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Introduction

The result of a fusion of mathematical and physical concepts, homogenization has
established itself as a method of overcoming the usual framework based on a
description of elementary phenomena in a homogenous medium, to achieve the
objective of a global description of coupled phenomena in heterogenous media. This
book aims to present the key methodological points and their relevance to engineering
science in a pedagogical format.

What is the nature of the problem? Even brief observation of natural or industrial
materials reveals that they often consist of a combination of different constituents in
various structures, and they are therefore heterogenous.

For example, take the behavior of civil engineering materials. The descriptions
of the properties that they exhibit — and consequently the design rules for structures
built using these materials — are, for the most part, issues related to the mechanics of
continuous media applied to homogenous media. This theory has been widely proven,
and a huge number of constructions designed using these principles can attest to its
success, as can the accuracy of modeling performed using this approach. This simple
observation leads us to believe that heterogenous materials can, at least subject to
certain constraints, be treated similarly. But why and to what extent is this concept
useful?

Furthermore, although the heterogenous nature of the material may not be obvious
for this apparently continuous medium, it is on the other hand clear that its behavior
depends on the characteristics of the heterogenities. How then do we proceed if we
are to account for the properties of the constituents when defining the behavior of an
equivalent continuous homogenous medium?

These two points are of great practical importance. On one hand, understanding
of the limits of a method is an important safety consideration, and on the other hand
determination of the equivalent continuous medium allows us to better understand the
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parameters that govern its behavior (for a natural material) or to adapt the constituent
parts to achieve the desired performance (for an artificial material).

The homogenization methods have been developed to answer these questions.
They make it possible — under well-specified conditions — to obtain a description of the
behavior of heterogenous materials starting from the behavior of the heterogenities.

A condition essential for the existence of an equivalent continuum is that the
physical mechanism under study should vary on a length scale which is very large
compared to the scale of the heterogenities. This requirement for a difference in
length scales gives rise to the expressions “upscaling method” and “method of multiple
scales”. The term “homogenization” also arises from this, because considering the
heterogenities to be of infinitessimal size compared to the effects under study naturally
leads us to consider the medium as a homogenous or, more precisely, homogenized
continuum.

Linking the large-scale observable behavior to microscopic mechanisms is an age-
old preoccupation of physicists.

One famous example is that of elasticity, where Navier (1821) and Poisson (1829)
obtained a single macroscopic isotropic elastic coefficient from a particular molecular
model: the two Lamé coefficients are equal. Cauchy (1828) obtained a two-coefficient
isotropic elastic model starting from a more sophisticated molecular model. From
among these well-known names we also draw attention to the preliminary work of
Rayleigh (1892) on the conductivity of media containing impurities present in a
parallelopiped lattice, and that of Einstein (1906) on the viscosity of suspensions and
sedimentation rates.

These attempts remained intermittent until the 1950s when the needs of industrial
development demanded a detailed understanding of the behavior of natural materials
(the oil industry), manufactured materials (in particular steels and alloys), and the
design of new materials (mainly for aeronautics). In order to understand the
significance of small scale mechanisms on global behavior, scientific approaches at
the time involved phenomenological micromechanical models built on thermodynamic
principles. The pioneering works of Biot (1941) and of Hill (1965) took this approach.

It was in the 1970s that a new school of thought was born, started by Keller
who used a rather different angle to tackle the question of the change of scales.
This involved the method of asymptotic expansions at multiple scales. Initially built
on an approach which was more mathematical than mechanical, this method was a
true conceptual leap forwards in terms of its rigor and formalism. The works of
Bensoussan et al. (1978) and Sanchez-Palencia (1980) are still important references
on this subject, with similar ideas developed in Russia by Bakhvalov and Panasenko
(1989).
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Initially confined to very specialist circles, these methods blossomed considerably
in the 1990s. During this period their fields of application were broadly diversified
across all traditional engineering fields, and also in life sciences, particularly
biomechanics. This undeniable success is thanks to the effectiveness of asymptotic
methods for treating complex physics on a microscopic scale, and their ability to
include coupling between different phenomena.

However, while their use has become almost routine for some research groups, it
remains poorly documented at present in a form suitable for engineers and researchers
working in related fields. These considerations convinced us there was a demand for
a book which would set out a coherent picture of these approaches, and render them
accessible to a wider audience than just specialists in this research area.

Rather than be exhaustive (which would not be an easy task), we have chosen to
pick a few problems where the main points can be presented in a simple manner. The
aim is also — using a unified treatment — to illustrate the common thought processes
connecting the issues addressed in this book. In keeping with this approach, the
bibliography does not attempt to be exhaustive, but shows the reader the seminal
works in the field, and the references corresponding to the main steps of the problems
we consider.

This volume, which has grown out of the Mechanics of Heterogenous Media
course taught at the University of Grenoble by J.L. Auriault, is intended to be a basic
course in upscaling methods, aimed at advanced students, engineers and graduate
students. With this pedagogical aim, we have used a progressive approach to each
subject, starting out with traditional problems and then following them with recent
developments. We also thought it useful to illustrate the potential applications of
the results of homogenization. With this in mind, for each of the themes we treat, the
theoretical results are followed by an example of the development through
homogenization which provides a concrete example of the advances in a particular
field of application.

This book is divided into four parts.

Part 1 is an introduction to the philosophy of homogenization methods. We discuss
methods aimed at periodic and random materials while emphasizing their physical
significance and their potential applications to real materials, which are often neither
perfectly periodic or perfectly random.

The basic examples given in Chapter 1 give an understanding of the fundamental
tools underlying both methods. Chapter 2 goes into more detail on the techniques and
discusses connections between them and the details which distinguish them. There is a
detailed discussion of conditions for their application, delineating the range of validity
of these approaches. This overview of methods underlines the power of the asymptotic
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method at multiple scales for the treatment of complex physics with many coupled
effects in materials with simple or heirarchical morphologies. Combining rigorous
formalism and intuitive reasoning, Chapter 3 presents the methodology of the multiple
scale approach which will be used throughout the rest of the book. The emphasis is
on the systematic use of dimensional analysis combined with the separation of length
scales. We also detail the means of expressing a practical problem involving real
materials in the context of homogenization. This methodological basis is applied in
the following sections where we specifically treat the physical mechanisms involved
in coupled phenomena.

Part 2 presents a first field of application of homogenization. We study the physics
of transport by diffusion, convection and advection, phenomena which allow us to
apply the basic tools of upscaling methods to engineering problems.

Chapter 4 focuses on thermal transfer in heterogenous media. Going beyond
the classical model of thermal transfer in a composite, we find a diverse range of
macroscopic models depending on the level of contrast in the conductive properties
of the constituents and their interfaces. In particular, memory effects arise from
the presence of local non-equilibrium of a very weakly conducting phase, and two-
temperature models can be developed for quasi-insulating interfaces. The transport
of solutes in porous media is examined in Chapter 5. We highlight the different
descriptions associated with the local physics of pure diffusion and then with diffusion-
advection. This second situation, which is reached at high transport rates, results in
a macroscopic dispersion. The range of validity of each of these models is explicitly
specified. Chapter 6 makes use of, and extends, these results, focusing on specific
materials. The numerical procedure of periodic homogenization is illustrated by
determining the coefficients for fibrous and granular materials. By way of comparison,
we recall the classical self-consistent analytical estimates. Finally, comparison with
experimental results enables us to judge the appropriateness of these models for
describing the properties of materials.

Part 3 is dedicated to the modeling of Newtonian fluid flows in rigid porous media.

Chapter 7 discusses incompressible fluids using multiple-scale asymptotic
expansions. It starts with the canonical problem of Darcy’s law (in the regime of
steady-state laminar flow). It continues taking into account inertial effects, both in the
dynamic linear regime which leads to memory effects through visco-inertial coupling,
and in the steady-state advective regime, where the correction due to weak non-
linearities is established. The flow in porous media of compressible fluids such as
gases is the subject of Chapter 8. Using the asymptotic method, we treat in succession
high pressure steady-state flows, wall slip effects in rarefied gases and, in the dynamic
regime, the acoustic description under weak pressure perturbations with thermal
coupling. The transfer of theoretical results for homogenization to their numerical
formulation is illustrated in Chapter 9. The solution to local problems derived by
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periodic homogenization is given for calculation of the Darcy permeability of granular
and fibrous materials. Finally, Chapter 10 returns to the same problems, which are
discussed in the context of a self-consistent approach. We use this to establish
analytical estimates and bounds for steady state and dynamic permeabilities, thermal
effects, wall slip corrections and — by analogy — for the trapping constant.

Part 4 focuses on the behavior of deformable saturated porous media.

Chapter 11 considers the behavior in the quasi-static regime, first examining that of
the empty porous medium (a specific case of an elastic composite) and then that of the
saturated medium, introducing the fluid-solid coupling. Depending on the level of
contrast between the shear properties of the fluid and the solid, the asymptotic method
of multiple scales leads to three distinct behaviors whose properties are discussed.

The study of poroelastic behavior is extended to the dynamic regime in Chapter 12.
The characteristics of the three possible behaviors — including the Biot biphasic
model — are analyzed in detail, particularly properties of the effective coefficients.
The range of validity of each of the descriptions is specified. Chapter 13 puts the
homogenization results to numerical use in order to carry out a parametric analysis
of the elastic and coupling coefficients in the biphasic model. At the same time
these results, obtained for cohesive granular media, are compared to traditional self-
consistent estimates and to bounds. In Chapter 14, the homogenized biphasic behavior
is used with the aim of describing the propagation of waves in saturated porous media.
After specifying the properties of the three propagation modes, the transmission of
waves across a poroelastic interface is examined. We also establish the expression
for Green’s functions in the context of poroelasticity, the integral formulation, and the
fields radiated by abrupt dislocations.

To complete our summary of this text, it is worth mentioning certain important
subjects which are not treated here (or only discussed briefly).

One of these subjects is complex microstructures. In fact, we will only consider
media whose local geometry is sufficiently simple that it can be characterized by a
typical length scale of the heterogenity, and whose local problems can be formulated
in terms of continuous media. This choice means that we omit:

— Media whose architecture involves very different characteristic sizes (such as
double porosity media). These can give rise to various interacting physical effects
on each length scale. These many possible couplings vastly increase the diversity of
the possible macroscopic behaviors, with some behaviors only being possible in such
media as;

— Microstructure whose behavior can be reduced to that of various interacting
points within the material (for example the nodes in trellis structures). For these it is
preferable to use a locally discrete description, and to move to a continuum description
through homogenization. This alternative approach will not be discussed here.
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A second aspect only outlined is that of the corrections to macroscopic descriptions
which have been established to first order. Indeed, for the most part, the results
presented here are restricted to the first significant term, and lead to descriptions
involving a continuous medium which is materially simple, and descriptions valid in
the bulk of the heterogenous medium. There are two corrections which can usefully
be applied to these descriptions:

— those which appear on the boundary of the medium. They lead to a boundary
layer with a thickness of the order of the size of the representative elementary volume.
This makes it possible to reconcile local boundary conditions and boundary conditions
used at the macroscopic scale;

— those which make it possible to treat situations with weak separation of scales,
obtained by including higher-order terms within the homogenized descriptions. These
correctors to simple continuum models introduce non-local effects whose spatial
extent is of the order of the size of the representative elementary volume.

Finally, we will not discuss the taking into account of non-linearities. All the cases
that we present involve linear effects, or sometimes weakly non-linear ones where
the non-linearity can be treated as a perturbation of the linear solution. Whether they
have material or geometric origins, non-linearities introduce considerable theoretical
difficulties compared to linear situations. While the establishment of criteria through
local limit analysis — the rheology of elastic composites with a non-linear power
law, or the flow of non-Newtonian power-law fluids in porous media — has been
successfully achieved, in general non-linearities present a real challenge to upscaling
methods.

These three omitted themes — complex microstructures, corrections and non-
linearities — are very rich and interesting, and they deserve further discussion on their
own. We hope that this volume will offer a sufficiently clear and solid basis to guide
the reader who may wish to explore these fields.

This work is the fruit of a long collaboration between its authors. It has of course
been supported by the work and suggestions of numerous friends, colleagues and
research students, whom we are delighted to thank for the assistance that they have
given us, and in particular: P. Adler, I. Andrianov, L. Arnaud, P. Y. Bard, J. F. Bloch,
G. Bonnet, L. Borne, L. Dormieux, H. Ene, M. Lefik, T. Levy, J. Lewandowska,
C.C. Mei, X. Olny, L. Orgéas, P. Royer, E. Sanchez-Palencia, T. Strzelecki.

We extend particular gratitude to P. Adler, whose sound advice and criticism has
added a great deal to this work.
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