FUTURE TRENDS
IN MICROELECTRONICS
From Nanophotonics to Sensors and Energy

Edited by
SERGE LURYI
JIMMY XU
ALEX ZASLAVSKY

IEEE Press
WILEY
A JOHN WILEY & SONS, INC., PUBLICATION
FUTURE TRENDS IN MICROELECTRONICS
This page intentionally left blank
CONTENTS

Preface
S. Luryi, J. M. Xu, and A. Zaslavsky ix

1 OPTOELECTRONICS AND NANOPHOTONICS 1

Nanophotonics for Information Systems
Y. Fainman 5

What Will Modern Photonics Contribute to the Development of Future Optical Communication Technology?
Djafar K. Mynbaev 23

Ultrafast Nanophotonic Devices For Optical Interconnects
N. N. Ledentsov 43

Intersubband Quantum-Box Lasers: Progress and Potential as Uncooled Mid-Infrared Sources

GaSb-based Type-I Laser Diodes Operating at 3 μm and Beyond
L. Shterengas, G. Kipshidze, T. Hosoda, and G. Belenky 65

Bridging Optics and Electronics with Quantum Cascade Lasers, Antennas, and Circuits
J. Faist, C. Walther, M. Amanti, G. Scalari, M. Fischer, and M. Beck 75

Towards Intersubband Polaritons: How Fast Can Light and Electrons Mate?
A. A. Anappara, L. Sorba, A. Tredicucci, G. Günter, A. Sell, A. Leitenstorfer, R. Huber, S. De Liberato, C. Ciuti, and G. Biasiol 85

Si3N4/SiO2 Planar Photonic Structures Fabricated by Focused Ion Beam
2 ELECTRONIC DEVICES AND SYSTEMS 105

Silicon-Based Devices and Materials for Nanoscale CMOS and Beyond-CMOS
F. Balestra

Device Proposals Beyond Silicon CMOS
P. M. Solomon

GeOI as a Platform for Ultimate Devices
W. Van Den Daele, S. Cristoloveanu, E. Augendre, C. Le Royer, J.-F. Damlencourt, D. Kazazis, and A. Zaslavsky

Simulation of Self-Heating Effects in Different SOI MOS Architectures
Enrico Sangiorgi, Marco Braccioli and Claudio Fiegna

Nanowires: Technology, Physics and Perspectives

Emerging Nanotechnology for Integration of Nanostructures in Nanoelectronic Devices

Scrolled Si/SiGe Heterostructures as Building Blocks for Tube-Like Field-Effect Transistors
N. V. Demarina and D. Grützmacher

Silicon Nanowire-Based Nonvolatile Memory Cells: Progress and Prospects
Qiliang Li, X. Zhu, Y. Yang, D. E. Ioannou, J. S. Suehle, and C. A. Richter

Prospects and Challenges of Next-Generation Flash Memory Devices
Jang-Sik Lee

Chalcogenide Glassy Semiconductors – Could They Replace Silicon in Memory Devices?
K. D. Tsendin
Current Status and Recent Developments in RSFQ Processor Design
M. Dorojevets

1/f Noise: The Funeral is Cancelled (or Postponed)
M. E. Levinshstein and S. L. Rumyantsev

3 PHYSICS, BIOLOGY, AND OTHER SISTER SCIENCES

Spin Hall Effect
M. I. Dyakonov

Can Biology Provide Creative Solutions for Next-Generation Memory Devices?
W. E. van den Berg and S. A. Kushner

Spin Screening of Magnetization Due to Inverse Proximity Effect in Superconducting/Ferromagnetic Bilayers
V. Shelukhin, M. Karpovski, A. Palevski, J. Xia, A. Kapitulnik, and A. Tsukernik

Silicon for Spintronic Applications: Strain-Enhanced Valley Splitting
V. Sverdlov, O. Baumgartner, T. Windbacher, and S. Selberherr

Graphene-Based Terahertz Devices: Concepts and Characteristics

Directed Self-Assembly – A Controllable Route to Optical and Electronic Devices Based on Single Nanostructures

4 SENSORS, DETECTORS, AND ENERGY

Three-Dimensional Position-Sensitive Wide Bandgap Semiconductor Gamma-Ray Imaging Detectors
Zhong He
Semiconductor Scintillator for Three-Dimensional Array of Radiation Detectors
Serge Luryi and Arsen Subashiev

Semiconductor Gamma Radiation Detectors: Band Structure Effects in Energy Resolution
Arsen Subashiev and Serge Luryi

The Future of Microelectronics is … Macroelectronics
M. A. Alam, N. Pimparkar, and B. Ray

An Integration Challenge: Information and Communication Technologies to Address Indoor Air Quality in Commercial Buildings
M. D’lorio

Quantum-Dot Infrared Photodetectors: In Search of the Right Design for Room-Temperature Operation
A. Sergeev, V. Mitin, L. H. Chien, and N. Vagidov

Treating the Case of Incurable Hysteresis in VO₂
M. Gurvitch, S. Luryi, A. Polyakov, and A. Shabalov

Exploratory Studies on Silicon-Based Oxide Fuel Cell Power Sources Incorporating Ultrathin Nanostructured Platinum and Cerium Oxide Films as Anode Components
Bo-Kuai Lai, A. C. Johnson, H. Xiong, C. Ko, and S. Ramanathan

INDEX
Preface

S. Luryi
Dept. of Electrical and Computer Engineering
SUNY-Stony Brook, Stony Brook, NY 11794, U.S.A.

J. M. Xu and A. Zaslavsky
Division of Engineering, Brown University, Providence, RI 02912, U.S.A.

This book is a brainchild of the sixth workshop in the Future Trends in Microelectronics series (FTM-6). The first of the FTM conferences, "Reflections on the Road to Nanotechnology", had gathered in 1995 on Ile de Bendor, a beautiful little French Mediterranean island.1 The second FTM, "Off the Beaten Path", took place in 1998 on a larger island in the same area, Ile des Embiez.2 Instead of going to a still larger island, the third FTM, "The Nano Millennium" went back to its origins on Ile de Bendor in 2001.3 To compensate, the next FTM, "The Nano, the Giga, the Ultra, and the Bio" took place on the biggest French Mediterranean island of them all, Corsica.4 Normally, the FTM workshops gather every three years; however, the FTM-4 was held one year ahead of the usual schedule, in the summer of 2003, as a one-time exception. Continuing its inexorable motion eastward, the fifth FTM workshop, "Up the Nano Creek", had convened on Crete, Greece, in June of 2006.5 The inexorable motion was then interrupted to produce a semblance of a random walk in the Mediterranean and the last workshop, FTM-6 "Unmapped Roads" went to the great Italian island of Sardinia (June 2009).

The FTM workshops are relatively small gatherings (less than 100 people) by invitation only. If you, the reader, wish to be invited, please consider following a few simple steps outlined on the conference website. The FTM website at www.ece.sunysb.edu/~serge/FTM.html contains links to all past and planned workshops in the series, their programs, publications, sponsors, and participants. Our attendees have been an illustrious lot. Suffice it to say that among FTM participants we find five Nobel laureates (Zhores Alferov, Herbert Kroemer, Horst Stormer, Klaus von Klitzing, and Harold Kroto) and countless others poised for a similar distinction. To be sure, high distinction is not a prerequisite for being invited to FTM, but the ability and desire to bring fresh ideas is. All participants of FTM-6 can be considered authors of this book, which in this sense is a collective treatise.

The main purpose of FTM workshops is to provide a forum for a free-spirited exchange of views, projections, and critiques of current trends and future directions, among the leading professionals in industry, academia, and government. It is a common view among the leading professionals in micro-
electronics, that its current explosive development will likely lead to profound paradigm shifts in the near future. Identifying the plausible scenarios for the future evolution of microelectronics presents a tremendous opportunity for constructive action today.

For better or worse our civilization is destined to be based on electronics. Ever since the invention of the transistor and especially after the advent of integrated circuits, semiconductor devices have kept expanding their role in our lives. Electronic circuits entertain us and keep track of our money, they fight our wars and decipher the secret codes of life, and one day, perhaps, they will relieve us from the burden of thinking and making responsible decisions. Inasmuch as that day has not yet arrived, we have to fend for ourselves. The key to success is to have a clear vision of where we are heading.

Some degree of stability is of importance in these turbulent times and should be welcome. Thus, although the very term "microelectronics" has been generally re-christened "nanoelectronics", we have stuck to the original title of the FTM workshop series.

The present volume contains a number of original papers, some of which were presented at FTM-6 in oral sessions, other as posters. From the point of view of the program committee, there is no difference between these types of contributions in weight or importance. There was, however, a difference in style and focus — and that was intentionally imposed by the organizers. All speakers were asked to focus on the presenter's views and projections of future directions, assessments or critiques of important new ideas/approaches, and not on their own achievements. This latter point is perhaps the most distinctive feature of FTM workshops. Indeed, we are asking scientists not to speak of their own work! This has proven to be successful, however, in eliciting powerful and frank exchange. The presenters are asked to be provocative and/or inspiring. Latest advances made and results obtained by the participants are to be presented in the form of posters and group discussions.

Each day of the workshop was concluded by an evening panel or poster session that attempted to further the debates on selected controversial issues connected to the theme of the day. Each such session was chaired by a moderator who invited two or three attendees of his or her choice to lead with a position statement, with all other attendees serving as panelists. The debate was forcefully moderated and irrelevant digressions cut off without mercy. Moderators were also assigned the hopeless task of forging a consensus on critical issues.

All FTM workshops adhered to these principles in the past and, hopefully, will do so in the future. To accommodate these principles, the FTM takes a format that is less rigid than usual workshops to allow and encourage uninhibited exchanges and sometimes confrontations of different views. A central theme is designed together with the speakers for each day. Another traditional feature of FTM workshops is a highly informal vote by the participants on the relative importance of various fashionable current topics in modern electronics research. This tradition owes its origin to Horst Stormer, who composed the original set of questions and maintained the results over four conferences. These votes are
perhaps too bold and irreverent for general publication, but they are carefully maintained and made available to every new generation of FTM participants. Unfortunately, Horst missed the Sardinia gathering, but the tradition was maintained in his absence. Another traditional vote concerned the best poster. The 2009 winning poster was "Heterogeneous integration of nanowires and nanotubes on CMOS" by Sameer Sonkusale.

From all the deliberations and discussion at FTM-6 the following trends could be discerned, with the caveat that our crystal ball is as muddy as ever.

Firstly, although silicon is undoubtedly still full of steam, the word "post-CMOS" has become a commonplace. Several FTM-6 presentations included the expression "beyond silicon" in the title. A clearly discernible trend is the quest for novel and exotic materials, as well as utilization of nanoscale phenomena. It looks like we are back to fundamentals. The big-brother silicon is clearly pressed (at least in terms of the conference publicity) by its much nimbler sibling carbon, which is capable of producing graphene sheets with miraculous properties. Germanium is another column-IV element that is challenging silicon at its own game. Away from column-IV materials, we can single out an exciting report describing the superconducting processors and systems based on the rapid single flux quantum (RSFQ) circuit technology.

Among other – perhaps niche – materials, discussed at the workshop, we find chalcogenide glassy semiconductors for memory applications and vanadium dioxide that undergoes semiconductor-to-metal transition above room temperature. It turns out that in VO$_2$ films the hysteresis of this transition can be tamed to yield reproducible linear excursions suitable for bolometric applications.

Secondly, a sizeable part of the discussion at FTM-6 was devoted to optoelectronics, most notably to nanophotonics issues, such as photonic crystals, plasmonics, and terahertz cascade lasers. Several authors discussed applications of nanophotonics in optical interconnects and communications. This topic is traditional for FTM but the emphasis on nanophotonics is a discernible new trend.

Finally, a noteworthy fraction of the discussion at our microelectronics workshop dealt with macro electronics, such as flat panel displays, solar cells, and bioelectronics sensors. For such systems, the guiding principles are cost (the smaller the better) and often the size (the larger the better!). A new topic for FTM was the discussion of high-energy radiation sensors. Development of gamma detectors, capable of isotope discrimination and the determination of the direction to source, is a very timely challenge, especially in homeland security applications. The FTM-6 workshop had included a mini-symposium on gamma radiation sensors, and three papers presented at that symposium have made it into this volume. The purpose of the gamma-radiation symposium was to acquaint the traditional FTM audience with the basic issues of radiation detection, in hope of recruiting new blood to address issues in the nuclear-engineering field that have become timely in the face of the new challenge. Presentations at the symposium were therefore somewhat pedagogical in nature.

Not every contribution presented at FTM-6 has made it into this book (not for the lack of persistence by the editors). We sorely miss the exciting contribution by
Mark Pinto, a "captain of industry" from Applied Materials, who spoke on large-scale photovoltaics. Abstracts of his and all other presentations can be found on the workshop program webpage, http://www.ee.sunysb.edu/~serge/ARW-6/program.html

The FTM meetings are known for the professional critiques – or even demolitions – of fashionable trends, that some may characterize as hype. The previous workshops had witnessed powerful assaults on quantum computing, molecular electronics, and spintronics. The majority of FTM participants did not consider quantum computing a realistic future technology, but gave it credit as an interesting playground for physicists with some hope of settling old debates about the wavefunction collapse and other fundamental issues. It seems that by now most of the hype associated with quantum computing has dissipated and perhaps we can take some credit for the more balanced outlook that has emerged since.

Another characteristic of FTM meetings is the settling of scientific bets, a tradition that dates back to the FTM-2 wager between Nikolai Ledentsov (for) and Horst Stormer (against) the coming dominance of quantum dot-based lasers – a bet that Horst collected in 2004, at FTM-4. At FTM-6, the two bets coming due were on the relative strength of personal computer-based chess programs versus the human world champion (thebettors were Serge Luryi for the humans and Alex Zaslavsky for the PCs) and the predicted capture of half of the Si technology market by SiGe devices (the bettors were Erich Kasper for SiGe and Sorin Cristoloveanu against). Confronted with the evidence of a modern PC beating grandmasters even while starting a pawn down, Serge conceded at the workshop, whereas Erich had to concede long-distance. Yet another bet on the putative future dominance of SOI technology was made at FTM-6, to be adjudicated at a future workshop.

We have grouped all contributions into four chapters, entitled I. Optoelectronics and nanophotonics; II. Electronic devices and systems; III. Physics, biology, and other sister sciences; and IV. Sensors, detectors, and energy. The breakdown could not be uniquely defined, because some papers fit two or even three categories! To produce a coherent collective treatise out of all of this, the interaction between FTM participants had begun well before their gathering at the workshop. All the proposed presentations were posted on the web in advance and could be subject to change up to the last minute to take into account peer criticism and suggestions. After the workshop is over, these materials (not all of which have made it into this book) remain on the web indefinitely, and the reader can peruse them starting at the www.ece.sunysb.edu/~serge/FTM.html home page.

Acknowledgments

The 2009 FTM workshop on Sardinia and therefore this book were possible owing to support from:

- U.S. Department of Defense: ARO, DTRA, ONR;
• U.S. DoD European offices: EOARD, ONR–Global;
• NRC of Canada (Institute for Microstructural Sciences);
• Industry: Applied Materials Inc.;
• Academia: SUNY–Stony Brook, The World-Class University Program at the Seoul National University.

On behalf of all Workshop attendees sincere gratitude is expressed to the above organizations for their generous support.

Finally, the organizers wish to thank all of the contributors to this volume and all the attendees for making the workshop a rousing success.

References

Part I

Optoelectronics and Nanophotonics
This page intentionally left blank
1 Optoelectronics and Nanophotonics

Optoelectronics – an artful expansion of the electron degree of freedom to the mating of electrons with photons continued to be a major theme of discussion at the FTM-6 gathering. With a focus initially on fiber-optics technologies at the first FTM in anticipation of the ensuing leaps in telecom systems, the discussions have reached further and wider. FTM workshops always covered the persistent efforts on solar cells and photonic crystals, long before they became fashionable, but now the discussions featured a notable emphasis on nanophotonics. At the meeting, the projections of fascinating trends ranging from the very large scale (wall-sized) photovoltaics to the very localized photon traps in 3D photonic crystal optical chips and the very efficient light emitting diodes were presented by Mark Pinto, Sajeev John, Claude Weisbuch, and others. In this chapter, nanophotonics in optical interconnects and communications, sub-wavelength resonators, quantum-box and quantum-well light sources are featured.

Contributors

1.1 Y. Fainman
1.2 Djafar K. Mynbaev
1.3 N. N. Ledentsov
1.5 L. Shterengas, G. Kipshidze, T. Hosoda, and G. Belenky
1.6 J. Faist, C. Walther, M. Amanti, G. Scalari, M. Fischer, and M. Beck
1.7 A. A. Anappara, L. Sorba, A. Tredicucci, G. Günter, A. Sell, A. Leitenstorfer, R. Huber, S. De Liberato, C. Ciuti, and G. Biasiol
1.8 L. A. M. Barea, F. Vallini, D. L. S. Figueira, A. Da Silva Filho, N. C. Frateschi, and A. R. Vaz
1. Introduction

Optics has the potential to solve some of the most pressing problems in communication and computing hardware. It promises crosstalk-free interconnects with essentially unlimited bandwidth; long-distance data transmission without skew and without power- and time-consuming regeneration; miniaturization; parallelism; and efficient implementation of important algorithms such as Fourier transforms. In the past, when the speed of digital computers was able to support only relatively small information processing throughput, optical information processing techniques were developed and used to construct processors and systems in support of numerous applications that required high throughput for real time operation. These methods exploited the parallelism of optics supported by the richness of the modal continuum of free space and a variety of optoelectronic devices that were developed in support of these applications and systems. The constructed information processing systems and concepts were used for image processing, pattern recognition, neural networks, and linear algebra calculus — to name a few. However with rapid advancements of the speed and, therefore, the information processing throughput of digital computers, the optical signal processing systems were not able to support these applications in a broad sense due to high cost, lesser accuracy, and lack of user-friendly interfaces. Later, the optical information processing transformed from parallelism in space domain to parallelism in optical frequency domain in support of processing information carried by ultrashort optical pulses in the femtosecond range. Such waveforms vary too rapidly for even the fastest photodetectors to resolve, leading to the need to develop optical information processing methods. Time-domain and spectral-domain processors utilized linear and nonlinear processes, and found useful applications for ultrafast waveform synthesis, detection and processing.

It is evident that optical processing in space and time has so far failed to move out of the lab. The free-space and guided-wave devices are costly, bulky, and fragile in their alignment. They are also difficult to integrate with electronic systems, both in terms of the fabrication process and in terms of delivery and retrieval of the massive volumes of data the optical elements can process. However, with the most recent emphases on construction of chip-scale integration using advanced lithographic tools employed in surrounding electronics, things may be changing. Experts predict lithographic resolution as fine as 16 nm by the year...
2020, which is about a hundred times smaller than the telecommunication wavelength of 1550 nm. These techniques can be used to create deeply subwavelength features that act as metamaterials with optical properties controlled by the density and geometry of the pattern and its constituent materials. In this Section we focus on metamaterials composed primarily of dielectrics that are engineered on the nanometer scale so as to have emergent optical properties not otherwise present. The increased localization of the optical field as a result of these engineered materials brings about phenomena such as form-birefringence, structural dispersion and enhanced optical nonlinear interactions. Equivalently, characteristics such as the local polarizability and dispersion of the metamaterial may be controlled by geometry, properties of constituent materials and their composition. The introduction of periodicity into these engineered materials modifies the dispersion relations and can be used to create an artificial bandgap.13-15 The manipulation and modification of this periodicity allows the bandgap to shift and parts of the bandgap to be accessed by propagating modes. Photonic crystal (PhC) waveguides rely on this exact concept – a line of defects is introduced into the otherwise periodic structure so as to guide light.16-18 The confinement of light within the PhC lattice is also used to realize devices such as super collimators, super prisms, super lenses, omnidirectional filters, modulators and lasers through proper design and optimization of Bloch modes.19-28

Similar to the PhC in its periodic nature is a class of metamaterials that exploit the advantages of both continuous free-space and discrete guided-wave modes. The simplest example involves the propagation of light in a waveguiding slab, where confinement occurs only in the vertical direction; the free space propagation occurs in the plane of the slab. This configuration, aptly termed "free space optics on a chip" (FSOC), enables interaction with discrete optical components that are located along the propagation direction. Functionalizing devices for such integrated systems would require free space implementations of focusing, beam steering, and wavelength selectivity.29 Realization of these functionalities can exploit periodic, quasi-periodic or even random nanostructured composites. By altering the surface morphology of a dielectric on the nanoscale via nanolithography and advanced etching techniques, we can realize these complex structures and control the materials' local polarizability. As we shall see in this chapter, these structures fall into the deep sub-wavelength regime with spatial features \(<< \lambda/2n\) and require metamaterial engineering with very high spatial resolution.

The engineering of composite dielectrics can continue to larger scales creating metamaterials that involve feature sizes on a larger sub-wavelength scale, e.g. just \(<< \lambda/2n\). The common themes of periodicity/quasi-periodicity and enhanced effects due to light confinement of guided modes will still remain. Continuing the simplification of PhC with periodicity in two dimensions that has been used for planar confinement, an alternative system whereby 2D light confinement is achieved by total internal reflection and 1D periodicity is introduced to create a bandgap in the third dimension. One method involves using a channel waveguide to guide light, rather than a slab waveguide as in the FSOC case, and periodically
modulating the effective index of the channel waveguide along the propagation direction. This results in a periodic quantum wire akin to a 1D PhC. Thereafter, interesting properties may be engineered by once again, introducing defects in the periodic structure to access forbidden modes or slightly changing the periodicity to alter the effective bandgap and dispersive properties. The strong confinement of fields in these engineered quantum wire-like structures will also enable interaction with other overlapping fields or discrete components despite the highly guided nature of these modes.

Silicon-on-insulator materials (SOI) and III-V compound semiconductor materials will be used for most of the discussion in this chapter because SOI is compatible with the well established CMOS fabrication process, and III-V semiconductors have been frequently used in heterogeneous integrated circuits and systems. In addition, the large index difference between silicon and its oxide leads to highly confined modes and enables the miniaturization of on-chip silicon-based photonic circuits. Furthermore, silicon is optically transparent and has a very low material absorption coefficient around the telecom wavelength $\lambda = 1550$ nm. Waveguiding loss in SOI platforms has a state of the art value of less than 1 dB/cm. In terms of the impact for future systems applications, it is evident that next generation computing would benefit greatly from all-optical data transfer and processing on a chip. Electrical interconnections inherent in today's computing cannot measure up in terms of both speed and bandwidth. Researchers in the field are aware of the need to bypass any sort of electro-optic process in order to take computing speeds to the next level. Much work is being done in creating both passive and active devices in SOI. Discrete device components such as filters, modulators, and resonators have been demonstrated. Active devices utilizing Raman gain and hybrid silicon lasers, which achieve gain from a bonded III-V material, have also been demonstrated. The momentum of research in this area is the best evidence that silicon photonics is set to revolutionize the field of computing and communications.

In this chapter, we will divide the analysis of the dielectric metamaterials into two categories, namely those in the deep sub-wavelength and those in the larger, sub-wavelength scale. As we shall see, interesting emergent properties arise when the materials are engineered to sizes smaller than or comparable to the wavelength of light in the said medium. Optical field concentrators, compact sources, polarizers, chromatic dispersers, diffractive structures, and other optical processing devices can now be implemented on-chip using metamaterials wherever natural materials with similar properties either do not exist, or (more frequently) would not be compatible with lithographic fabrication processing. Moreover, there exists an opportunity to develop a new family of optical devices exploiting near-field interactions to a much greater extent than has been possible to date. In summary, there exist an opportunity in using advanced lithography and material composition to "lithographically right and assemble" optical materials and devices with novel optical functionalities into circuits and subsystems on a chip.
2. Nanophotonics process

To advance this technology, investigations of nanostructures and their interaction with electromagnetic field are critical. Engineers also need appropriate modeling and design tools, new fabrication recipes, and test instruments capable of characterizing on-chip components. The nanophotonics process will help to establish near-field optical systems science and underlying technologies to advance future integrated information systems.

The design of integrated photonic systems is a challenging task, as it not only involves the accurate solution of electromagnetic equations, but also the need to incorporate the material and quantum physics equations into the analysis of near-field interactions. These studies need to be integrated with device fabrication and characterization to verify device concepts and optimize device designs. In this chapter we discuss examples of SOI metamaterials and devices that can be realized using CMOS-compatible fabrication process that we demonstrated recently in our lab. These examples include birefringent elements that utilize a combination of geometry and material properties to separate light into orthogonal polarizations, graded-index lenses, frequency-selective resonators and Bragg gratings, and metal-dielectric nanostructures that can achieve extremely tight field confinement. Some of these example devices are tested using a near field characterization tool, the heterodyne near-field scanning optical microscope (H-NSOM). This microscope uses a fiber probe tapered to about 200–500 nm diameter with an aperture of about 50–200 nm, brought close enough to the nanostructure under test to pick up its evanescent electromagnetic fields. The idea to improve resolution of optical measurements by bringing a subwavelength aperture close to the object of interest was first introduced by Synge in 1928 and experimentally realized only in 1983 by two independently working research groups: Dieter W. Pohl and co-workers at IBM and Aaron Lewis and co-workers at Cornell University. The efficiency of light transmission through a small aperture \(T \) decreases rapidly as the aperture size decreases, \(T \sim (d/\lambda)^4 \). Thus, for realistic aperture of 100 nm and visible wavelengths the transmission efficiency only reaches \(10^{-6} \). Such small transmission coefficients demand the use powerful optical sources (often lasers), efficient detection schemes, and detectors. One example of a suitable detection scheme is heterodyne detection, an interferometric technique that not only improves the detection efficiency but also allows measurement of optical phase.

The concept of heterodyne detection is to mix the signal of interest with a coherent reference beam at a slightly shifted optical frequency. This can be done via a Mach-Zehnder interferometer with one (signal) arm including NSOM and the other (reference) arm providing a frequency-shifted reference. The two fields are added coherently, yielding the desired interference signal oscillating at the heterodyne frequency. The coherent gain of the heterodyne detection significantly improves the sensitivity of the instrument. The system is built from readily available telecom components. This in-fiber realization provides better interferometric stability; polarization-maintaining fibers can also be used for maximizing interference term.
The scanning process provides simultaneously three images: sample topography, deduced from the AFM feedback system that keeps the probe at a constant height above the sample surface; and amplitude and phase distributions of the evanescent optical fields. Example of H-NSOM characterization of an SOI waveguide is shown in Fig. 1. The mapping of evanescent fields has proven to be a powerful tool in understanding the performance of nanoscale optical materials, devices, and circuits.

3. Dielectric metamaterials

In this Section, we will describe the analysis of deep sub-wavelength scale dielectric metamaterials and their behavior in the sub-wavelength scale limit, as well as when they are perturbed into aperiodic composites.

We investigate a class of dielectrics, characterized by feature sizes $\delta \ll \lambda/2n$, where λ is the free-space wavelength and n is the refractive index of the dielectric material. Photonic structures with periodic or quasi-periodic refractive index variations on a scale much smaller than the wavelength of light can be called "metamaterials" (from the Greek word "μετά", meaning "after" or "beyond") — materials whose optical properties arise from structural geometry rather than only from the composition of constituent materials. This approach, as we will discover in detail in this Section, can be illustrated by the simplest example of form-birefringent materials: 1D periodic structures that have a polarization-dependent index of refraction and unusual nonlinear properties.

Form birefringence occurs in structures that have deep subwavelength periodicity. The altered surface morphology of the dielectric used to construct such structures results in a large difference between the effective indices of the TE and TM polarized optical fields, since they need to satisfy different boundary conditions. Form-birefringent nanostructures (FBNs) go beyond naturally birefringent materials in (i) the strength of birefringence $\Delta n/n$ (where Δn is the difference in the refractive index for the two orthogonal polarizations); (ii) the extent of form birefringence Δn that may be adjusted by varying the duty cycle as well as the shape of the microstructures; and (iii) the possibility of modifying the
reflection properties of dielectric boundaries.39 These features are useful for constructing polarization-selective beam splitters and general-purpose polarization-selective diffractive optical elements such as birefringent computer-generated holograms.36 Extending this concept to the 2D geometry or implementing aperiodicity enables other useful functionalities, such as converting a linear polarization state to radial or azimuthal polarization39,40 and creating graded-index media.40,41 It was also shown that metamaterial approach can help to overcome fabrication difficulties and create a Fresnel lens analogue using binary lithographic fabrication with deep subwavelength feature sizes of less than 60 nm.29

It is also possible to mold the light flow in the planar configuration by using metamaterials. Bringing the functionality of tabletop optical information processing components to a chip will create compact devices, which can benefit from fast data transfer, small form-factor, parallel processing, and low power consumption. Implementing free-space-like propagation for planar optics means that while the light is confined by index difference in the vertical direction (chip plane), the horizontal beam size is regulated by phenomena similar to the diffraction, reflection and refraction of 3D free-space optics. This can be seen as a direct and more natural transition of the conventional free-space bulk optical components and devices to the chip-scale of photonic integrated circuits.

To create a dielectric metamaterial we use a subwavelength structure that can be fabricated in the high refractive index slab – see Fig. 2(a). The slab has an index of refraction \(n_1 \), while the gaps in the etched subwavelength structure can be filled with a material possessing a lower index of refraction \(n_2 \), e.g. air with \(n_2 = 1 \). This slab structure is constructed on the cladding with an overall lower index of refraction \(n_c < n_1 \), to ensure confinement in the vertical direction. For some material systems, such as SOI, the cladding with the guiding slab is located on top of a thick substrate with the refractive index \(n_s \). Consider a grating with a period \(\Lambda \), where \(FA \) is the fraction of the unit cell filled with high-index material. It can be shown that the second-order effective medium theory approximation42,43 is accurate for small grating periods \(\Lambda < \lambda/\pi 18 \) and for grating thickness larger than \(\lambda/3 \).44 Other approaches in design and analysis of these subwavelength grating metamaterial structures include numerical methods such as RCWA, finite element method (FEM), and the finite-difference time-domain (FDTD) approaches.

![Figure 2](image.png)

Figure 2. Schematic diagram of a subwavelength planar metamaterial: (a) description of a deeply subwavelength approach to dielectric metamaterial structure; Numeric simulation results showing light propagation in subwavelength SOI gratings with spatial chirp introduced by linearly varying the filling factor (increasing from left to right) and initial periods of (b) \(\Lambda = 150 \text{ nm} \) and (c) \(\Lambda = 300 \text{ nm} \).
This concept can be used to create new materials with refractive indices different from those of the constituent materials. For example, for the SOI material system, we usually have silicon with index of refraction of $n_{Si} = 3.48$ and silicon dioxide with $n_{SiO_2} = 1.46$ as the only materials available for structure design. On the other hand, in the tabletop free-space optics space we have access to a variety of other materials: different glasses, crystals, polymers, etc. This fact makes it difficult to directly translate tabletop optical setups to on-chip implementations. Metamaterials can provide a solution to overcome this difficulty. For example, by fabricating a subwavelength grating, the achievable index in SOI varies from 1.5 to 3.4, thus covering almost fully the range between high-index silicon and low-index oxide. This range was estimated for TE-polarized fields in structures with a period of $\Lambda = 400$ nm satisfying the $\Lambda < \lambda/n = 1500$ nm/3.5 \sim 400 nm condition, with filling factors varying from 0.1 to 0.9 to comply with the state-of-the-art nanofabrication capabilities (feature size ~ 40 nm).

Next we examine a subwavelength structure with a linearly varying filling factor. Such a slab will equivalently act as a graded-index metamaterial, where the effective index of refraction in the transverse direction decreases or increases linearly. It is well known that in such a "graded" index material, the incident beam of light will bend towards the higher index of refraction. We performed numerical simulations of light propagation in such a spatially chirped subwavelength grating structure with the initial periods $\Lambda = 150$ and 300 nm. The numeric simulation results for SOI material platform are summarized in Fig. 2(b) and (c). The propagation of light for the structure the shorter initial period (deep sub-wavelength limit at $\Lambda = 150$ nm) shows truly graded index behavior – see Fig. 2(b). Conversely, for the larger initial period $\Lambda = 300$ nm we can observe some reflection – see Fig. 2(c) – with a "snake-like" propagation trajectory due to Bragg reflection. That is, as the light beam propagates close to the normal to the refractive index gradient, its effective wavelength becomes smaller (as the index increases) until the Bragg matching condition is satisfied when $\lambda_{eff} = \Lambda/n = 2\Lambda\sin\theta$ (for the first diffraction order). After the Bragg-matched reflection, the light beam propogates towards the lower effective refractive index in the graded medium. Consequently, the "total internal reflection" condition will be satisfied and the light beam will be reflected back again. This type of "snake-like" light propagation occurring due to a combination of nonresonant and resonant transient metamaterial behavior is quite unusual and cannot be observed in natural materials.

An example of using such a nonresonant metamaterial that can dramatically affect the dispersive properties of the propagating light for a specific application is the mode-matching device, where position-dependent polarizability to guide and manipulate the modes of light propagating on a chip. The device is realized by lithographically defining and etching subwavelength features into a high-refractive-index slab waveguide, modifying its local effective index of refraction. We use a subwavelength periodic structure and locally modulate its duty cycle in the transverse direction x, to achieve modulation of the index of refraction, i.e. $n(x) = n_0(1 - \alpha x^2/2)$, where n_0 and α are constants representing the maximal effective index and the gradient strength, respectively. To validate our approach, we
designed and fabricated a graded index slab element that focuses light into a 2 μm wide Si ridge waveguide. We used an SOI wafer with a Si slab thickness of 250 nm and an oxide thickness of 3 μm. The fabricated element in Fig. 3 shows the layout of the device. A grating period of 400 nm was chosen to assure the validity of the effective medium approximation on one hand, and to avoid the need for fabricating ultra small features. For compatibility with CMOS fabrication, the minimal air gap was chosen to be 100 nm, imposing a maximal duty cycle of 75%. An SEM micrograph showing the layout of the entire fabricated device is depicted in Fig. 3.

Typically, characterization of nanophotonic devices is performed by analyzing the light intensity at the output of the device. Unfortunately, this approach lacks the ability to probe the amplitude and, even more importantly, the phase profile of the optical beam as it propagates within the structure. To overcome this problem, the fabricated samples were characterized with the H-NSOM, capable of measuring both amplitude and phase of the propagating optical field with a resolution of about 100 nm. Figure 4 shows the measured amplitude and phase of the optical field propagating through the device at a wavelength of $\lambda = 1550$ nm. Figure 4(a) shows the amplitude of the optical field in the region that includes the input waveguide, the non-patterned slab ("S") and large portion of the slab lens section ("L"). The dashed vertical white lines mark the boundaries between the various sections of the device. Light propagates from left to right. Figure 4(b) shows the measured phase in the same region. Figure 4(c) shows several cross-sections of the phase front calculated from Fig. 4(b) at several planes along the z-axis. The obtained results clearly show the expansion of the optical beam in the region of the slab. As expected, the phase front is diverging in this section. As the beam enters the metamaterial, the curvature of the phase front gradually decreases and becomes planar after about 5 μm propagation in the slab. Then, the phase front begins to converge towards the focus. As the beam continues to propagate, the phase front starts to diverge again, and the optical beam expands.

![Figure 3. Scanning electron micrograph showing the fabricated device: (a) top view of the entire structure; (b) magnified slanted view showing part of slab lens and the output waveguide.](image-url)
The investigated metamaterial-based graded-index slab "lens" device is the first step towards the realization of the FSOC concept. Our H-NSOM measurements clearly demonstrate the focusing effect. This experimental demonstration opens new possibilities in the field of on-chip photonic integration, as the demonstrated component can be integrated with other building blocks (some yet to be developed) to create future devices and systems based on the FSOC concept. We believe that this new concept may become essential for applications such as optical interconnections, information processing, spectroscopy and sensing on a chip.
4. Quantum wires: Subwavelength inhomogeneous dielectrics

We refer to sub-wavelength structures as structures with features that are smaller than but comparable to the wavelength of light. An example of such periodic structures is a general family of resonant structured materials such as photonic crystal (PhC) lattices and the whole family of devices that can be implemented in a PhC lattice. In this section we explore a novel practical approach that we call quantum wire metamaterials that can be used to implement both subwavelength and deep subwavelength nanostructures. We recall that subwavelength scale devices are characterized by feature sizes $\Lambda < \lambda/2n_{\text{eff}}$, where λ is the vacuum wavelength and n_{eff} is the effective index of the specific mode in the device: $n_{\text{eff}} = \beta/k$, where β is the propagation constant of the waveguide mode and k is the wave number in vacuum. For example, for the SOI material system, we can construct a typical single-mode silicon waveguide with $n_{\text{eff}} \approx 2.5$ for operation at the telecommunications wavelength of 1.55 μm. In the following, we will mainly focus on the subwavelength regime to demonstrate the unique capabilities of this approach and demonstrate experimental device prototypes. We first investigate a periodic 1D PhC quantum wire, and extend the investigation to a quasi-periodic quantum wire. Finally, we study the characteristics of a filter created by coupling two such quantum wires together.

The PhC lattice is a well known resonant inhomogeneous material, which has been fabricated in many ways during the past decade. It may play a unique role as an integration platform of nanophotonic devices, as numerous PhC-based devices with various functionalities have been reported, including modulators, detectors, filters, lasers, superprisms and elements with negative refraction. However, fabrication of 3D resonant inhomogeneous materials and devices remains challenging, and frequently, 1D and 2D topologies are used due ease in their design, fabrication and integration. A simple example of a 1D resonant structure is a distributed Bragg reflector (DBR) used in planar waveguide technology to perform and enhance various functionalities of optical elements, such as a single-mode selector in semiconductor lasers, optical filters, switches, modulators, couplers, detectors, and sensors. The DBRs conventionally fabricated on the surface of the waveguide involve an additional fabrication procedure separate from the waveguide. Recently, in contrast to traditional approaches, we exploited a single-step fabrication method to define the DBRs and other nanostructured resonant devices using the corrugation of waveguide sidewalls. In this approach, both the period and the modulation strength of the DBRs are lithographically assigned on the waveguide sidewalls.

The designed devices are Fabry-Perot (FP) type filters made of a pair of identical Bragg reflectors each having reflection (r) and transmission (t) amplitude coefficients, and separated by a spacer of length $d = \Lambda/2$ causing a phase shift $\phi = \pi/2$. The transmission amplitude of the resonant filter t_{RF} as a function of λ is given by $t_{\text{RF}} = r^2 \exp[i\phi]/(1 - r^2 \exp[i2\phi])$. These filters are fabricated on a piece ($\sim 1 \times 0.5 \text{ cm}^2$) of $6''$ SOI wafer consisting of a silicon top layer with a mean thickness of 252.2 nm with distribution of $6\sigma \sim 18.3$ nm on a $\sim 3 \mu$m thick silicon dioxide layer.