
Beginning

XSLT and Xpath
Transforming XML Documents and Data

www.wrox.com

$49.99 USA
$59.99 CANADA

Recommended
Computer Book

Categories

Programming Languages

XML

ISBN: 978-0-470-47725-0

Wrox Beginning guides are crafted to make learning programming languages and technologies easier than you think, providing
a structured, tutorial format that will guide you through all the techniques involved.

Extensible Stylesheet Language Transformations (XSLT)
is a language for transforming XML documents and data
from one format to another. Answering the demand for an
introductory book on XSLT processing, Ian Williams presents
a clear, concise resource on XSLT concepts and methods
and explains how and why XSLT relies on the XML Path
language (XPath).

As you gain a solid foundation in XSLT processing, you’ll learn
the basic node tree structure that is used in the data model
and discover how XSLT differs from the approach used in
other programming languages. Example-laden chapters
include both versions 1.0 and 2.0 features and demonstrate
how to transform one XML data format to another. The book
covers the key structural elements of an XSLT file and shows
you how to use simple XPath expressions to match and
select source file content. Along the way, you’ll uncover a rich
set of XPath functions that will benefit you again and again
as you develop your XSLT skills.

What you will learn from this book
● How to define templates, the basic building blocks of XSLT

● The way to construct XPath expressions and use a range of
powerful XPath and XSLT functions

● The role of variables and parameters in XSLT

● Making use of control structures and iteration

● How to generate and format numbers, dates, and times

● Methods for working with multiple source and stylesheet
documents

● Ways to debug XSLT, validate types in XSLT, and document
your stylesheets

● Tips for indexing and linking items using identifiers and
keys

● Techniques for controlling whitespace and processing
plain text

Who this book is for
This book is for web developers, authors, and designers who
understand XML basics, and are interested in gaining a solid
understanding of XSLT processing.

Williams

Beginning

spine=.844"

Updates, source code, and Wrox technical support at www.wrox.com

Beginning

Ian Williams

XSLT and Xpath
Transforming XML Documents
and Data

X
S

LT and X
path Transform

ing X
M

L
 D

ocum
ents and D

ata

Wrox Programmer to Programmer TMWrox Programmer to Programmer TM

Williams ffirs.tex V2 - 07/03/2009 2:47pm Page ii

Williams ffirs.tex V2 - 07/03/2009 2:47pm Page i

Beginning XSLT and XPath
Introduction . xix
Chapter 1: First Steps with XSLT . 1
Chapter 2: Introducing XPath . 25
Chapter 3: Templates, Variables, and Parameters . 43
Chapter 4: Using Logic . 61
Chapter 5: Sorting and Grouping . 75
Chapter 6: Strings, Numbers, Dates, and Times . 95
Chapter 7: Multiple Documents . 115
Chapter 8: Processing Text . 141
Chapter 9: Identifiers and Keys. 159
Chapter 10: Debugging, Validation, and Documentation . 181
Chapter 11: A Case Study . 201
Appendix A: Answers to Exercises . 239
Appendix B: Extending XSLT . 253
Appendix C: XSLT Processing Model . 259
Appendix D: XSLT 2.0 Quick Reference . 263
Appendix E: XSLT 2.0 Schema . 315
Appendix F: XPath 2.0 Function Reference . 341
Appendix G: References . 377
Glossary . 381
Index . 385

Williams ffirs.tex V2 - 07/03/2009 2:47pm Page ii

Williams ffirs.tex V2 - 07/03/2009 2:47pm Page iii

Beginning

XSLT and XPath

Transforming XML Documents and Data

Ian Williams

Wiley Publishing, Inc.

Williams ffirs.tex V2 - 07/03/2009 2:47pm Page iv

Beginning XSLT and XPath: Transforming XML Documents
and Data
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2009 by Ian Williams

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-47725-0

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
(201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties,
including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended
by sales or promotional materials. The advice and strategies contained herein may not be suitable for every
situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting,
or other professional services. If professional assistance is required, the services of a competent professional person
should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an
organization or Web site is referred to in this work as a citation and/or a potential source of further information
does not mean that the author or the publisher endorses the information the organization or Web site may provide
or recommendations it may make. Further, readers should be aware that Internet Web sites listed in this work may
have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Control Number: 2009929458

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and
other countries, and may not be used without written permission. All other trademarks are the property of their
respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Williams fauth.tex V2 - 07/03/2009 2:49pm Page v

About the Author
Ian Williams is an information designer specializing in XML technologies, and a software technical
writer. He worked in the U.K. publishing industry before getting involved in information technology at
OWL International, developers of the one of the first commercial hypertext products. Ian was a product
manager there, and later a consultant working with large corporate customers.

Since 1998 Ian has worked on technical writing and information-design projects, most recently for Nokia,
Reuters, and Volantis. He is co-author with Pierre Greborio of Professional InfoPath 2003, also from Wrox
Press.

Ian lives with his wife, Helen, in Kent, in a converted lifeboat station overlooking the English Channel.

Williams fcre.tex V2 - 07/03/2009 2:50pm Page vi

Credits
Executive Editor
Carol Long

Development Editor
Tom Dinse

Technical Editor
Dan Squier

Production Editor
Eric Charbonneau

Copy Editor
Luann Rouff

Editorial Director
Robyn B. Siesky

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive
Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Candace English

Indexer
Johnna VanHoose Dinse

Williams ftoc.tex V2 - 08/03/2009 4:20pm Page vii

Contents

Introduction xix

Chapter 1: First Steps with XSLT 1

Transforming an XML Document to a Web Page 1
Using a Browser 2
Transforming Locally 11

Transforming XML Data to XML 14
Atom and RSS Elements 14
Developing the Stylesheet 17

Summary 23

Chapter 2: Introducing XPath 25

Nodes 25
Node Types 26
Node Properties 26

Data Model 27
Path Expressions 28

Using an XPath Analyzer 29
Axes 30
Node Tests 32
Predicates 33
Operators 33

XPath Functions 35
Strings 35
Dates, Times, and Durations 37
Nodes and Documents 38
Numbers 39

Summary 40
Exercises 40

Chapter 3: Templates, Variables, and Parameters 43

About Templates 44
Template Rules 44

Williams ftoc.tex V2 - 08/03/2009 4:20pm Page viii

Contents

Invoking a Rule 45
Using Modes 46
Setting Priorities 48
Built-in Rules 49

Named Templates 49
Variables 50
Parameters 55

Global Parameters 55
Template Parameters 57

Summary 59
Exercises 60

Chapter 4: Using Logic 61

Conditional Processing 61
A Simple Choice 61
Multiple Choices 62
Using XPath for Conditional Tests 64

Iteration 64
Using Attribute Sets 64
Monitoring the Context 69

Processing XML Code 70
Summary 71
Exercises 72

Chapter 5: Sorting and Grouping 75

Sorting Content 75
Perform a Sort 81

Grouping 83
Common Values 84
Adjacent Items 85
Starting and Ending Conditions 91

Summary 93
Exercises 93

Chapter 6: Strings, Numbers, Dates, and Times 95

String Processing 95
About Collations 95
General Functions 96
Codepoints 96
Comparison 97

viii

Williams ftoc.tex V2 - 08/03/2009 4:20pm Page ix

Contents

Concatenation 97
Simple Substrings 98
Using Regular Expressions 99
Normalizing Values 101
Escaping URIs 102

Numbers 103
Generating Numbers 103
Formatting Source Numbers 107

Dates and Times 109
Contextual Dates 109
Formatting 109
Combining and Converting Values 111
Durations 112
Time Zones 112

Summary 113
Exercises 114

Chapter 7: Multiple Documents 115

Modular Stylesheets 115
Including Modules 116
Imported Stylesheets 119

Source Documents 123
Using the document() Function 123
XPath Alternatives 125
Setting or Changing Context 127

Output Documents 127
Preparing a Feed Update 129
Splitting a Document 136

Summary 138
Exercises 139

Chapter 8: Processing Text 141

Controlling Whitespace 141
Stripping Space 142
Preserving Space 143
Using <xsl:text> 143

XML to Text 144
Text to XML 146

Loading Unparsed Text 146
Analyzing the Input 146

ix

Williams ftoc.tex V2 - 08/03/2009 4:20pm Page x

Contents

Alternatives to XSLT 153
XML Maps 154
XML Data in Excel 156

Summary 157
Exercises 158

Chapter 9: Identifiers and Keys 159

ID Datatypes 159
Using the id() Function 160
Keys 162

The key() Function 163
Generating Identifiers 165

Indexing Lines 165
Census to GEDCOM XML 170

Summary 179
Exercises 180

Chapter 10: Debugging, Validation, and Documentation 181

Debugging XSLT 181
Profiling 184
Verifying XHTML Output 185
Using Messages 186
Commenting Output 187
Using the error() Function 188

Type and Schema Validation 188
Types in XSLT 188
Using a Schema-Aware Processor 189

Documenting Your Stylesheets 195
Summary 199
Exercises 200

Chapter 11: A Case Study 201

Schema Overview 201
Common Elements and Attributes 202

Common Attributes 202
Block Elements 202
Inline Elements 203

The Quick-Reference Schema 204
Link Container Elements 205

x

Williams ftoc.tex V2 - 08/03/2009 4:20pm Page xi

Contents

Property Elements 206
Link Verification 208

Metadata Schemas 209
Resource Metadata 210
Subject Metadata 214

Reference Stylesheets 217
Link Module 220

Link Parameters 220
Function Module 223

Term Module 223
Term Parameters 225
Displaying Inline Terms 226

Building the Site 227
Generating the Reference Pages 228
Landing and Glossary Pages 233
Creating a Sitemap 234

Summary 237

Appendix A: Answers to Exercises 239

Chapter 1 239
Chapter 2 239

Question 1 239
Question 2 240
Question 3 240

Chapter 3 241
Question 1 241
Question 2 242

Chapter 4 242
Question 1 243
Question 2 243

Chapter 5 244
Question 1 244
Question 2 245
Question 3 245

Chapter 6 246
Question 1 246
Question 2 246
Question 3 247

Chapter 7 247
Question 1 247

xi

Williams ftoc.tex V2 - 08/03/2009 4:20pm Page xii

Contents

Question 2 248
Question 3 248
Question 4 248

Chapter 8 249
Question 1 249
Question 2 249
Question 3 250

Chapter 9 250
Question 1 250
Question 2 250
Question 3 251

Chapter 10 251
Question 1 251
Question 2 251

Chapter 11 252

Appendix B: Extending XSLT 253

Stylesheet Functions 253
Calling an Extension Function 254

Function Libraries 255
EXSLT 255
FunctX 256

Vendor Extensions 256
User-Defined Extensions 257

Appendix C: XSLT Processing Model 259

The Data Model 259
Transforming 260

Parsing Inputs 260
Template Rules 261
Variables and Parameters 261
Controlling Processing 261
Outputs and Serialization 262

Appendix D: XSLT 2.0 Quick Reference 263

Elements 263
Attribute Groups 264
Types 264
Functions 264

xii

Williams ftoc.tex V2 - 08/03/2009 4:20pm Page xiii

Contents

XSLT Elements 264
xsl:analyze-string 264
xsl:apply-imports 265
xsl:apply-templates 265
xsl:attribute 266
xsl:attribute-set 267
xsl:call-template 268
xsl:character-map 269
xsl:choose 269
xsl:comment 270
xsl:copy 271
xsl:copy-of 271
xsl:decimal-format 272
xsl:declaration 274
xsl:document 274
xsl:element 274
xsl:fallback 275
xsl:for-each 276
xsl:for-each-group 276
xsl:function 277
xsl:if 278
xsl:import 279
xsl:import-schema 280
xsl:include 281
xsl:instruction 281
xsl:key 282
xsl:matching-substring 283
xsl:message 283
xsl:namespace 284
xsl:namespace-alias 285
xsl:next-match 285
xsl:non-matching-substring 286
xsl:number 286
xsl:otherwise 288
xsl:output 288
xsl:output-character 291
xsl:param 291
xsl:perform-sort 292
xsl:preserve-space 293
xsl:processing-instruction 294
xsl:result-document 294

xiii

Williams ftoc.tex V2 - 08/03/2009 4:20pm Page xiv

Contents

xsl:sequence 297
xsl:sort 297
xsl:strip-space 299
xsl:stylesheet 299
xsl:template 300
xsl:text 301
xsl:transform 301
xsl:value-of 302
xsl:variable 303
xsl:with-param 304

Attribute Groups 304
Generic element attributes 304
Version attributes 305
Validation attributes 305

Types 306
XSLT Functions 306

current 307
current-group 307
current-grouping-key 307
document 307
element-available 308
format-date, format-dateTime, format-time, 308
format-number 309
function-available 310
generate-id 310
key 310
regex-group 311
system-property 311
type-available 312
unparsed-text, unparsed-text-available 312
unparsed-entity-public-id, unparsed-entity-uri 313

Appendix E: XSLT 2.0 Schema 315

W3C® Document License 336

Appendix F: XPath 2.0 Function Reference 341

Functions 341
abs 341
avg 342
adjust-date-to-timezone, adjust-dateTime-to-timezone, adjust-time-to-timezone 342
base-uri 342

xiv

Williams ftoc.tex V2 - 08/03/2009 4:20pm Page xv

Contents

boolean 343
ceiling 343
codepoint-equal 344
codepoints-to-string 344
collection 344
compare 345
concat 345
count 345
current-date, current-dateTime, current-time 346
data 346
dateTime 346
day-from-date, day-from-dateTime 347
days-from-duration 347
deep-equal 348
default-collation 348
distinct-values 348
doc, doc-available 349
document-uri 349
empty 349
encode-for-uri 350
ends-with 350
error 350
escape-html-uri 351
exactly-one 351
exists 352
false 352
floor 352
hours-from-dateTime, hours-from-time 353
id 353
idref 353
implicit-timezone 354
index-of 354
implicit-timezone 355
in-scope-prefixes 355
insert-before 355
iri-to-uri 356
lang 356
last 356
local-name 357
local-name-from-QName 357
lower-case 357
matches 358

xv

Williams ftoc.tex V2 - 08/03/2009 4:20pm Page xvi

Contents

max, min 358
minutes-from-dateTime, minutes-from-time 358
minutes-from-duration 359
month-from-date, month-from-dateTime 359
months-from-duration 360
month-from-date, month-from-dateTime 360
name 360
namespace-uri 361
namespace-uri-for-prefix 361
namespace-uri-from-QName 362
nilled 362
normalize-unicode 362
not 362
number 363
one-or-more 363
position 363
prefix-from-QName 364
QName 364
remove 364
replace 365
resolve-uri 365
resolve-QName 366
reverse 366
root 366
round 367
round-half-to-even 367
seconds-from-dateTime, seconds-from-time 368
seconds-from-duration 368
starts-with 368
static-base-uri 369
string 369
string-join 369
string-length 370
string-to-codepoints 370
subsequence 371
substring 371
substring-after 371
substring-before 372
sum 372
timezone-from-date, timezone-from-dateTime, timezone-from-time 373
tokenize 373
trace 374

xvi

Williams ftoc.tex V2 - 08/03/2009 4:20pm Page xvii

Contents

translate 374
true 375
unordered 375
upper-case 375
year-from-date, year-from-dateTime 376
years-from-duration 376
zero-or-one 376

Appendix G: References 377

Specifications 377
Tools and Resources 379

Glossary 381

Index 385

xvii

Williams ftoc.tex V2 - 08/03/2009 4:20pm Page xviii

Williams cintro.tex V2 - 07/03/2009 2:52pm Page xix

I n t roduc t ion

Welcome to XSLT and XPath, two members of the W3C XML family of standards. This book concentrates
on using XSLT and XPath to solve problems that you are likely to encounter every day in writing XSLT
stylesheets. I have tried to focus most attention on the features that you will need frequently, while
still treating other aspects of the subject in brief. You can find additional detailed information in the
Quick Reference appendixes, and in more advanced works such as Michael Kay’s XSLT 2.0 and XPath 2.0
Programmers Reference, also in the Wrox list.

Who This Book Is For
I assume that you have a sound knowledge of XML and related web standards, such as XML Schema and
XHTML. In an introductory book like this, there isn’t enough space to fill in background information on
these subjects.

Conversely, I don’t assume that you are familiar with a particular programming language, or that you
necessarily have a strong programming background. The chapters include a few comparisons with other
languages, and as you’ll see, XSLT takes a different approach from most of them.

If you are an experienced web author, or a technical writer who works regularly with XML, there is
no reason why you can’t pick up XSLT, leveraging your existing knowledge and skills. Quite a few
practitioners that I know come from this kind of background.

This book aims to give you a good grounding in the basics of XSLT and XPath, concentrating on version
2.0 of both standards. It is definitely not aimed at experienced XSLT 1.0 programmers who require a skills
update. Explaining the often-very-detailed differences between the two versions would simply confuse
matters for beginners, who will do better to learn how to use techniques that are appropriate to the latest
version.

XSLT in Outline
According to the W3C specification, XSLT (Extensible Stylesheet Language: Transformations) is a ‘‘lan-
guage for transforming XML documents into other XML documents.’’ Given the widespread use of
XML for exchanging data between applications and its success as a means of creating a wide range of
document types, it is now easy to see why such a language is useful.

XSLT 1.0 was published as a recommendation late in 1999 shortly after XML 1.0, and at the time it didn’t
seem obvious that XSLT would become a success. It is probably so successful because it was, and still

Williams cintro.tex V2 - 07/03/2009 2:52pm Page xx

Introduction

is, most often used to generate HTML content for the web from XML sources — so much so that XSLT
processing was incorporated into browser engines at an early date. XSLT 2.0 was published in January
2007 after a very long development period, which was complicated by some controversy and the need to
track the development of XPath 2.0, on which is relies heavily.

The name Extensible Stylesheet Language: Transformations suggests that there is another ‘‘branch’’ to
XSL — and there is: Extensible Stylesheet Language: Formatting Objects, or XSL-FO. XSL was initially
part of a much more comprehensive project, covering both transformation and formatting semantics. The
Formatting Objects recommendation (still formally titled ‘‘XSL’’) was published separately in October
2001. It is essentially an XML vocabulary used to specify the layout and properties of parts of printed
pages, but I won’t be covering it in this book.

XSLT Is Different
Writing code to handle XML transformations in XSLT differs markedly from the approach used in other
programming languages. It is written in XML syntax in a declarative fashion, with processing specified
in pattern-matching rules. By declarative I mean the opposite of the usual imperative approach; that is, an
XSLT programmer does not define a sequence of actions, but specifies a number of rules that the result
should satisfy.

XSLT has a type system based on XML Schema, and XPath expressions form an important second lan-
guage, matching source document objects, selecting content for processing, and performing operations
on content.

Compared to some other languages, it is much easier to learn the XSLT basics, but the different syntax
and the nature of the XSLT processing model take some getting used to.

The XML source example that follows is written in the DocBook vocabulary (which is widely used in
documenting information technology):

<?xml version="1.0" encoding="UTF-8"?>
<article>

<title>A Simple Transform</title>

<para>Because the transform is an XML document we need to start with an XML
declaration, specifying the version and the encoding.</para>

<para>The root element in a stylesheet is
<emphasis>xsl:stylesheet</emphasis>, though the synonym

<emphasis>xsl:transform</emphasis> may also be used. You must always
specify the XSLT namespace, and it is important to set the version
attribute correctly to match the type of processing required. In this book
we generally specify version 2.0.</para>

<programlisting><![CDATA[
<xml version="1.0" encoding="UTF-8"/>
<xsl:stylesheet

xx

Williams cintro.tex V2 - 07/03/2009 2:52pm Page xxi

Introduction

xmlns:xsl=http://www.w3.org/1999/XSL/Transform
version="2.0"
...

</xsl:stylesheet>]]></programlisting>

<para>In both cases there are stylesheets available for creating XHTML and
PDF output. But what if you need to migrate content from one system to
another?</para

...
</article>

Shown next is a simple XSLT stylesheet that transforms the XML to HTML:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="2.0">

<xsl:template match="/">
<html>

<head>
<title>

<xsl:value-of select="title"/>
</title>

</head>
<body>

<xsl:apply-templates select="body"/>
</body>

</html>
</xsl:template>
<xsl:template match="title">

<h1><xsl:value-of select="."/></h1>
</xsl:template>
<xsl:template match="para">

<p><xsl:apply-templates/></p>
</xsl:template>
<xsl:template match="emphasis">

<xsl:value-of select="."/>
</xsl:template>
<xsl:template match="programlisting">

<pre>
<xsl:value-of select="."/>

</pre>
</xsl:template>

</xsl:stylesheet>

The core HTML elements, highlighted in the preceding code example, form the output structure. They
are written literally inside a series of sibling template instructions prefixed with xsl:.

The use of templates is similar to the non-HTML code you may have seen in web pages written using
ASP, JSP, or PHP; but here the syntax is entirely XML, and the XSLT elements provide both the frame-
work and the processing instructions.

xxi

Williams cintro.tex V2 - 07/03/2009 2:52pm Page xxii

Introduction

Importance of XPath Language
XPath 2.0 is an expression language that is absolutely fundamental to XSLT 2.0 in several ways.
An expression takes one or more input values and returns a value as output, so everywhere
you can use a value you should also be able to use an expression to be evaluated. Usually,
expressions are used as the value of attributes on XSLT elements — for example, <xsl:value-of
select="a+b"/>.

XPath is used to match elements to XSLT template rules.

Another common use of XPath is selecting nodes in an XML document for subsequent processing. You
can make a document-wide selection and refer to all the <list> elements, or be very specific by pointing
to the class attribute in the first <para> in the third <section> of a document.

Then, you can use XPath to load documents, search strings, and manipulate numbers, using a very wide
range of built-in functions.

Node Trees
XPath expressions operate on an abstract tree structure. Objects in the tree are nodes, of which there
seven types, briefly described here:

❑ Document: The root of the tree representing an entire source document. I use the term
document node to designate this node, to avoid confusing it with the root element of the source
document.

❑ Element: Defined by pairs of start and end tags (e.g., <title></title>) or an empty element tag
such as with no content.

❑ Text: A character sequence in an element.

❑ Attribute: The name and value of an attribute in an element start tag or an empty element tag,
including all default value attributes in the schema.

❑ Comment: Comments in the XML source document, i.e., <!-- -->.

❑ Processing instruction: An instruction in the source document contained by <? ?>.

❑ Namespace: Namespace declaration copied to each element to which the declaration
applies.

Figure I-1 shows how part of the tree of nodes for the DocBook article would look, with the document
node outside of everything. Only the document, element, and text nodes for one instance of each element
are shown. Each node contains the node type at the top, its name in the center in the case of elements,
and the string value in the case of text nodes.

xxii

Williams cintro.tex V2 - 07/03/2009 2:52pm Page xxiii

Introduction

Element

Document

Element

article

Element

para

Element

programlisting

Element

emphasis

Text

Because the
transform is an

XML
document… Text

xsl:stylesheet

Text

A Simple
Transform

Text

<![CDATA[
<xml:stylesheet
xmlns:xsl=http://
www.w3.org >

Figure I-1

Processing Overview
The basic work of an XSLT processor is to use a stylesheet as a set of instructions for producing a result
document from a source document. Generally, all three documents are XML documents, so XSLT is said
to transform one input object to an output object of the same kind. Figure I-2 illustrates the process in
outline.

Result
document

Transform

StylesheetSource
document

Figure I-2

xxiii

Williams cintro.tex V2 - 07/03/2009 2:52pm Page xxiv

Introduction

An XSLT processor treats the input and output documents as trees of nodes. You can think of these
trees as being something like the W3C document object model, which some XSLT processors indeed use.
However, unlike the DOM, there is no defined API in the XSLT specification. Different processors are
free to implement this abstract data model in different ways.

The basic processing sequence comprises several steps, shown in Figure I-3.

Result
tree

XSLT
source

Transform Stylesheet
tree

XML
source

Source
tree

Serialize

XML
HTML

XHTML
Text

Figure I-3

1. The XML source document is parsed into a source tree.

2. The XSLT stylesheet is parsed to a stylesheet tree.

3. A transform is applied to create a result tree.

4. Serialization is applied to deliver content in the specified output format.

Essentially, the processor traverses the source tree in document order and looks for matching template
rules in the stylesheet. If a match is found, then the instructions in the template are used to construct a
node in the result tree. By default, the serialization creates an XML document, but specific instructions
may be applied to output HTML, XHTML, or plain text.

The process can be more complex, potentially involving multiple sources, stylesheets and result trees,
temporary trees held as variables, and multiple serializations. In Appendix B you’ll find a more detailed
view of how an XSLT processor works.

xxiv

Williams cintro.tex V2 - 07/03/2009 2:52pm Page xxv

Introduction

About the XSLT 2.0 Schema
As you work through the examples in the book, I’ll introduce parts of the XSLT 2.0 schema so that you
can examine the structure of the individual elements.

This schema is published separately by W3C, and it is not part of the XSLT 2.0 recommenda-
tion as such. The full schema is reproduced in Appendix E, and the latest version is also at
www.w3.org/2007/schema-for-xslt20.xsd.

XSLT elements are broadly divided into two categories: declarations and instructions. For clarity, I mostly
use one or the other of these terms, rather than call them elements.

The <xsl:declaration> and <xsl:instruction> are represented in the schema as abstract elements,
which never appear in document instances, so you will not use them in a stylesheet; rather, you will use
one of the elements in their substitution groups. A substitution group determines where the elements
may appear. For example, you can see that <xsl:output> is a declaration from the substitutionGroup
attribute value:

<xs:element name="output" substitutionGroup="xsl:declaration">
...
</xs:element>

This leads to a rather flat structure overall, with very little nesting of elements.

Declarations
Declarations define values such as the location of stylesheets to include or import, the method of output,
global parameters, and the templates to use to match the source XML. These are top-level elements that
immediately follow the root <xsl:stylesheet> element. They can appear in any order unless there is an
<xsl:import> element, which must always appear first.

The schema declares the complex type xsl:generic-element-type with some common attributes:

<xs:complexType name="generic-element-type" mixed="true">
<xs:attribute name="default-collation" type="xsl:uri-list"/>
<xs:attribute name="exclude-result-prefixes" type="xsl:prefix-list-or-all"/>
<xs:attribute name="extension-element-prefixes" type="xsl:prefix-list"/>
<xs:attribute name="use-when" type="xsl:expression"/>
<xs:attribute name="xpath-default-namespace" type="xs:anyURI"/>
<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:complexType>

<xsl:declaration> is then defined as a generic-element-type, and the top-level elements are subse-
quently specified to be in the declaration substitution group:

<xs:element name="declaration" type="xsl:generic-element-type" abstract="true"/>

xxv

Williams cintro.tex V2 - 07/03/2009 2:52pm Page xxvi

Introduction

Here, for example, is the schema definition for the <xsl:output> element:

<xs:element name="output" substitutionGroup="xsl:declaration">
<xs:complexType mixed="true">

<xs:complexContent mixed="true">
<xs:extension base="xsl:generic-element-type">

<xs:attribute name="name" type="xsl:QName"/>
<xs:attribute name="method" type="xsl:method"/>
<xs:attribute name="byte-order-mark" type="xsl:yes-or-no"/>
<xs:attribute name="cdata-section-elements" type="xsl:QNames"/>
<xs:attribute name="doctype-public" type="xs:string"/>
<xs:attribute name="doctype-system" type="xs:string"/>
<xs:attribute name="encoding" type="xs:string"/>
<xs:attribute name="escape-uri-attributes" type="xsl:yes-or-no"/>
<xs:attribute name="include-content-type" type="xsl:yes-or-no"/>
<xs:attribute name="indent" type="xsl:yes-or-no"/>
<xs:attribute name="media-type" type="xs:string"/>
<xs:attribute name="normalization-form" type="xs:NMTOKEN"/>
<xs:attribute name="omit-xml-declaration" type="xsl:yes-or-no"/>
<xs:attribute name="standalone" type="xsl:yes-or-no-or-omit"/>
<xs:attribute name="undeclare-prefixes" type="xsl:yes-or-no"/>
<xs:attribute name="use-character-maps" type="xsl:QNames"/>
<xs:attribute name="version" type="xs:NMTOKEN"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>
</xs:element>

Figure I-4 shows a schema diagram for the declaration substitutions.

Instructions
Other XSLT elements known as instructions are used to specify the construction of result trees from
individual elements and attributes in the source XML.

The xsl:versioned-element-type is defined as an extension of the generic-element-type, and fol-
lowed by the instruction declaration. This is because every element except <xsl:output> may have a
version attribute containing the XSLT version number, which may be used to indicate which version of
XSLT the processor should apply:

<xs:complexType name="versioned-element-type" mixed="true">
<xs:complexContent>
<xs:extension base="xsl:generic-element-type">

<xs:attribute name="version" type="xs:decimal" use="optional"/>
</xs:extension>

</xs:complexContent>
</xs:complexType>

<xs:element name="instruction" type="xsl:versioned-element-type" abstract="true"/>

<xsl:output> has an attribute with the same name, but this is intended to refer to the XML version
specified in the output method.

xxvi

Williams cintro.tex V2 - 07/03/2009 2:52pm Page xxvii

Introduction

attribute-set

Type extension of ‘xsl:element-only-versioned-element-type’

character-map

Type extension of ‘xsl:element-only-versioned-element-type’

decimal-format

Type extension of ‘xsl:element-only-versioned-element-type’

function

Type extension of ‘xsl:versioned-element-type’

import-schema

Type extension of ‘xsl:element-only-versioned-element-type’

include

Type extension of ‘xsl:element-only-versioned-element-type’

key

Type extension of ‘xsl:sequence-constructor’

namespace-alias

Type extension of ‘xsl:element-only-versioned-element-type’

output

Type extension of ‘xsl:generic-element-type’

preserve-space

Type extension of ‘xsl:element-only-versioned-element-type’

strip-space

Type extension of ‘xsl:element-only-versioned-element-type’

template

Type extension of ‘xsl:versioned-element-type’

declaration

Type xsl:generic-element-type

Abstract true

substitutions

xsl:generic-element-type

@ attributes

Figure I-4

<xsl:value-of>, which you will meet in Chapter 1, is specified as an instruction. It is also has
the type sequence constructor, which is a type that contains a series of XSLT instructions. The

xxvii

Williams cintro.tex V2 - 07/03/2009 2:52pm Page xxviii

Introduction

xsl:sequence-constructor type includes elements that can contain a sequence constructor. The schema
extends the xsl:versioned-element-type, specifies the content model of a sequence-constructor
group, and defines the <xsl:value-of> instruction:

<xs:complexType name="sequence-constructor">
<xs:complexContent mixed="true">
<xs:extension base="xsl:versioned-element-type">

<xs:group ref="xsl:sequence-constructor-group" minOccurs="0"
maxOccurs="unbounded"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:group name="sequence-constructor-group">
<xs:choice>
<xs:element ref="xsl:variable"/>
<xs:element ref="xsl:instruction"/>
<xs:group ref="xsl:result-elements"/>

</xs:choice>
</xs:group>

<xs:element name="value-of" substitutionGroup="xsl:instruction">

<xs:complexType>
<xs:complexContent mixed="true">

<xs:extension base="xsl:sequence-constructor">

<xs:attribute name="select" type="xsl:expression"/>
<xs:attribute name="separator" type="xsl:avt"/>
<xs:attribute name="disable-output-escaping" type="xsl:yes-or-no"

default="no"/>
</xs:extension>

</xs:complexContent>
</xs:complexType>

</xs:element>

The substitution diagram for instructions looks very similar to the one for declarations, but because of
the number of instructions it is too large to include here.

What You Need to Use This Book
I habitually use a limited set of tools and a single development environment: the open-source Eclipse IDE,
and the edition of Oxygen XML Editor that goes with it. Now and then I’ll refer to them in particular.

There is a wide and very useful range of XSLT processors and XML editors out there; and while I don’t
want to endorse one rather than another, there are some arguments for using Oxygen as you work
through this book, even if only temporarily:

❑ Oxygen is a multiplatform Java application.

❑ Both the basic and schema-aware versions of the Saxon XSLT processor are bundled with it.

xxviii

