Guidelines for
Vapor Cloud Explosion, Pressure Vessel Burst, BLEVE, and Flash Fire Hazards
Second Edition

Center for Chemical Process Safety
New York, New York

An AIChE Technology Alliance
CPS
Center for Chemical Process Safety

WILEY
A JOHN WILEY & SONS, INC., PUBLICATION
This page intentionally left blank
Guidelines for
Vapor Cloud Explosion,
Pressure Vessel Burst,
BLEVE, and Flash Fire Hazards
This book is one in a series of process safety guideline and concept books published by the Center for Chemical Process Safety (CCPS). Please go to www.wiley.com/go/ccps for a full list of titles in this series.

It is sincerely hoped that the information presented in this document will lead to an even more impressive safety record for the entire industry. However, the American Institute of Chemical Engineers, its consultants, the CCPS Technical Steering Committee and Subcommittee members, their employers, their employers' officers and directors, and BakerRisk, and its employees do not warrant or represent, expressly or by implication, the correctness or accuracy of the content of the information presented in this document. As between (1) American Institute of Chemical Engineers, its consultants, CCPS Technical Steering Committee and Subcommittee members, their employers, their employers' officers and directors, and BakerRisk, and its employees and (2) the user of this document, the user accepts any legal liability or responsibility whatsoever for the consequences of its use or misuse.
CONTENTS

List of Tables xi
List of Figures xiii
Glossary xxi
Acknowledgements xxv

1. INTRODUCTION 1

2. MANAGEMENT OVERVIEW 3

2.1. Flash Fires 4
2.2. Vapor Cloud Explosions 4
2.3. Pressure Vessel Bursts 5
2.4. BLEVEs 5
2.5. Prediction methodologies 6

3. CASE HISTORIES 7

3.1. Historical experience 7
3.2. Flash fires 7
3.2.1. Donnellson, Iowa, USA: Propane Fire 7
3.2.2. Lynchburg, Virginia, USA: Propane Fire 8
3.2.3. Quantum Chemicals, Morris, Illinois, USA: Olefins Unit Flash Fire 11
3.3. Vapor Cloud Explosions 13
3.3.1. Flixborough, UK: Vapor Cloud Explosion in Chemical Plant 13
3.3.2. Port Hudson, Missouri, USA: Vapor Cloud Explosion after
Propane Pipeline Failure

3.3.3. Jackass Flats, Nevada, USA: Hydrogen-Air Explosion during Experiment

3.3.4. Ufa, West-Siberia, USSR: Pipeline Rupture Resulting In a VCE

3.3.5. Phillips, Pasadena, Texas USA: Propylene HDPE Unit VCE and BLEVEs

3.3.6. BP, Texas City, Texas USA: Discharge from Atmospheric Vent Resulting in a VCE

3.4. Pressure Vessel Burst

3.4.1. Kaiser Aluminum, Gramercy, Louisiana USA: Alumina Process Pressure Vessel Burst

3.4.2. Union Carbide Seadrift, Texas USA: Ethylene Oxide Distillation Column Pressure Vessel Burst

3.4.3. Dana Corporation, Paris, Tennessee USA: Boiler Pressure Vessel Burst

3.5. BLEVE

3.5.1. Procter and Gamble, Worms, Germany: Liquid CO₂ Storage Vessel Explosion

3.5.2. San Juan Ixhuatepec, Mexico City, Mexico: Series of BLEVEs at LPG Storage Facility

3.5.3. San Carlos de la Rapita, Spain: Propylene Tank Truck Failure

3.5.4. Crescent City, Illinois, USA: LPG Rail Car Derailment

3.5.5. Kingman, Arizona USA: LPG Railroad Tank Car BLEVE

4. BASIC CONCEPTS

4.1. Atmospheric Vapor Cloud Dispersion

4.2. Ignition

4.3. Thermal Radiation

4.3.1. Point-Source Model

4.3.2. Solid-Flame Model

4.4. Explosions — VCE
6.3. Vapor Cloud Detonation Theory and Research 152
6.3.1. Direct Initiation of Vapor Cloud Detonations 152
6.3.2. Detonability of Commonly Used Fuels 153
6.3.3. Deflagration-to-Detonation Transition (DDT) 156
6.3.4. Blast Effects Produced by Vapor Cloud Detonations 159
6.4. VCE Prediction Methods 166
6.4.1. TNT Equivalency Method 168
6.4.2. VCE Blast Curve Methods 174
6.4.3. TNO Multi-Energy Method 176
6.4.4. Baker-Strehlow-Tang (BST) Method 188
6.4.5. Congestion Assessment Method 201
6.4.6. Numerical Methods 207
6.5. Sample problems ... 218
6.5.1. Sample Problem – TNT Equivalence Method 218
6.5.2. Sample Problem - Multi-Energy Method 225
6.5.3. BST Sample Problem 233
6.5.4. CAM Example Problem 236

7. PRESSURE VESSEL BURSTS241
7.1. Mechanism of a PVB .. 242
7.1.1. Accident Scenarios 242
7.1.2. Damage Factors ... 244
7.1.3. Phenomena .. 244
7.1.4. Factors that Reduce Available Explosion Energy 245
7.2. Scaling Laws Used in PVB Analyses 246
7.3. Blast Effects of Pressure-Vessel Bursts 247
7.3.1. Free-Air Bursts of Gas-Filled, Massless, Spherical Pressure Vessels ... 248
7.3.2. Effects Due to Surface Bursts 254
7.3.3. Effects Due to Nonspherical Bursts 255
7.4. Methods for Predicting Blast Effects from Vessel Bursts 260
7.4.1. Development of Blast Curves 261
7.4.2. Factors Influencing Blast Effects from Vessel Bursts 267
7.4.3. Procedure for Calculating Blast Effects 267
7.4.4. Adjustments for Vessel Temperature and Geometry 270
7.4.5. Sample Problem: Airblast from a Spherical Vessel 274
7.5. Fragments from a PVB ... 277
7.5.1. Generation of Fragments from PVBs 277
7.5.2. Initial Fragment Velocity for Ideal-Gas-Filled Vessels ... 279
7.5.3. Ranges for Free Flying Fragments 288
7.5.4. Ranges for Rocketing Fragments 293
7.5.5. Statistical Analysis of Fragments from Accidental
 Explosions ... 293
7.6. Predicting Fragment Effects from Vessel Bursts 298
7.6.1. Analytical Analysis ... 298
7.6.2. Example Problem - Failure during Testing 306

8. **BASIC PRINCIPLES OF BLEVES** 311

8.1. Introduction ... 311
8.2. Definition of a BLEVE .. 311
8.3. Theory .. 312
8.3.1. Thermodynamics of Boiling 312
8.3.2. Mechanics of Vessel Failure 313
8.3.3. Description of a “Typical” BLEVE 317
8.4. BLEVE Consequences ... 320
8.4.1. Airblast .. 320
8.4.2. Thermal Hazards .. 336
8.4.3. Fragment and Debris Throw 342
8.4.4. Ranges for Rocketing Fragments 344
8.5. Analytical Models ... 349
8.6. Sample Problems .. 349
8.6.1. Sample Problem #1: Calculation of Air Blast from
 BLEVEs .. 349
8.6.2. Sample Problem #2: Calculation of Fragments from
8.6.3. Sample Problem #3: Thermal Radiation from a BLEVE

9. REFERENCES

APPENDIX A – VIEW FACTORS FOR SELECTED CONFIGURATIONS

APPENDIX B – TABULATION OF SOME GAS PROPERTIES IN METRIC UNITS

APPENDIX C – CONVERSION FACTORS TO SI FOR SELECTED QUANTITIES
LIST OF TABLES

Table 3.1. Pressure at time of explosion in the digestion area equipment........33
Table 4.1. Explosion Properties of Flammable Gases and Vapors in Air at
Standard Pressure*..53
Table 4.2. Initiation Energies for Deflagration and Detonation for Some Fuel-Air
Mixtures*..55
Table 4.3. Characteristic detonation cell sizes for some stoichiometric fuel-air
mixtures*..70
Table 5.1. Experimental Conditions and Flame Speeds for HSL LPG Tests....85
Table 5.2. Wide-Gauge Radiometer Measurements of Surface Emissive Power
for Flash and Pool Fires..90
Table 5.3. Results of calculations..95
Table 6.1. Test Results of VCE Deflagration in Tubes.................................114
Table 6.2. Maximum flame speeds for various fuels and configurations
(Van Wingerden and Zeeuw, 1983)...117
Table 6.3. Small scale test results on VCE deflagration in 2-D configuration118
Table 6.4. Large scale test results on VCE deflagration in 2-D configuration123
Table 6.5. Results of experiments under unconfined conditions without obstacles
...126
Table 6.6. Experimental results on VCE deflagration under unconfined
conditions with obstacles (low congestion)..129
Table 6.7. Flame speed and overpressure from 3-D configurations..............131
Table 6.8. Effect of blockage ratio (Mercx, 1992)..139
Table 6.9. CAM Coefficients..144
Table 6.10. Critical initiation energy and detonability for hydrocarbon fuels
(Matsui and Lee, 1978)...155
Table 6.11. DDT in ethylene/air mixtures..158

Table 6.13. BST flame speed correlations (flame speed Mach no. M_f) (Pierorazio et al. 2004).

Table 6.15. CAM Fuel Factor F and Expansion Ratio E for Common Fuels.

Table 6.16. CFD codes used to predict VCE blast loads.

Table 6.17. Side-on peak overpressure for several distances from charge.

Table 6.18. Side-On peak overpressure for several distances from charge expressing explosion severity of the Flixborough vapor cloud explosion.

Table 6.19. Characteristics and locations of fuel-air charges expressing potential explosion severity of the Flixborough vapor cloud.

Table 6.20. Nondimensionalized blast parameters at 1,000m distance from two charges, read from charts in Figure 6.40.

Table 6.21. Side-on peak overpressure and positive-phase duration of blast produced by Charge I ($E = 175,000$ MJ, strength number 10).

Table 6.22. Side-on peak overpressure and positive-phase duration of blast produced by Charge II ($E = 1,412,800$ MJ, strength number 2).

Table 6.23. Constants used in the BST sample problem.

Table 6.24. Blast overpressure and impulse for different standoff distances using the BST method.

Table 6.25. Predicted blast loads using the CAM method.

Table 7.1. Drag coefficients (Baker et al. 1983).

Table 7.2. Groups of like PVB events used in fragmentation statistical analysis.

Table 7.3. Ranges for various initial trajectory angles.

Table 8.1. Empirical relationships for fireball durations and diameters.

Table 8.2. Analytical relationships for fireball durations and diameters.

Table 8.3. Thermodynamic data for propane.

Table 8.4. Results of sample problem #1.

Table 8.5. Results of sample problem #2.

Table 8.6. Results of sample problem #3.
LIST OF FIGURES

Figure 3.1. Details of Lynchburg, VA accident site................................. 10
Figure 3.2. Damage resulting from the Morris, Illinois flash fire................ 12
Figure 3.3 Flixborough works prior to the explosion............................. 13
Figure 3.4 Flixborough cyclohexane oxidation plant (six reactors on left)...... 14
Figure 3.5. Area of spill showing removed reactor.................................. 15
Figure 3.6. Bypass on cyclohexane reactors at Flixborough...................... 15
Figure 3.7 Aerial view of damage to the Flixborough works..................... 16
Figure 3.8. Damage to the Office Block and Process Areas at the Flixborough works... 17
Figure 3.9. Blast-distance relationship outside the cloud area of the Flixborough explosion... 18
Figure 3.10. Damage to a farm 600 m (2,000 ft) from explosion center....... 20
Figure 3.11. Damage to a home 450 m (1,500 ft) from the blast center........ 20
Figure 3.12. Test-cell layout at Jackass Flats, NV.................................. 22
Figure 3.13 Ufa accident: (a) topographical sketch of demolished area with directions trees fell shown by arrows; (b) terrain profile (not to scale). (Makhviladze, 2002).. 24
Figure 3.14. Aerial views of Ufa accident site: (upper) broad view of the forest and rail line (Makhviladze, 2002); (lower) closer view of the area where the trains passed. (Lewis, 1989).. 25
Figure 3.15. Phillips Pasadena plant prior to the incident.......................... 26
Figure 3.16 BLEVE at the Phillips Pasadena site..................................... 27
Figure 3.17 Phillips Pasadena process area damage.................................. 28
Figure 3.18. Explosion locations at Phillips Pasadena site........................ 29
Figure 3.19. Aerial view of the ISOM unit after the explosion. (CSB, 2007)... 30
Figure 3.20. Destroyed trailers west of the blowdown drum. (Arrow in upper left of the figure).. 31
Figure 3.21. Kaiser slurry digester area flow schematic........................... 32
Figure 3.22. Kaiser aluminum digester area before and after the explosion.
Figure 3.23. Remaining No. 1 ORS base section and skirt with the attached vertical thermosyphon reboiler. 36
Figure 3.24. Final location of the boiler after explosion. 37
Figure 3.25. Hole created by boiler through roll-up door wall (west wall). 38
Figure 3.26. Damaged exterior wall viewed from inside boiler room (east wall). 39
Figure 3.27. View of east wall from outside plant (note rear boiler door in ditch). 39
Figure 3.28. Interior wall of boiler room (south wall). 40
Figure 3.29. Installation layout at San Juan Ixhuatepec, Mexico. 42
Figure 3.30. Area of damage at San Juan Ixhuatepec, Mexico. 42
Figure 3.31. Directional preference of projected cylinder fragments of cylindrical shape. 43
Figure 3.32. Reconstruction of scene of the San Carlos de la Rapita campsite disaster. 44
Figure 3.33. Derailment configuration. 46
Figure 3.34. Trajectories of tank car fragments. 47
Figure 3.35. Kingman explosion fireball. (Sherry, 1974) 49
Figure 4.1. Configuration for radiative exchange between two differential elements. 62
Figure 4.2. View factor of a fireball. 63
Figure 4.3. Temperature distribution across a laminar flame. 65
Figure 4.4. Positive feedback, the basic mechanism of a gas explosion. 66
Figure 4.5. The CJ-model. 67
Figure 4.6. The ZND-model. 68
Figure 4.7. Instability of ZND-concept of a detonation wave. 69
Figure 4.8. Cellular structure of a detonation. 69
Figure 4.9. Blast wave shapes. 71
Figure 4.10. Interaction of a blast wave with a rigid structure (Baker, 1973). 72
Figure 4.11. Blast-wave scaling. (Baker, 1973). 75
Figure 5.1. Illustration of idealized flame fronts for a flash fire. 78
Figure 5.2. Flame front progression in LPG vapor cloud (2.0 m/s wind, 2.6 kg/s discharge for 51 s, ignition 25 m from source, [HSL, 2001]).

Figure 5.3. Moment of ignition in a propane-air cloud. (Zeeuwen et al., 1983)

Figure 5.4. Radiant heat flux from HSL LPG flash fire test 14.

Figure 5.5. Schematic representation of unconfined flash fire.

Figure 5.6. Flame shape assumptions. (*= ignition source)

Figure 5.7. Definition of view factors for a vertical, flat radiator.

Figure 5.8. Graphical presentation for sample problem of the radiation heat flux as a function of time.

Figure 6.1. Three dimensional (3-D) flame expansion geometry.

Figure 6.2. Two dimensional (2-D) flame expansion geometry.

Figure 6.3. One dimensional (1-D) flame expansion geometry.

Figure 6.4. Flame speed S_f, gas flow velocity S_g, and laminar burning velocity, S_{lu}, for various methane-air mixture equivalence ratios at 1 atm and 298° K (Andrews, 1997).

Figure 6.5. Overpressure as a function of flame speed for three geometries. (Tube-like geometry is 1-D; double plane is 2-D, and dense obstacle environment is 3-D confinement). (Kühl et al. 1973)

Figure 6.6. Flame propagation in 1-D (channel) and 2-D (sector) geometries. (Stock et al. 1989)

Figure 6.7. Flow visualization image sequence of flame propagation over rectangular, square and cylindrical obstacles with stoichiometric fuel-air mixtures. Left frame, t=32ms after ignition; time between frames is 1.66 ms. (Hargrave, 2002)

Figure 6.8. Flame speeds versus distance, non-dimensionalized with respective laminar flame speeds (fixed test conditions $P = 6D$, ABR = 0.5, $H = 2D$).

Figure 6.9. Flame speed versus distance for three different fuels. (Mercx 1992)

Figure 6.10. Experimental set-up for TNO small scale tests.

Figure 6.11. Experimental set-up for TNO tests with horizontal obstacles. (van Wingerden, 1989)

Figure 6.12. Blast produced from double plate configuration with variable heights.

Figure 6.13. Experimental set-up for 2-D configuration (van Wingerden, 1989).
Figure 6.14. Flame speeds versus distance for various porosities. (van Wingerden 1989)

Figure 6.15. Experimental setup to study flame propagation in a cylindrical geometry. (Moen, 1980b)

Figure 6.16. Flame speed-distance relationship of methane-air flames in a double plate geometry (2.5×2.5 m), by Moen et al. (1980b). (a) $H/D = 0.34$; (b) $H/D = 0.25$; (c) $H/D = 0.13$

Figure 6.17. Large-scale test setup for investigation of flame propagation in a cylindrical geometry. Dimensions: 25 m long; 12.5 m wide; and 1 m high. Obstacle diameter 0.5 m

Figure 6.18. Experimental apparatus for investigation of effects of pipe racks on flame propagation. (Harrison and Eyre, 1986 and 1987)

Figure 6.19. Flame speed-distance graph showing transition to detonation in a cyclohexane-air experiment. (Harris and Wickens 1989)

Figure 6.20. Effect of obstacle pitch on flame speed (dimensional distance). (van Wingerden 1989)

Figure 6.21. Effect of obstacle pitch on flame speed (non-dimensional distance). (van Wingerden 1989)

Figure 6.22. Flame speed versus distance for different pitches (Mercx, 1992)

Figure 6.23. Flame speed versus dimensionless distance R/P. (Mercx, 1992)

Figure 6.24. Effect of ABR on flame speed. (van Wingerden and Hjertager, 1991)

Figure 6.25. Effect of obstacle shape on pressure. (Hjertager 1984)

Figure 6.26. Flame velocity, peak overpressure, and overpressure duration in gas cloud explosions following vessels bursts. (Giesbrecht et al. 1981)

Figure 6.27. Maximum overpressure in vapor cloud explosions after critical-flow propane jet release dependent on orifice diameter: (a) undisturbed jet; (b) jet into obstacles and confinement.
Figure 6.28. Experimental apparatus for investigating jet ignition of ethylene-air and hydrogen-air mixtures. (Schildknecht et al., 1984) .. 147
Figure 6.29. Effect of the gap between two congested areas on flame speeds. (van Wingerden, 1989) .. 149
Figure 6.30. Comparison of flame propagation between two adjacent arrays in medium and large scale tests (Mercx 1992) ... 150
Figure 6.31. Flame speed/distance showing acceleration in the region of repeated obstacles and deceleration on emerging into the unobstructed region, cyclohexane-air experiment. (Harris and Wickens, 1989) ... 151
Figure 6.32. Flame speed/distance showing rapid deceleration on exit from a region containing repeated obstacles into an unobstructed region, natural gas-air. (Harris and Wickens, 1989) .. 151
Figure 6.33. Critical initiation energies of some fuel-air mixtures. (Bull et al. 1978) ... 153
Figure 6.34. Positive phase characteristics from VCE detonations. (Brossard et al. 1983) ... 162
Figure 6.35. Total amplitude of characteristics from VCE detonations. (Brossard et al. 1983) ... 162
Figure 6.36. Positive overpressure versus distance for gaseous detonations. 164
Figure 6.37. Positive impulse versus distance (c_0 is the same as a_0) (Dorofeev, 1995) ... 164
Figure 6.38. Positive overpressure versus distance for heterogeneous detonations. (Dorofeev, 1995) ... 165
Figure 6.39. Positive impulse versus distance for heterogeneous detonations. (Dorofeev, 1995) ... 166
Figure 6.40. Side-on blast parameters for a TNT hemispherical surface burst. (Lees, 1996 after Kingery and Bulmash, 1984) ... 170
Figure 6.41. Multi-energy method positive-phase side-on blast overpressure and duration curves ... 178
Figure 6.42. Observed overpressures from three datasets correlated to the parameter combination in the GAME relation. (Mercx, 2000) ... 188
Figure 6.43. BST positive overpressure vs. distance for various flame speeds 190
Figure 6.44. BST positive impulse vs. distance for various flame speeds. 190
Figure 6.45. BST negative overpressure vs. distance for various flame speeds. 191
GUIDELINES FOR VCE, PV, BURST, BLEVE AND FF HAZARDS

Figure 6.46. BST negative impulse vs. distance for various flame speeds. 191
Figure 6.47. Quasi two dimensional (2.5-D) flame expansion geometry........ 193
Figure 6.48. Scaled source overpressure as a function of Scaled Severity Index. ... 205
Figure 6.49. CAMS pressure decay as a function of distance (R0+r)/R0 for Pmax = 0.2, 0.5, 1, 2 4 and 8 bar (contours bottom to top). ... 206
Figure 6.50. BFETS FLACS model and target distribution....................... 214
Figure 6.51. Comparison of FLACS results and experimental data (internal pressure histories). ... 214
Figure 6.52. Comparison of FLACS results and experimental data (external).215
Figure 6.53. FLACS model of an onshore installation. 216
Figure 6.54. Flame front contour. ... 216
Figure 6.55. Pressure contours at selected times (northeast view).............. 217
Figure 6.56. (a) View of a storage tank farm for liquefied hydrocarbons. (b) Plot plan of the tank farm... 219
Figure 6.57. Plot plan of Nypro Ltd. plant at Flixborough, UK................ 222
Figure 7.1. Pressure-time history of a blast wave from a PVB (Esparza and Baker 1977a). ... 247
Figure 7.2. Pressure contours of a blast field for a cylindrical burst (X and Y axes are scaled distances based on characteristic distance r0). (Geng, 2009)....... 257
Figure 7.3. Pressure contours of a blast field for an elevated spherical burst (X and Y axes are scaled distances based on characteristic distance r0). (Geng, 2009)258
Figure 7.4. Surface burst scaled side-on overpressure generated by a cylindrical burst at angles of 0, 45 and 90° compared to a bursting sphere. (Geng, 2009) 259
Figure 7.5. Surface burst scaled side-on impulse generated by a cylindrical burst at angles of 0, 45 and 90° compared to a bursting sphere. (Geng, 2009)....... 260
Figure 7.6. Positive overpressure curves for various vessel pressures. (Tang, et al. 1996)... 263
Figure 7.7. Negative pressure curves for various vessel pressures.............. 264
Figure 7.8. Positive impulse curves for various vessel pressures. (Tang, et al. 1996)... 265
Figure 7.9. Negative impulse curves for various vessel pressures. (Tang, et al. 1996)... 266
Figure 7.10. Adjustment factors for cylindrical free air PVBs compared to a spherical free air burst. (Geng, 2009) .. 272
Figure 7.11. Adjustment factors for elevated spherical PVBs compared to a hemispherical surface burst. (Geng, 2009) .. 273
Figure 7.12. Equivalent surface burst cylindrical PVB geometries to a free air burst .. 274
Figure 7.13. Fragment velocity versus scaled pressure. (Baker, 1983) 281
Figure 7.14. Adjustment factor for unequal mass fragments (Baker et al. 1983)283
Figure 7.15. Calculated fragment velocities for a gas-filled sphere with $\gamma = 1.4$ (taken from Baum 1984; results of Baker et al. 1978a were added). 286
Figure 7.16. Scaled curves for fragment range predictions (taken from Baker et al. 1983) ($--$): neglecting fluid dynamic forces .. 289
Figure 7.17. Fragment range distribution for event groups 1 and 2 (Baker et al. 1978b). .. 295
Figure 7.18. Fragment range distribution for event groups 3, 4, 5, and 6 (Baker et al. 1978b). .. 296
Figure 7.19. Fragment-mass distribution for event groups 2 and 3 (Baker et al. 1978b). .. 297
Figure 7.20. Fragment-mass distribution for event group 6 (Baker et al. 1978b). .. 297
Figure 8.1. 500-gallon (1.9 m3) pressure vessel opened and flattened on the ground after a fire-induced BLEVE. (Birk et al., 2003) ... 315
Figure 8.2. Fire test of 500-gallon (1.9 m3) propane pressure vessel resulting in massive jet release (not a BLEVE). (Birk et al., 2003) 315
Figure 8.3. Sample of high temperature stress rupture data for two pressure vessel steels. (Birk and Yoon, 2006) ... 317
Figure 8.4. Comparison between energy definitions: E_{ex}, ω_0/E_{ex}, Br 323
Figure 8.5. Overpressure Decay Curve for Propane Tank BLEVE. (Birk et al., 2007) ... 329
Figure 8.6. Calculation of energy of flashing liquids and pressure vessel bursts filled with vapor or nonideal gas ... 330
Figure 8.7. Measured first peak overpressures vs scaled distance (based on vapor energy) from 2000-liter propane tank BLEVEs. (Birk et al., 2007) 335
Figure 8.8. Measured first peak overpressures vs scaled distance (based on liquid
GLOSSARY

Blast: A transient change in the gas density, pressure, and velocity of the air surrounding an explosion point. The initial change can be either discontinuous or gradual. A discontinuous change is referred to as a shock wave, and a gradual change is known as a pressure wave.

BLEVE (Boiling Liquid, Expanding Vapor Explosion): The explosively rapid vaporization and corresponding release of energy of a liquid, flammable or otherwise, upon its sudden release from containment under greater-than-atmospheric pressure at a temperature above its atmospheric boiling point. A BLEVE is often accompanied by a fireball if the suddenly depressurized liquid is flammable and its release results from vessel failure caused by an external fire. The energy released during flashing vaporization may contribute to a shock wave.

Burning velocity: The velocity of propagation of a flame burning through a flammable gas-air mixture. This velocity is measured relative to the unburned gases immediately ahead of the flame front. Laminar burning velocity is a fundamental property of a gas-air mixture.

Deflagration: A propagating chemical reaction of a substance in which the reaction front advances into the unreacted substance rapidly but at less than sonic velocity in the unreacted material.

Detonation: A propagating chemical reaction of a substance in which the reaction front advances into the unreacted substance at or greater than sonic velocity in the unreacted material.

Emissivity: The ratio of radiant energy emitted by a surface to that emitted by a black body of the same temperature.

Emissive power: The total radiative power discharged from the surface of a fire per unit area (also referred to as surface-emissive power).

Explosion: A release of energy that causes a blast.

Fireball: A burning fuel-air cloud whose energy is emitted primarily in the form of radiant heat. The inner core of the cloud consists almost
completely of fuel, whereas the outer layer (where ignition first occurs) consists of a flammable fuel-air mixture. As the buoyancy forces of hot gases increase, the burning cloud tends to rise, expand, and assume a spherical shape.

Flame speed: The speed of a flame burning through a flammable mixture of gas and air measured relative to a fixed observer, that is, the sum of the burning and translational velocities of the unburned gases.

Flammable limits: The minimum and maximum concentrations of combustible material in a homogeneous mixture with a gaseous oxidizer that will propagate a flame.

Flash vaporization: The instantaneous vaporization of some or all a liquid whose temperature is above its atmospheric boiling point when its pressure is suddenly reduced to atmospheric.

Flash fire: The combustion of a flammable gas or vapor and air mixture in which the flame propagates through that mixture in a manner such that negligible or no damaging overpressure is generated.

Impulse: A measure that can be used to define the ability of a blast wave to do damage. It is calculated by the integration of the pressure-time curve.

Jet: A discharge of liquid, vapor, or gas into free space from an orifice, the momentum of which induces the surrounding atmosphere to mix with the discharged material.

Lean mixture: A mixture of flammable gas or vapor and air in which the fuel concentration is below the fuel's lower limit of flammability (LFL).

Negative phase: That portion of a blast wave whose pressure is below ambient.

Overpressure: Any pressure above atmospheric caused by a blast.

Positive phase: That portion of a blast wave whose pressure is above ambient.

Pressure wave: See Blast.

Reflected pressure: Impulse or pressure experienced by an object facing a blast.
Rich mixture: A mixture of flammable gas or vapor and air in which the fuel concentration is above the fuel's upper limit of flammability (UFL).

Shock wave: See Blast.

Side-on pressure: The impulse or pressure experienced by an object as a blast wave passes by it.

Stoichiometric ratio: The precise ratio of air (or oxygen) and flammable material which would allow all oxygen present to combine with all flammable material present to produce fully oxidized products.

Superheat limit temperature: The temperature of a liquid above which flash vaporization can proceed explosively.

Surface-emissive power: See Emissive power.

Transmissivity: The fraction of radiant energy transmitted from a radiating object through the atmosphere to a target after reduction by atmospheric absorption and scattering.

TNT equivalence: The amount of TNT (trinitrotoluene) that would produce observed damage effects similar to those of the explosion under consideration. For non-dense phase explosions, the equivalence has meaning only at a considerable distance from the explosion source, where the nature of the blast wave arising is more or less comparable with that of TNT.

Turbulence: A random-flow motion of a fluid superimposed on its mean flow.

Vapor cloud explosion: The explosion resulting from the ignition of a cloud of flammable vapor, gas, or mist in which flame speeds accelerate to sufficiently high velocities to produce significant overpressure.

View factor: The ratio of the incident radiation received by a surface to the emissive power from the emitting surface per unit area.
ACKNOWLEDGMENTS

This *Guideline* book was developed as a result of two projects sponsored by The Center for Chemical Process Safety of the American Institute of Chemical Engineers. The second edition of the *Guideline* was prepared under the direction of the Vapor Cloud Explosion subcommittee comprised of the following engineers and scientists:

Larry J. Moore (FM Global), chair
Chris R. Buchwald (ExxonMobil)
Gary A. Fitzgerald (ABS Consulting)
Steve Hall (BP plc)
Randy Hawkins (RRS Engineering)
David D. Herrmann (DuPont)
Phil Partridge (The Dow Chemical Company)
Steve Gill Sigmon (Honeywell – Specialty Materials)
James Slaugh (LyondellBasell)
Jan C. Windhorst (NOVA Chemical, emeritus)

The second edition was authored by the Blast Effects group at Baker Engineering and Risk Consultants, Inc. The authors were:

Quentin A. Baker
Ming Jun Tang
Adrian J. Pierorazio
A. M. Birk (Queen’s University)
John L. Woodward
Ernesto Salzano (CNR – Institute of Research on Combustion)
Jihui Geng
Donald E. Ketchum
Philip J. Parsons
J. Kelly Thomas
Benjamin Daudonnet
The authors and the subcommittee were well supported during the project by John Davenport, who served as the CCPS staff representative.

The efforts of the document editors at BakerRisk are gratefully acknowledged for their contributions in editing, layout and assembly of the book. They are Moira Woodhouse and Phyllis Whiteaker.

CCPS also gratefully acknowledges the comments submitted by the following peer reviews:

Eric Lenior (AIU Holding)
Fred Henselwood (NOVA Chemicals)
John Alderman (RRS Engineering)
Lisa Morrison (BP International Limited)
Mark Whitney (ABS Consulting)
William Vogtman (SIS-TECH Solutions)
David Clark (DuPont, emeritus)
A NOTE ON NOMENCLATURE AND UNITS

The equations in this volume are from a number of reference sources, not all of which use consistent nomenclature (symbols) and units. In order to facilitate comparisons within sources, the conventions of each source were presented unchanged.

Nomenclature and units are given after each equation (or set of equations) in the text. Readers should ensure that they use the proper values when applying these equations to their problems.