</tr>
<tr>
<td>8.11</td>
<td>Fit Statistics for Two Approaches to Test of Gender Differences in Transition Probabilities for Adolescent Depression Example (Add Health Public-Use Data, Waves I and II; N = 2,061)</td>
<td>240</td>
</tr>
</tbody>
</table>