BACE
Lead Target for Orchestrated Therapy of Alzheimer’s Disease

Edited by

VARGHESE JOHN
Buck Institute for Age Research
Novato, California
BACE
BACE
Lead Target for Orchestrated Therapy of Alzheimer’s Disease

Edited by

VARGHESE JOHN
Buck Institute for Age Research
Novato, California
The cover design was done by Loretta Sheridan, design specialist at the Buck Institute for Age Research. It models the symbolic “tangled web” that BACE – whose 3D structure is shown – weaves around the brain resulting in loss of neurons, brain shrinkage, and Alzheimer’s disease.

Copyright © 2010 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Includes bibliographical references and index.
ISBN 978-0-470-29342-3 (cloth)
WT 155 B117 2010]
RC523.B24 2010
618.97’6831–dc22
2009037093

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1
This book is dedicated to the development of new therapies for treatment of Alzheimer’s disease

Mind’s underground moths
grow filmy wings
and take a farewell flight
in the sunset sky.

Leave out my name from the gift
if it be a burden
but keep my song.

April, like a child,
writes hieroglyphs on dust with flowers,
wipes them away and forgets.

Memory, the priestess,
kills the present
and offers its heart to the shrine of the dead past.

From Fireflies by Rabindranath Tagore
CONTENTS

PREFACE xi

ACKNOWLEDGMENTS xiii

CONTRIBUTORS xv

CHAPTER 1 BACE, APP PROCESSING, AND SIGNAL TRANSDUCTION IN ALZHEIMER’S DISEASE 1
Dale E. Bredesen and Edward H. Koo
1.1 Introduction 1
1.2 BACE Cleavage of APP as a Molecular Switching Mechanism 2
1.3 AD: An Imbalance in Cellular Dependence? 3
1.4 BACE Cleavage, Caspase Cleavage, and Neuronal Trophic Dependence 4
1.5 BACE Cleavage of APP, Dependence Receptors, and Alzheimer Pathology 5
1.6 Key Mutations Proximal of APP Processing to Aβ 9
1.7 Final Remarks 10

CHAPTER 2 IDENTIFICATION OF BACE AS A TARGET IN ALZHEIMER’S DISEASE 15
Robert L. Heinrikson and Sukanto Sinha
2.1 Introduction 15
2.2 The Search for β-Secretase 17
2.3 Validation of the BACE Target 27
2.4 Final Remarks 28

CHAPTER 3 BACE BIOLOGICAL ASSAYS 35
Alfredo G. Tomasselli and Michael J. Bienkowski
3.1 Introduction 35
3.2 Clinical and Physiological Hallmarks of Alzheimer’s Disease (AD) 36
3.3 APP Processing 36
3.4 Aspartyl Protease Classification 37
3.5 BACE Structure 38
3.6 Mechanism, Kinetics, Inhibition, and Specificity 39
3.7 Assay Strategies for Inhibitor Finding and Development 45
3.8 Common Assays Used to Identify and Study Inhibitors 48
3.9 BACE Assays 50
3.10 Final Remarks 54
# CONTENTS

## CHAPTER 4  PEPTIDIC, PEPTIDOMIMETIC, AND HTS-DERIVED BACE INHIBITORS

*James P. Beck and Dustin J. Mergott*

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>59</td>
</tr>
<tr>
<td>4.2 Elan/Pharmacia (Pfizer)</td>
<td>59</td>
</tr>
<tr>
<td>4.3 Oklahoma Medical Research Foundation (OMRF)/Multiple Collaborators</td>
<td>70</td>
</tr>
<tr>
<td>4.4 Eli Lilly</td>
<td>72</td>
</tr>
<tr>
<td>4.5 Merck</td>
<td>74</td>
</tr>
<tr>
<td>4.6 GlaxoSmithKline</td>
<td>80</td>
</tr>
<tr>
<td>4.7 Schering Plough</td>
<td>82</td>
</tr>
<tr>
<td>4.8 Bristol-Myers Squibb</td>
<td>85</td>
</tr>
<tr>
<td>4.9 Novartis</td>
<td>87</td>
</tr>
<tr>
<td>4.10 Amgen</td>
<td>88</td>
</tr>
<tr>
<td>4.11 Wyeth</td>
<td>90</td>
</tr>
<tr>
<td>4.12 Final Remarks</td>
<td>94</td>
</tr>
</tbody>
</table>

## CHAPTER 5  FRAGMENT-BASED APPROACHES FOR IDENTIFICATION OF BACE INHIBITORS

*Andreas Kuglstatter and Michael Hennig*

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>107</td>
</tr>
<tr>
<td>5.2 Biophysical Methods Applied to BACE Fragment Screens</td>
<td>108</td>
</tr>
<tr>
<td>5.3 BACE Inhibitors Identified by Fragment Screening</td>
<td>110</td>
</tr>
<tr>
<td>5.4 Final Remarks</td>
<td>119</td>
</tr>
</tbody>
</table>

## CHAPTER 6  STRUCTURE-BASED DESIGN OF BACE INHIBITORS: TECHNICAL AND PRACTICAL ASPECTS OF PREPARATION, 3-DIMENSIONAL STRUCTURE, AND COMPUTATIONAL ANALYSIS

*Felix F. Vajdos, Veerabahu Shanmugasundaram, and Alfredo G. Tomasselli*

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>123</td>
</tr>
<tr>
<td>6.2 Preparation of BACE for Structural Studies</td>
<td>126</td>
</tr>
<tr>
<td>6.3 Crystallographic Studies of BACE</td>
<td>130</td>
</tr>
<tr>
<td>6.4 Structural Studies with BACE Inhibitors: Peptidomimetics and Nonpeptidomimetics</td>
<td>135</td>
</tr>
<tr>
<td>6.5 Computational Approaches</td>
<td>145</td>
</tr>
<tr>
<td>6.6 Final Remarks</td>
<td>150</td>
</tr>
</tbody>
</table>

## CHAPTER 7  PHARMACOLOGICAL MODELS FOR PRECLINICAL TESTING: FROM MOUSE TO DOG TO NONHUMAN PRIMATES

*Jason L. Eriksen, Michael Paul Murphy, and Elizabeth Head*

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>159</td>
</tr>
<tr>
<td>7.2 BACE1 and Mouse Models of AD</td>
<td>161</td>
</tr>
<tr>
<td>7.3 Testing BACE Inhibitors in the Canine Model of Human Aging and AD</td>
<td>163</td>
</tr>
<tr>
<td>7.4 BACE Inhibitors and Nonhuman Primates</td>
<td>167</td>
</tr>
<tr>
<td>7.5 Final Remarks</td>
<td>168</td>
</tr>
</tbody>
</table>
## CONTENTS

### CHAPTER 8  ADSORPTION, DISTRIBUTION, METABOLISM, EXCRETION (ADME), EFFICACY, AND TOXICOLOGY FOR BACE INHIBITORS  
Ishrut Hussain and Emmanuel Demont

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>177</td>
</tr>
<tr>
<td>8.2 Development of BACE Inhibitors with Optimized ADME Properties</td>
<td>180</td>
</tr>
<tr>
<td>8.3 In Vivo Efficacy of BACE Inhibitors</td>
<td>188</td>
</tr>
<tr>
<td>8.4 Toxicology of BACE Inhibitors</td>
<td>192</td>
</tr>
<tr>
<td>8.5 Final Remarks</td>
<td>193</td>
</tr>
</tbody>
</table>

### CHAPTER 9  CLINICAL TRIALS FOR DISEASE-MODIFYING DRUGS SUCH AS BACE INHIBITORS  
Henry H. Hsu

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction</td>
<td>197</td>
</tr>
<tr>
<td>9.2 Update on Beta-Amyloid Therapies in Clinical Development</td>
<td>198</td>
</tr>
<tr>
<td>9.3 Clinical Development of BACE Inhibitors and Other Disease-Modifying Drugs</td>
<td>203</td>
</tr>
<tr>
<td>9.4 Final Remarks</td>
<td>212</td>
</tr>
</tbody>
</table>

### CHAPTER 10  FUTURE STRATEGIES FOR DEVELOPMENT OF NOVEL BACE INHIBITORS: ANTI-APP β-SITE ANTIBODY AND APP BINDING SMALL MOLECULE APPROACHES FOR ALZHEIMER’S DISEASE  
Beka Solomon, Michal Arbel-Ornath, Clare Peters-Libeu, and Varghese John

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Introduction</td>
<td>217</td>
</tr>
<tr>
<td>10.2 β-Secretase: Discovery, Function, and Inhibitors</td>
<td>218</td>
</tr>
<tr>
<td>10.3 Generation of Aβ Peptides via the Endocytic Pathway</td>
<td>220</td>
</tr>
<tr>
<td>10.4 Generation of Anti-APP β-Site Antibodies</td>
<td>221</td>
</tr>
<tr>
<td>10.5 Antibody Interference with Aβ Production in Cellular Model</td>
<td>223</td>
</tr>
<tr>
<td>10.6 Antibody Interference with Aβ Production in Animal Models</td>
<td>226</td>
</tr>
<tr>
<td>10.7 Identification of APP Binding Small Molecules that Block β-Site Cleavage of APP</td>
<td>228</td>
</tr>
<tr>
<td>10.8 Final Remarks</td>
<td>230</td>
</tr>
</tbody>
</table>

### AFTERWORD  
Ruth Abraham

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>235</td>
</tr>
<tr>
<td>Artwork as a Measure of the Progression of AD</td>
<td>236</td>
</tr>
</tbody>
</table>

### INDEX  

243
Alzheimer’s disease (AD) now afflicts over 5.0 million people in the United States. As the population ages, AD may become the most devastating disease of our time, for which there is no effective therapy currently available. A recent Hollywood movie, *Away from Her*, directed by Sarah Polley based on a true story, highlights the steep decline in memory that occurs in AD that makes this disease so devastating.

A number of targets have been identified for therapeutic intervention in the treatment of AD of which the enzyme BACE (beta-site APP cleaving enzyme) is considered a critical component. BACE is a rapidly evolving target for drug discovery in the treatment of AD. Since its isolation and cloning in 1999, the understanding of BACE has advanced rapidly. Now both academic groups and pharmaceutical companies are actively working to identify BACE inhibitors that could advance into the clinic.

BACE has been shown to be the first step in the aberrant processing of neuronal amyloid precursor protein (APP) leading to the formation of Aβ peptide found in the amyloid plaques, which are hallmarks of the disease. BACE is an aspartyl protease much like the HIV protease that is the target of a number of AIDS drugs. As in AIDS where effective control of the disease first was achieved with HIV protease inhibitors, it is hoped that potent BACE inhibitors would provide the way to effectively treat AD. An advantage of BACE as a drug discovery target is that it has been crystallized and its 3D structure has been solved, and this means that medicinal chemists have a greater possibility of designing potent BACE inhibitors. However, unlike HIV protease inhibitors, BACE inhibitors have the additional hurdle of crossing the blood–brain barrier for treatment of AD.

This book discusses the development of BACE inhibitors as therapeutics for AD and the research that led to the identification of BACE and new BACE inhibitors that have advanced to the clinic – the work described here will be useful to all scientists involved in this field. In addition, the book provides insights into new mechanisms for the APP-based memory dysfunction in AD besides its role as a precursor of Aβ. The detailed story of the discovery of BACE and its potential role in AD, the biochemical assays used in the development of BACE inhibitors, the structural biology work that resulted in greater insights into the enzyme activity and inhibitor binding, and the use of X-ray fragment-based approaches in the development of new BACE inhibitors are outlined in this book. The structure–activity relationships of different series of BACE inhibitors along with the absorption, distribution, metabolism, and excretion (ADME) characteristics of various BACE inhibitors and their contribution to brain bioavailability and efficacy are also outlined. Various animal models available for testing BACE inhibitors and the clinical testing pathway for a
first-in-man class BACE inhibitor that is currently in clinical trials are also described. Finally, the last chapter of the book delves into alternative approaches to BACE inhibition based on binding to precursor protein APP.

The intended audience for this book includes chemists, biologists, and clinicians involved in AD research. The book comprehensively covers various aspects of the current drug discovery efforts for BACE inhibitors as potential therapeutics for AD and is envisioned to also have utility as a supplemental text in a medicinal chemistry course. Understanding the various aspects of the BACE drug-discovery process hopefully will facilitate teamwork and enhance productivity among the scientists already working in this area, and potentially could lead to new approaches to treatment of AD. The book also would be informative to AD patients and their families who are trying to understand the various treatment options that may become available in the future. A list of current clinical trial enrollment options for AD is included. The Afterword section of the book illustrates another aspect of the disease that is not well-known but may be relevant to disease progression and therapy – the changes in artistic ability of AD patients as a function of the disease progression.

The BACE story as described in this book – from isolation of the enzyme, to inhibitor development, to structural biology, to in vivo testing and development in the clinic, represents a unique drug discovery and development story for a central nervous system (CNS) target. Despite the many research teams involved in the drug discovery efforts, the number of BACE inhibitors reaching the clinic has been scarce. Given that BACE is a key enzyme in APP processing and the production of Aβ peptide in AD, the need for development of effective drugs that block this enzyme is critical in development of new AD therapeutics. This book was written to cover virtually all aspects of this rapidly developing field, both the successes and failures, and to provide members of the diverse drug-discovery team with a global understanding of key aspects of the field essential for productive and successful drug discovery, as well as to offer researchers and clinicians an overview of the ground-breaking progress that has been made to develop inhibitors of BACE for treatment of AD.

Varghese John, PhD

ACKNOWLEDGMENTS

The editor gratefully acknowledges the contributions of all the authors of the chapters of this book, and is grateful for their time and their dedication in putting together an informative update on BACE inhibitors and the search for effective therapies for Alzheimer’s disease. The editor is very thankful to Molly Susag for the administrative assistance and Loretta Sheridan for the book cover design and artwork. The editor is also thankful to the members of the Alzheimer’s Drug Discovery Network (ADDN) at the Buck Institute for discussions of the book. Finally, the author would like to acknowledge the support of his family in this effort.
CONTRIBUTORS

Ruth Abraham, MA, Herzlia Pituach, Israel

Michal Arbel-Ornath, PhD, Department of Molecular Microbiology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel

James P. Beck, PhD, Discovery Chemistry Research & Technology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN

Dale E. Bredesen, MD, Buck Institute for Age Research, Novato, CA; Department of Neurology, University of California, San Francisco, CA

Michael J. Bienkowski, PhD, Pfizer Inc., Saint Louis, MO

Emmanuel Demont, PhD, GlaxoSmithKline R&D, Hertfordshire, United Kingdom

Jason L. Eriksen, PhD, Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX

Elizabeth Head, PhD, Department of Molecular and Biomedical Pharmacology, Department of Molecular and Cellular Biochemistry and the Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY

Robert L. Hendrickson, PhD, Proteos, Inc., Kalamazoo, MI

Michael Hennig, PhD, F. Hoffmann-La Roche Ltd, Basel, Switzerland

Henry H. Hsu, MD, CoMentis, Inc., South San Francisco, CA

Ishrut Hussain, PhD, GlaxoSmithKline R&D, Harlow, United Kingdom

Varghese John, PhD, Buck Institute for Age Research, Novato, CA

Edward H. Koo, MD, Department of Neurosciences, University of California at San Diego, La Jolla, CA

Andreas Kuglstatter, PhD, Roche Palo Alto LLC, Palo Alto, CA

Clare-Peters Libeu, PhD, Buck Institute for Age Research, Novato, CA

Dustin J. Mergott, PhD, Discovery Chemistry Research & Technology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN

Michael Paul Murphy, PhD, Department of Molecular and Cellular Biochemistry and the Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
Veerabahu Shanmugasundaram, PhD, Pfizer Global Research and Development, Groton, CT

Sukanto Sinha, PhD, Active Site Pharmaceuticals, Inc., Berkeley, CA

Beka Solomon, PhD, Department of Molecular Microbiology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel

Alfredo G. Tomasselli, PhD, Pfizer Inc., Saint Louis, MO

Felix F. Vajdos, PhD, Pfizer Global Research and Development, Groton, CT
1.1 INTRODUCTION

Alzheimer’s disease (AD) is a remarkably, and to date inexplicably, common disease, affecting over five million Americans at a national cost of approximately $150 billion annually – a cost that does not begin to address the impact of the disease on families, individuals, and society. With the graying of America, the prediction is for approximately 13 million cases by 2050 and, given the late appearance of symptoms in the pathogenic process, many more pre-Alzheimer’s cases, including both mild cognitive impairment (MCI) and pre-MCI conditions. Thus, AD is unfolding as one of the most important global health concerns.

Since the first description of the disease just over 100 years ago, extensive clinical, pathological, genetic, and biochemical data have been accumulated, implicating the amyloid-beta (Aβ) peptides, especially Aβ1-42, as key mediators in the pathogenesis of this disorder, the so-called amyloid cascade hypothesis. However, the physiological role of these peptides remains unknown, as does the mechanism(s) of their neurodegenerative effect.

The Aβ peptides are derived proteolytically from the β-amyloid precursor protein (APP) by β-site APP cleaving enzyme (BACE) (or β-secretase) cleavage of the extracellular domain, followed by γ-secretase cleavage of the transmembrane domain. However, APP is also cleaved at other sites, for example, at the α-site by α-secretase (with ADAM10 being the most likely candidate) and at the cytosolic caspase site by caspases (with caspase-8 and caspase-6 being the most likely candidates, given their P4 preference along with co-immunoprecipitation and kinetic data). With four major cleavage sites, theoretically 14 peptides could be produced, and it is becoming more apparent that other APP-derived peptides beyond Aβ also...
play critical roles in elements of the Alzheimer’s phenotype [1–3]. Therefore, Aβ may turn out to be one part of a much larger pathogenetic scenario, and thus, BACE may ultimately be one target of a cocktail of drugs that modulates APP processing at more than one site, as well as affecting targets other than APP.

In neurodegenerative diseases such as AD, neurons in various nuclei are lost in disease-specific distributions. However, the neuronal loss is a relatively late event, typically following synaptic dysfunction, synaptic loss, neurite retraction, and the appearance of other abnormalities such as axonal transport defects. This progression argues that cell death programs may play at best only a secondary role in the neurodegenerative process. However, emerging evidence from several laboratories has suggested an alternative possibility: that although cell death itself occurs late in the degenerative process, the pathways involved in cell death signaling do indeed play critical roles in neurodegeneration, both in sub-apoptotic events such as synapse loss and in the ultimate neuronal loss itself [3–6].

Although initial comparisons of the intrinsic suicide program in genetically tractable organisms such as the nematode Caenorhabditis elegans failed to disclose obvious relationships to genes associated with familial AD – for example, presenilin-1 and the β-APP do not bear an obvious relationship to any of the major C. elegans cell death genes (ced-3, ced-4, or ced-9) – more recent studies suggest a fundamental relationship between developmental and degenerative processes [3, 4, 7–10]. For example, Nikolaev et al. recently found that in a culture model of trophic factor withdrawal in developing neurons, one pathway involved in neurite retraction is mediated by a cleavage product of sAPPβ [3], the latter released after BACE cleavage of APP. A detailed understanding of the interrelationship between fundamental cell death programs and neurodegenerative processes is still evolving, and it promises to offer novel approaches to the treatment of these diseases. In this review, we will discuss BACE cleavage of APP and how it might be involved in certain aspects of Alzheimer’s pathology.

1.2 BACE CLEAVAGE OF APP AS A MOLECULAR SWITCHING MECHANISM

Neurons, as well as other cells, depend for their survival on stimulation that is mediated by various receptors and sensors, and programmed cell death may be induced in response to the withdrawal of trophic factors, hormonal support, electrical activity, extracellular matrix support, or other trophic stimuli [11]. For years, it was generally assumed that cells dying as a result of the withdrawal of required stimuli did so because of the loss of a positive survival signal, for example, mediated by receptor tyrosine kinases [12]. While such positive survival signals are clearly critical, data obtained over the past 15 years argue for a complementary effect that is pro-apoptotic, activated by trophic stimulus withdrawal, and mediated by specific receptors dubbed “dependence receptors” [13, 14]. Over a dozen such receptors have now been identified, and examples include DCC (deleted in colorectal cancer), Unc5H2 (uncoordinated gene 5 homologue 2), neogenin, rearranged during transfection (RET), Ptc, and APP [14–24]. These receptors interact in their intracytoplasmic
domains with caspases, including apical caspases such as caspase-9, and may therefore serve as sites of induced proximity and activation of these caspases. Caspase activation leads in turn to receptor cleavage, producing pro-apoptotic fragments [15, 22]; however, caspase cleavage site mutation of dependence receptors suppresses the cell death signals mediated by the receptors [13, 22]. A striking example of this effect was obtained in studies of neural tube development: withdrawal of Sonic hedgehog from the developing chick spinal cord led to apoptosis mediated by its receptor, Patched, preventing spinal cord development; however, transfection of a caspase-uncleavable mutant of Patched blocked apoptosis and restored significant development, even in the absence of Sonic hedgehog [25].

Thus, cellular dependence on specific signals for survival is mediated, at least in part, by specific dependence receptors that induce apoptosis in the absence of the required stimulus — when unoccupied by a trophic ligand, or when bound by a competing, anti-trophic ligand — but block apoptosis following binding to their respective ligands [11, 14, 23]. Expression of these dependence receptors thus creates cellular states of dependence on the associated trophic ligands. These states of dependence are not absolute, since they can be blocked downstream in some cases by the expression of anti-apoptotic genes such as bcl-2 or p35 [11, 20, 26]; however, they result in a shift of the apostat [27, 28] toward an increased likelihood of triggering apoptosis. In the aggregate, these receptors may serve as part of a molecular integration system for trophic signals, analogous to the electrical integration system composed of the dendritic arbors within the nervous system.

Although cellular dependence on trophic signals was originally described in the developing nervous system, neurodegeneration may also utilize the same pathways, since APP exhibits several features characteristic of dependence receptors: an intracytoplasmic caspase cleavage site (Asp664) [18, 29], co-immunoprecipitation with an apical caspase (caspase-8), caspase activation, derivative pro-apoptotic peptides (including the \( \alpha \beta \) peptide; see below), and suppression of apoptosis induction by mutation of the caspase cleavage site [18, 30].

These findings raise several questions: first, does BACE cleavage of APP play a role in APP’s putative dependence-related pro-apoptotic function? Second, does the caspase cleavage of APP occur in human brain and, if so, is this increased in patients with AD and coordinated with BACE cleavage? Third, if this cleavage is prevented, is the Alzheimer’s phenotype affected? These questions are addressed below.

1.3 AD: AN IMBALANCE IN CELLULAR DEPENDENCE?

Although cellular dependence on trophic signals was originally described in molecules and pathways critical for the developing nervous system, degeneration in neurons of the aged organism may also utilize the same pathways. For example, APP, a molecule holding a central position in AD pathogenesis because of its intimate relationship to \( \alpha \beta \) peptides, exhibits several features characteristic of dependence receptors: a caspase cleavage site (Asp664) [1, 29], interaction with an apical
caspase (caspase-8), derivative pro-apoptotic peptides released after caspase activation, and suppression of apoptosis induction by mutation of the caspase cleavage site [1, 30, 31]. Although APP demonstrates many of the characteristics of a dependence receptor, what is unclear is whether there is a physiological ligand that maintains the balance of APP in favor of survival rather than neuronal death, as has been seen with other trophic factor receptors.

In this context, BACE may hold a surprising central position. This is because cleavage of APP by BACE generates not only the C-terminal fragment of APP that is the direct precursor of Aβ, but this cleavage also releases sAPPβ, which can interact with DR6 to effect neuronal damage (see below). What is unclear is whether BACE cleavage of APP plays a role in APP’s putative dependence-related pro-apoptotic function. And second, whether caspase cleavage of APP occurs in human brain and, if so, is this increased in patients with AD and coordinated with BACE cleavage? And lastly, if this cleavage is prevented, is the Alzheimer’s phenotype affected? These questions are addressed below.

Extensive genetic and biochemical data have implicated the Aβ peptide as a central mediator of AD, but the mechanism(s) of action remains controversial: the ability of Aβ to generate a sulfuranyl radical involving methionine 35 has been implicated, and so have its direct effects on postsynaptic structures, the metal-binding property of Aβ, as well as its aggregating property, and its ability to form pore-like structures in membranes, just to list a few of the mechanisms proposed [32]. These proposed mechanisms share a focus on the chemical and physical properties of the Aβ peptide. However, cellular signaling is emerging as a complementary mechanism by which Aβ exerts its critical effects, and multiple candidates have surfaced as key downstream mediators, including APP itself, the insulin receptor, and tau, among others [30, 33, 34]. These cellular signals may also mediate neuronal dependence on trophic support, as described below.

1.4 BACE CLEAVAGE, CASPASE CLEAVAGE, AND NEURONAL TROPHIC DEPENDENCE

Neoeptiote antibodies directed against residues 657–664 of human APP disclosed the presence of caspase-cleaved APP fragments in human brain, especially in the hippocampal region [8], with an approximately fourfold increase in Alzheimer’s patients over age-matched controls. However, in brains without Alzheimer’s pathology, there was an inverse relationship between age and immunohistochemical detection of APPneo, with a different distribution from AD brains: in the Alzheimer brains, the staining was primarily in neuronal somata and peri-neuronally, whereas in the non-Alzheimer brains, the staining was observed predominantly in the processes. These findings suggest that the caspase cleavage of APP occurs physiologically and is reduced with age, but that this process remains more active and perhaps aberrant in cellular distribution in association with AD.

To test whether preventing the caspase cleavage of APP has any consequences on the Alzheimer’s phenotype, a transgenic mouse model of age-associated amyloid
pathology was generated in which APP containing the Swedish and Indiana familial AD mutations were combined with a mutation of the caspase site (D664A) was expressed under the control of the neuronal-specific platelet-derived growth factor-B (PDGF-B) promoter. Although the caspase mutation (D664A) had no effect on amyloid production or plaque formation, these animals did not exhibit any overt synapse loss, early p21-activated kinase (PAK) phosphorylation, dentate gyrus atrophy, electrophysiological abnormalities (including reductions in excitatory postsynaptic potentials [EPSPs] and long-term potentiation [LTP]), neophobia, or memory deficits that frequently characterize these APP overexpressing mice [4, 6, 35]. These findings indicate that key features of the Alzheimer’s associated phenotype in a standard transgenic mouse model depend on the presence of the caspase cleavage site within APP. This finding, when combined with the extensive previous work showing that the Alzheimer’s phenotype is critically dependent on Aβ, suggests that the APP caspase site may lie downstream from the Aβ accumulation and that cleavage of this site is one pathway that contributes to neuronal injury [30, 33]. This possibility has received support from studies showing that Aβ interacts directly with APP in the Aβ region itself, leading to APP multimerization, caspase cleavage at Asp664, and cell death signaling [30, 33].

1.5 BACE CLEAVAGE OF APP, DEPENDENCE RECEPTORS, AND ALZHEIMER PATHOLOGY

The above model of caspase cleavage of APP focuses primarily on the cytosolic region of APP where the caspase site is situated. Experimental evidence suggested that Aβ-induced multimerization and subsequent caspase cleavage of APP can take place with either APP or the BACE-cleaved C99 APP fragment. However, there did not appear to be any preference between these two substrates. How, then, might BACE cleavage of APP relate to the caspase cleavage of APP? Recent work from the Tessier-Lavigne lab [3] provides surprising new insight into this question: following trophic factor withdrawal from developing neurons in culture, BACE was apparently activated, resulting in the shedding of sAPPβ. Following further processing near the amino-terminus of sAPPβ by an unidentified protease, the resulting amino-terminal peptide of the APP ectodomain was able to interact with death receptor 6 (DR6). This binding led to caspase-6 activation and subsequent neurite retraction, which is of interest given previous studies showing that APP is cleavable by caspase-6, and that its caspase site (VEVD) is indeed most compatible with a caspase-6 site [1]. This is a surprising observation because the large sAPP ectodomain (mainly sAPPα) has traditionally been thought to play a neurotrophic rather than toxic role. Nonetheless, increased BACE cleavage of APP should lead to the production of more Aβ peptide, and this in turn will result in more Aβ–C99 interaction and potentially more caspase cleavage of APP. Thus, BACE cleavage of APP results in two downstream pathways that damage neurons: through the sAPPβ fragment interacting with DR6 receptor (via N-APP production) and through Aβ-induced caspase cleavage of APP C99 fragment.
If APP does indeed function as a dependence receptor, AD may be considered a “state of altered dependence.” What then is/are the trophic ligand/s for APP? Several candidate APP interactors have been described, such as collagen (types I and IV), heparan sulfate proteoglycan, glypican, laminin, and F-spondin [36–38]. F-spondin’s interaction with APP leads to a reduction in β-secretase activity. Lourenco et al. have recently shown that netrin-1, a multifunctional axon guidance and trophic factor, also binds APP [9]. Furthermore, netrin-1 also interacts with Aβ itself, and Aβ is capable of interfering with netrin-1 binding to APP. The binding of netrin-1 to APP results in enhanced interaction of APP with intracytoplasmic mediators Fe65 and Dab, upregulation of KAI1, and a marked reduction of net Aβ production [9].

These findings suggest a model in which the Aβ peptide functions as an “anti-trophin,” first by blocking netrin’s guidance and trophic effects and then through...

---

Figure 1.1  Key cleavage sites of APP by proteases involved in normal and aberrant processing. (See color insert.)
binding to and facilitating APP oligomerization, recruiting and activating caspase-8 (and possibly caspase-6), engendering the processing of APP at Asp664, and inducing neurite retraction, then, ultimately, neuronal cell death [4, 30, 33]. Whether the D664A mutation of APP exerts effects beyond the prevention of caspase cleavage (e.g., an alteration of the intracytoplasmic structure of APP) is not yet known. However, regardless of the mechanism, the results suggest that APP signal transduction may be important in mediating AD [39], at least in the transgenic mouse model, possibly downstream from Aβ oligomerization and binding of APP. The results also suggest that BACE cleavage and caspase cleavage of APP may work in concert to lead to neurite retraction, and potentially other aspects of the AD phenotype.

The results obtained in the transgenic mouse model of AD also suggest an alternative to the classic models of AD. As noted above, chemical and physical properties of Aβ have been cited as the proximate cause of AD pathophysiology. However, these theories do not explain why Aβ is produced ubiquitously and constitutively, nor do they offer a physiological function for the Aβ peptide, or account for the improvement in AD model mice that occurs with a reduction in tau protein [34].

An alternative model, presented in Figs. 1.1–1.3, proposes that APP is indeed a dependence receptor, and that it functions normally as a molecular switch in synaptic element interdependence (Fig. 1.4): in this model, both the presynaptic element and the postsynaptic element are dependent on trophic support, including soluble factors such as netrin, substrate adherence molecules such as laminin, neurotransmitters, and neuronal activity, as well as other factors. In the presence of adequate trophic support, APP is cleaved at the α- and γ-secretase sites, generating three peptides – sAPPα, p3, and APP intracytoplasmic domain (AICD) – that support cell

![Figure 1.2 Alternative cleavage patterns of APP generate distinct extracellular, transmembrane, and intracytoplasmic fragments. (See color insert.)](image-url)
Figure 1.3  Alternative cleavage of APP to produce four peptides that mediate synaptic loss, neurite retraction, and ultimately, programmed cell death (“the four horsemen”); or three peptides that mediate synaptic maintenance and inhibit programmed cell death (“the wholly trinity”). Among the factors that mediate the decision between these two pathways are included trophic effects such as netrin-1 and anti-trophic effects such as Aβ peptide.

Figure 1.4  Synaptic element interdependence model of synaptic maintenance, reorganization, and Alzheimer’s disease. The presynaptic and postsynaptic elements are interdependent, and provide both trophic influences (e.g., neurotrophins, netrin-1, laminin, collagen, and synaptic activity itself) and anti-trophic influences (e.g., amyloid-β peptide). Trophic support leads to the processing of APP into three peptides that support synaptic maintenance, whereas the withdrawal of trophic support leads to alternative processing, to four peptides that mediate synaptic inhibition, synaptic loss, neurite retraction and, ultimately, programmed cell death. In this model, the Aβ peptide functions as an anti-trophin and, since it leads to APP processing that produces additional Aβ peptide, it is “prionic,” that is, Aβ begets additional Aβ.
survival and synaptic maintenance. However, a reduction in trophic support (e.g., due to head trauma) alters the processing of APP, thereby activating BACE cleavage of APP to alter the ratio of $\alpha/\beta$ cleavages, and leading to the production of four peptides – sAPP$\beta$, A$\beta$, Jcasp, and C31 (Fig. 1.3) – that mediate a reduction in synaptic transmission, synaptic loss, neurite retraction and, ultimately, programmed cell death [1, 3, 4, 9, 35]. In this model, neuronal and synaptic injury in AD is suggested to result from an imbalance in physiological signaling pathways that mediate synaptic maintenance versus synaptic reorganization, mediated at least in part by APP, functioning in synaptic element interdependence (Fig. 1.4), as part of a plasticity module that includes other receptors such as the common neurotrophin receptor, p75$^{NTR}$ and the axon guidance receptor DCC, among others [40].

1.6 KEY MUTATIONS PROXIMAL OF APP PROCESSING TO A$\beta$

Mutations in APP that are associated with familial AD typically affect A$\beta$ processing and lead to an increase in the ratio of A$\beta$1-42 to A$\beta$1-40. These mutations may be located in proximity to the $\beta$-cleavage site or the $\gamma$-cleavage site. Mutations near the $\alpha$-secretase cleavage site affect the primary structure of the A$\beta$ peptide, and are often associated with cerebral hemorrhagic syndromes, but in at least some cases, such as the Arctic mutation (see Table 1.1), also lead to AD.

<table>
<thead>
<tr>
<th>Nearest cleavage site</th>
<th>Mutation</th>
<th>Type</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta-site</td>
<td>Lys670 → Asn</td>
<td>Swedish</td>
<td>Mullan et al., 1992 [41]</td>
</tr>
<tr>
<td></td>
<td>Met671 → Leu</td>
<td>Swedish</td>
<td></td>
</tr>
<tr>
<td>Alpha-site</td>
<td>Ala692 → Gly</td>
<td>Flemish</td>
<td>Kumar-Singh et al., 2002 [42]</td>
</tr>
<tr>
<td></td>
<td>Glu693 → Gln</td>
<td>Dutch</td>
<td>Van Broeckhoven et al., 1990 [43]</td>
</tr>
<tr>
<td></td>
<td>Glu693 → Gly</td>
<td>Arctic</td>
<td>Nilsbeth et al., 2001 [44]</td>
</tr>
<tr>
<td></td>
<td>Asp694 → Asn</td>
<td>Iowa</td>
<td>Grabowski et al., 2001 [45]</td>
</tr>
<tr>
<td>Gamma-site</td>
<td>Ala713 → Thr</td>
<td>Austrian</td>
<td>Carter et al. 1992 [46]</td>
</tr>
<tr>
<td></td>
<td>Thr714 → Ile/Ala</td>
<td>Austrian/Iranian</td>
<td>Kumar-Singh et al., 2000 [47]; Pasalar et al., 2002 [48]</td>
</tr>
<tr>
<td></td>
<td>Val715 → Met</td>
<td>French</td>
<td>Ancolio et al., 1999 [49]</td>
</tr>
<tr>
<td></td>
<td>Ile716 → Val</td>
<td>Florida</td>
<td>Eckman et al., 1997 [50]</td>
</tr>
<tr>
<td></td>
<td>Val717 → Phe/Gly/Ile</td>
<td>Indiana/London</td>
<td>Murrell et al., 1991 [51]; Chartier-Harlin et al., 1991 [52]; Goate et al., 1991 [53]</td>
</tr>
<tr>
<td>Epsilon-site</td>
<td>Leu723 → Pro</td>
<td>Australian</td>
<td>Kwok et al., 2000 [54]</td>
</tr>
<tr>
<td></td>
<td>Lys724 → Asn</td>
<td>Belgium</td>
<td>Theuns et al., 2006 [55]</td>
</tr>
</tbody>
</table>
1.7  FINAL REMARKS

BACE processing of APP represents an important therapeutic target in AD. However, such processing may be part of a larger set of pathogenetic events in this disease, featuring imbalanced signal transduction mediated by APP and potentially other receptors.

ACKNOWLEDGMENTS

We thank Molly Susag and Loretta Sheridan for manuscript preparation, and members of the Bredesen laboratory for discussion and critical reading of the manuscript.

REFERENCES


