Functionalized Inorganic Fluorides

Synthesis, Characterization & Properties of Nanostructured Solids

Edited by

ALAIN TRESSAUD

Research Director CNRS (Emeritus), ICMCB-CNRS, Bordeaux University, France

Functionalized Inorganic Fluorides

Functionalized Inorganic Fluorides

Synthesis, Characterization & Properties of Nanostructured Solids

Edited by

ALAIN TRESSAUD

Research Director CNRS (Emeritus), ICMCB-CNRS, Bordeaux University, France

This edition first published 2010 © 2010 John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data

Functionalized inorganic fluorides: synthesis, characterization & properties of nanostructured solids / edited by Alain Tressaud.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-74050-7 (pbk.)
1. Fluorides. I. Tressaud, Alain.
QD181.F1F77 2010
546'.731—dc22

2009052139

A catalogue record for this book is available from the British Library.

ISBN: 978-0-470-74050-7 (Cloth)

Set in 10/12pt Times by Integra Software Services Pvt. Ltd., Pondicherry, India Printed and bound in Great Britain by CPI Antony Rowe, Chippenham, Wiltshire.

Cover images from left to right: Projection along [001] of the ITQ-33 zeolite structure showing the 18-MRs windows (Chapter 16); Schematic morphology of oxyfluoride glass-ceramics formed by spinodal decomposition (Chapter 9); Crystal structure of $La_2CuO_{3.6}F_{0.8}$ [The Cu cations are situated in octahedra; the La cations are shown as large spheres; the F anions are shown as small spheres] (Chapter 13)

Contents

	face t of Co	ontributo	rs	xvii xxi
1		Gel Synt perties	hesis of Nano-Scaled Metal Fluorides – Mechanism and	1
	Erha	rd Kemn	itz, Gudrun Scholz and Stephan Rüdiger	
	1.1	Introdu	action	1
		1.1.1	Sol-Gel Syntheses of Oxides – An Intensively Studied and Widely Used Process	1
		1.1.2	Sol-Gel Syntheses of Metal Fluorides – Overview of	
			Methods	2
	1.2	Fluoro	lytic Sol-Gel Synthesis	4
		1.2.1		5
		1.2.2	Insight into Mechanism by Analytical Methods	8
		1.2.3	Exploring Properties	27
		1.2.4	Possible Fields of Application	29
	Refe	rences		35
2			Assisted Route Towards Fluorinated Nanomaterials bournet, Alain Demourgues and Alain Tressaud	39
	2.1	Introdu	uction	39
	2.2	Introdu	uction to Microwave Synthesis	40
		2.2.1	A Brief History	40
		2.2.2	Mechanisms to Generate Heat	40
		2.2.3	Advantages of Microwave Synthesis	41
		2.2.4	Examples of Microwave Experiments	41
	2.3	Prepar	ration of Nanosized Metal Fluorides	42
		2.3.1	Aluminium-based Fluoride Materials	42
		2.3.2	Microwave-assisted Synthesis of Transition Metal	
			Oxy-Hydroxy-Fluorides	61

vi Contents

	2.4	Conclu	nding Remarks	64
	Ackn	owledge	ements	64
	Refe	rences		65
3	High	Surface	e Area Metal Fluorides as Catalysts	69
	Erha	rd Kemn	itz and Stephan Rüdiger	
	3.1	Introdu	action	69
	3.2	High S	Surface Area Aluminium Fluoride as Catalyst	71
	3.3		Guest Metal Fluoride Systems	74
	3.4		xy(oxo)fluorides as Bi-acidic Catalysts	78
	3.5	Oxidat	ion Catalysis	84
	3.6	Metal	Fluoride Supported Noble Metal Catalysts	88
		3.6.1		90
		3.6.2	Hydrodechlorination of Dichloroacetic Acid (DCA)	94
		3.6.3	Suzuki Coupling	95
	Refe	rences		97
4		_	of Surface Acidity using a Range of Probe Molecules mont, Marco Daturi and John M. Winfield	101
			·	404
	4.1	Introdu		101
		4.1.1 4.1.2	Some Examples of the Application of FTIR Spectroscopy to	102
			the Study of Surface Acidity in Metal Oxides	103
		4.1.3	A Preview	107
	4.2		eterization of Acidity on a Surface: Contrasts with Molecular	100
		Fluorio		108
		4.2.1 4.2.2	A Possible Benchmark for Solid Metal Fluoride, Lewis	108
			Acids: Aluminium Chlorofluoride	109
	4.3	-	mental Methodology	110
		4.3.1	1 1 2	110
		4.3.2	Characteristic Reactions and the Detection of Adsorbed	
			Species by a Radiotracer Method	112
	4.4		mental Studies of Surface Acidity	117
			Using FTIR Spectroscopy	118
		4.4.2	Using HCl as a Probe with Detection via [36Cl]-Labelling	123
		4.4.3	Metal Fluoride Surfaces that Contain Surface Hydroxyl	
			Groups: Aluminium Hydroxy Fluorides with the Hexagonal	100
		1 1 1	Tungsten Bronze Structure	129
		4.4.4	Possible Geometries for HCl Adsorbed at Metal Fluoride	125
	4.5	0. 1	Surfaces: Relation to Oxide and Oxyfluoride Surfaces	135
	4.5	Conclu	Isions	136
	Refe	rences		137

5		Probing Short and Medium Range Order in Al-based Fluorides using High Resolution Solid State Nuclear Magnetic Resonance and Parameter					
	Modelling						
	Christophe Legein, Monique Body, Jean-Yves Buzaré, Charlotte Martineau and Gilles Silly						
		ione ma	mineau ana Gines Siny				
	5.1	Introdu		141			
	5.2	_	Resolution NMR Techniques	142			
		5.2.1	Fast MAS and High Magnetic Field	142			
		5.2.2	²⁷ Al NMR	145			
		5.2.3	High Resolution Correlation NMR Techniques	148			
	5.3		eation to Functionalized Al-Based Fluorides with Catalytic				
		Proper		153			
		5.3.1	Crystalline Aluminium Fluoride Phases	153			
		5.3.2	¹⁹ F Isotropic Chemical Shift Scale in Octahedral Aluminium				
			Environments with Oxygen and Fluorine in the First	1.50			
		<i>5</i> 2 2	Coordination Sphere	153			
		5.3.3	Fluorinated Aluminas and Zeolites, HS AlF ₃	157			
		5.3.4	Aluminium Chlorofluoride and Bromofluoride	158			
		5.3.5	Pentahedral and Tetrahedral Aluminium Fluoride Species	158			
		5.3.6	Nanostructured Aluminium Hydroxyfluorides and				
			Aluminium Fluoride Hydrate with Cationic	150			
		5.3.7	Vacancies $\delta_{\rm iso}$ Scale for ²⁷ Al and ¹⁹ F in Octahedral Aluminium	159			
		3.3.7	Environments with Hydroxyl and Fluorine in the First				
			Coordination Sphere	160			
	5.4	A Hzoli	and Alkaline-earth Fluoroaluminates: Model Compounds	100			
	5.4		odelling of NMR Parameters	160			
		5.4.1	¹⁹ F NMR Line Assignments	161			
		5.4.2	²⁷ Al Site assignments, Structural and Electronic	101			
		3.7.2	Characterizations	164			
	5.5	Conclu		167			
		ences	351011	168			
	Ittici	CHCCS		100			
6	Pred	ictive M	Iodelling of Aluminium Fluoride Surfaces	175			
•			Bailey, Sanghamitra Mukhopadhyay, Adrian Wander,	1,0			
			and Nicholas Harrison				
	6.1	Introd	uction	175			
	6.2	Metho	dology	176			
		6.2.1	Density Functional Theory	176			
		6.2.2	Surface Free Energies	177			
		6.2.3	Molecular Adsorption	178			
		6.2.4	Kinetic Monte Carlo Simulations	179			
	6.3	Geome	etric Structure of α and β -AlF ₃	180			
		6.3.1	Bulk Phases	180			
		6.3.2	Surfaces	180			

	6.4	Characterization of AlF ₃ Surfaces	185
	6.5	Surface Composition under Reaction Conditions	188
		6.5.1 The α -AlF _{3-x} (01–12) Termination	189
		6.5.2 The α -AlF ₃ (0001) Termination	192
	6.6	Characterization of Hydroxylated Surfaces	193
	6.7	Surface Catalysis	196
		6.7.1 Molecular Adsorption	197
		6.7.2 Reaction Mechanisms and Barriers	198
		6.7.3 Analysing the Kinetics of the Reaction	200
	6.8	Conclusions	201
	Ackr	owledgements	203
	Refe	rences	203
7		ganic Fluoride Materials from Solvay Fluor and their Industrial	
		ications	205
		do Garcia Juan, Hans-Walter Swidersky, Thomas Schwarze and nnes Eicher	
	7.1	Introduction	205
	7.2	Hydrogen Fluoride	205
		7.2.1 Anhydrous Hydrogen Fluoride, AHF	206
		7.2.2 Hydrofluoric Acid	206
	7.3	Elemental Fluorine, F ₂	207
		7.3.1 Fluorination of Plastic Fuel Tanks	207
		7.3.2 Finishing of Plastic Surfaces	207
		7.3.3 F ₂ Mixtures as CVD-chamber Cleaning Gas	208
	7.4	Iodine Pentafluoride, IF ₅	208
	7.5	Sulfur Hexafluoride, SF ₆	209
		7.5.1 SF ₆ as Insulating Gas for Electrical Equipment	209
		7.5.2 SF ₆ Applications in Metallurgy	209
	7.6	Ammonium Bifluoride, NH ₄ HF ₂	210
	7.7	Potassium Fluorometalates, KZnF ₃ and K ₂ SiF ₆	210
	7.8	Cryolite and Related Hexafluoroaluminates, Na ₃ AlF ₆ , Li ₃ AlF ₆ ,	
		K_3AlF_6	211
	7.9	Potassium Fluoroborate, KBF ₄	212
	7.10	Fluoboric Acid, HBF ₄	212
	7.11	Barium Fluoride, BaF ₂	213
	7.12	Synthetic Calcium Fluoride, CaF ₂	213
	7.13	Sodium Fluoride, NaF	213
	7.14	Sodium Bifluoride, NaHF ₂	213
	7.15	Potassium Bifluoride, KHF ₂	214
	7.16	Potassium Fluoroaluminate, KAlF ₄	214
	7.17	Fluoroaluminate Fluxes in Aluminium Brazing	214
		7.17.1 Flux Composition	214
		7.17.2 Flux and HF	216
		7.17.3 Flux Particle Size	217

		Conte	ents ix
		7.17.4 Flux Melting Range	219
		7.17.5 Current Status of Aluminium Brazing Technology	220
		7.17.6 Cleaning and Flux Application	221
		7.17.7 Wet Flux Application	221
		7.17.8 Dry/Electrostatic Flux Application	222
		7.17.9 Post Braze Flux Residue	222
		7.17.10 Filler Metal Alloys	222
		7.17.11 Flux Precoated Brazing Sheet/Components	223
		7.17.12 Clad-less Brazing	223
		7.17.13 Furnace Conditions	224
	7.18	Summary	224
	Refer	rences	225
8	New 1	Nanostructured Fluorocompounds as UV Absorbers	229
	Alain	Demourgues, Laetitia Sronek and Nicolas Penin	
	8.1	Introduction	229
	8.2	Synthesis of Tetravalent Ce and Ti-based Oxyfluorides	231
		8.2.1 Preparation of Ce-Ca-based Oxyfluorides	231
		8.2.2 Preparation of Ti-based Oxyfluorides	232
	8.3	Chemical Compositions and Structural Features of Ce and	
		Ti-based Oxyfluorides	233
		8.3.1 Elemental Analysis	233
		8.3.2 Magnetic Measurements	233
		8.3.3 About the Chemical Composition of $Ce_{1-x}Ca_xO_{2-x}$ and	
		$Ce_{1-x}Ca_xO_{2-x-y/2}F_y$ Series	234
		8.3.4 About the Structure and Local Environment of Fluorine in	
		$Ce_{1-x}Ca_xO_{2-x-y/2}F_y$ Series	237
		8.3.5 Composition and Structure of Ti-based Hydroxyfluoride	252
	8.4	UV Shielding Properties of Divided Oxyfluorides	263
		8.4.1 The Ce-Ca-based Oxyfluorides Series and UV-shielding	
		Properties	264
		8.4.2 Ti Hydroxyfluoride and UV-shielding Properties	266
	8.5	Conclusion	267
		owledgement	269
	Refer	rences	269
9	Oxyf	luoride Transparent Glass Ceramics	273
		el Mortier and Géraldine Dantelle	
	9.1	Introduction	273
	9.2	Synthesis	274
		9.2.1 Synthesis by Glass Devitrification	275
		9.2.2 Transparency	277
	9.3	Different Systems	279
		9.3.1 Glass-Ceramics with CaF ₂ as their Crystalline Phase	281
		9.3.2 Glass-Ceramics with β -PbF ₂ as their Crystalline Phase	281

x Contents

		9.3.3 Glass-Ceramics with CdF ₂ /PbF ₂ as their Crystalline Phase	281
		9.3.4 Glass-Ceramics with LaF ₃ as their Crystalline Phase	282
	9.4	Thermal Characterization	282
		9.4.1 Kinetics of Phase-change/Devitrification	288
		9.4.2 Thakur's Method	288
	9.5	Morphology of the Separated Phases	289
	9.6	Optical Properties of Glass-Ceramics	293
		9.6.1 Influence of the Devitrification on the Spectroscopic	
		Properties of Ln ³⁺	293
		9.6.2 Effect of High Local Ln ³⁺ Concentration in Crystallites	295
		9.6.3 Comparison of the Optical Properties of Glass-Ceramics and	
		Single-Crystals	297
		9.6.4 Multi-doped Glass-Ceramics	299
	9.7	Conclusion	301
	Refe	rences	302
10	Sol-C	Gel Route to Inorganic Fluoride Nanomaterials with Optical	
	Prop	erties	307
	Shine	obu Fujihara	
	10.1	Introduction	307
	10.2	Principles of a Sol-Gel Method	308
		10.2.1 Metal Oxide Materials	308
		10.2.2 Metal Fluoride Materials	308
	10.3	Fluorinating Reagents and Method of Fluorination	309
	10.4		313
	10.5	Optical Properties	317
		10.5.1 Low Refractive Index and Anti-Reflection Effect	317
		10.5.2 Luminescence	322
	10.6	Concluding Remarks	326
	Refe	rences	326
11	Fluo	ride Glasses and Planar Optical Waveguides	331
	Brigi	tte Boulard	
	11.1	Introduction	331
	11.2	Rare Earth in Fluoride Glasses	332
		11.2.1 Fundamentals	333
		11.2.2 Applications: Laser and Optical Amplifiers	334
	11.3	Fabrication of Waveguides: A Review	336
	11.4	Performance of Active Waveguides	338
		11.4.1 Optical Amplifier	340
		11.4.2 Lasers	341
	11.5	Fluoride Transparent Glass Ceramics: An Emerging Material	342
	11.6	Conclusion	344
	Refe	rences	344

12	Karin	n Adil, Ar	ndensation in Inorganic and Hybrid Fluoroaluminates nandine Cadiau, Annie Hémon-Ribaud, and Vincent Maisonneuve	347
	12.1	Introduc		347
	12.1	Synthes		348
	12.2		ed Finite Polyanions (0D)	350
	12.3	12.3.1		350
			Isolated AlF ₆ Octahedra	350
			Al ₂ F ₁₁ Dimers	353
			Al ₃ F ₁₆ Trimers	353
			Al_2F_{10} Dimers	353
			Al_4F_{20} Tetramers	354
			Al ₄ F ₁₈ Tetramers	354
			Al ₅ F ₂₆ Pentamers	355
			Al ₇ F ₃₀ Heptamers	355
			Al_8F_{35} Octamers	356
			Mixed Polyanions	356
	12.4	1D Netv	· · · · · · · · · · · · · · · · · · ·	358
	12.1		AlF ₅ Chains	358
			Al_2F_9 Chains	359
			Al_7F_{29} Chains	360
			AlF ₄ Chains	360
		12.4.5		361
	12.5	2D Netv	•	365
	12.0		Al ₃ F ₁₄ Layers	365
			AlF ₄ Layers	365
			Al ₂ F ₇ Layers	366
			Al ₅ F ₁₇ Layers	366
		12.5.5		368
	12.6	3D Netv	2 10 .	368
	12.0		Al ₇ F ₃₃ Network	368
			Al ₂ F ₉ Network	368
			AlF ₃ Network	369
	12.7		on of the Condensation of Inorganic Polyanions	372
	12.,		Influence of Amine and Aluminum Concentrations	372
		12.7.2	Temperature	374
	Ackn	owledgen	*	376
		_	Materials	376
		rences		376
13	•		ucture and Superconducting/Magnetic Properties of	
			pased Oxyfluorides ipov and Artem M. Abakumov	383
	Lvgei	ıy v. Arllı	рот ини Апені іч. Авикинют	
	13.1	Introduc	ction	383
	13.2	Chemic	al Aspects of Fluorination of Complex Oxides	384

	13.3	Structu	ral Aspects of Fluorination of Complex Cuprates and	
			onducting Properties	388
		13.3.1	Electron Doped Superconductors: Heterovalent	
			Replacement $10^{2-} \rightarrow 1F^{-}$	389
		13.3.2	Hole Doped Superconductors: Fluorine Insertion into	
			Vacant Anion Sites	390
		13.3.3	Structural Rearrangements in Fluorinated Cuprates	398
		13.3.4	Fluorination of Nonsuperconducting Cuprates	408
	13.4		ation of Manganites	411
		Conclu		415
	Refe	rences		416
14	Doni	ng Influ	ence on the Defect Structure and Ionic Conductivity of	
			taining Phases	423
			shnikova, Vladimir A. Prituzhalov and Ilya B. Kutsenok	
	14.1	Introdu	ction	423
	14.2	Influen	ce of Oxygen Ions on Fluoride Properties	427
			Pyrohydrolysis	427
		14.2.2	Heterovalent Oxygen Substitution for Fluoride Ions	428
		14.2.3	Ionic Conductivity of Oxyfluoride	429
	14.3		Doping of Fluorides	431
		14.3.1	Isovalent Replacement in the Cation Sublattice	431
		14.3.2	Heterovalent Replacement in the Cation Sublattice	432
	14.4	Active	Lone Electron Pair of Cations and Ionic Conductivity	432
	14.5	Peculia	rities of the Defect Structure of Nonstoichiometric	
		Fluorite	e-like Phases	435
		14.5.1	Fluorite Structure	435
			Defect Clusters	435
			Ordered Fluorite-like Phases	439
			Phase Diagrams	441
	14.6		ransfer in Fluorite-like Phases	441
			Defect Region Model	443
		14.6.2	Nonstoichiometric Fluorites as Examples of	
			Nanostructured Materials	447
	14.7		rities of the Defect Structure of Nonstoichiometric	
			te-like Phases	449
		14.7.1	Tysonite Structure, Tysonite Modifications and Anion	
			Defects	449
		14.7.2	Ordered Tysonite-like Phases	454
	14.8		ransfer in Tysonite-like Phases	454
		14.8.1	Fluoride Ions' Migration Paths in the LaF ₃ Structure	455
		14.8.2	Temperature Dependences of Ionic Conductivity and	
			Anion Defect Positions	457
		14.8.3	Concentration Dependences of Ionic Conductivity in	
			Tysonite-like Solid Solutions	459

		Contents	xiii
		Conclusions	462 462
15	•	id Intercalation Compounds Containing Perfluoroalkyl Groups aki Matsuo	469
	15.1	Introduction	469
	15.2	Preparation and Properties of Intercalation Compounds	
		Containing Perfluoroalkyl Groups	471
		15.2.1 Preparation	471
		15.2.2 Exfoliation and Film Preparation	475
		15.2.3 Introduction of Photofunctional Molecules	476
	15.3	Photophysical and Photochemical Properties of Dyes in Intercalation	
		Compounds Containing Perfluoroalkyl Groups	478
		15.3.1 Microenvironment Estimated by using Probe Molecules	
		Showing Photophysical Responses	478
		15.3.2 Photophysical Properties	480
		15.3.3 Photochemical Properties	482
	15.4	Conclusion and Future Perspectives	484
	Refe	rences	484
16	3D In Jean-	Fluoride Route: A Good Opportunity for the Preparation of 2D and norganic Microporous Frameworks Louis Paillaud, Philippe Caullet, Jocelyne Brendlé, Angélique n-Masseron and Joël Patarin	489
	16.1	Introduction	489
	16.2	Silica-based Microporous Materials	490
	16.3	Germanium-based Microporous Materials	499
	16.4	Phosphate-based Microporous Materials	504
	16.5	Synthetic Clays	506
		16.5.1 Semi-Synthesis	507
		16.5.2 Solid State Synthesis	508
		16.5.3 Hydrothermal Synthesis	509
	16.6	Conclusion	510
	Refe	rences	511
17		ss to Highly Fluorinated Silica by Direct F ₂ Fluorination Demourgues, Emilie Lataste, Etienne Durand and Alain Tressaud	519
	17.1	Introduction	519
	17.2	Mesoporous Silica and Fluorination Procedures	520
	17.3	About the Chemical Composition and Morphology of Highly	
		Fluorinated Silica	521
	17.4	FTIR Analysis	523
		17.4.1 About the Content and Nature of OH/Water Groups in	
		Highly Fluorinated Silica	523

		17.4.2 FTIR Bands Related to Si-F Bonds	526				
		17.4.3 Correlation between Silanol Groups on Mesoporous					
		Silica and Grafted Fluorine on Highly Fluorinated Silica	527				
	17.5	Thermal Stability and Water Affinity of Highly Fluorinated Silica	530				
	17.6	Nuclear Magnetic Resonance (NMR) Investigations					
		17.6.1 Local Environments in Highly Fluorinated Silica through					
		NMR Experiments	534				
		17.6.2 Effect of Fluorination on the Nuclei Environments	534				
	17.7	Conclusions on the F ₂ -gas Fluorination Mechanism of					
		Mesoporous Silica	540				
	Ackn	owledgements	541				
	References						
18	Prepa	aration and Properties of Rare-earth-Containing Oxide Fluoride					
	Glass	ses	545				
	Susur	nu Yonezawa, Jae-ho Kim and Masayuki Takashima					
	18.1	Introduction	545				
	18.2	Preparation and Basic Characteristics of Oxide Fluoride Glasses	343				
	10.2	Containing LnF ₃	546				
		18.2.1 Preparation of Oxide Fluoride Glasses Containing LnF ₃	546				
		18.2.2 Density and Refractive Index	552				
		18.2.3 Glass Transition Temperature	553				
	18.3	Optical and Magnetic Properties of LnF ₃ -BaF ₂ -AlF ₃ -GeO ₂ (SiO ₂)	333				
	10.5	Glasses	555				
		18.3.1 Optical Properties of HoF ₃ -BaF ₂ -AlF ₃ -GeO ₂ Glasses	555				
		1 1 3 2 3 2					
		18.3.2 Optical Properties of CeF ₃ -BaF ₂ -AlF ₃ -SiO ₂ Glasses	557				
		18.3.3 Optical Properties of the Glasses Co-doped with	561				
		TbF ₃ and SmF ₃	564				
		18.3.4 Magnetic Property of TbF ₃ Containing Oxide Fluoride	5.00				
	10.4	Glasses	566				
	18.4	Conclusion	568				
	Refe	rences	569				
19		chable Hydrophobic-hydrophilic Fluorinated Layer for Offset	571				
		Processing					
	Alain	Tressaud, Christine Labrugère, Etienne Durand					
	19.1	Introduction	571				
	19.2	The Principles of the Lithographic Printing Process	572				
	19.3	Experimental Part	573				
		19.3.1 Fluorination by Cold rf Plasmas	573				
		19.3.2 Wettability Measurements	574				
		19.3.3 Surface Analyses	574				
	19.4	Various Types of Surface Modifications using Fluorinated rf Plasmas	575				
	17.1	19.4.1 Reactive Etching of Porous Alumina using CF ₄ -Plasma	515				
		Treatment	575				

Index		583
Refe	rences	582
Ackn	owledgements	582
19.6	Conclusion	581
	Various Fluorinated Media: CF ₄ , C ₃ F ₈ and c-C ₄ F ₈	580
19.5	Comparison of Surface Modifications of Porous Alumina using	
	Obtained on Porous Alumina using c-C ₄ F ₈ Plasma Treatment	578
	19.4.2 Switchable Hydrophilic/Hydrophobic Fluorocarbon Layo	er

Contents xv

Preface

Fluorides and fluorinated materials affect various aspects of modern life. The strategic importance of fluoride materials, and the use of adapted fluorination surface treatments, concern many research fields and applications in areas such as energy production, microelectronics and photonics, catalysis, colour pigments, textiles, cosmetics, plastics, domestic wares, automotive technology and building.

Among the issues with which they are concerned [1–4] are:

- the historical importance of fluoride fluxes in the production of metals, in particular aluminium:
- the critical place of fluorine and fluorides in conversion energy processes for example components of Li-ion batteries and fuel cells, enrichment of ²³⁵U through uranium hexafluoride for nuclear energy;
- the etching of silicon wafers for microelectronics;
- the technical revolution of fluoropolymers and fluoride coatings, for example Teflon[®] and fluorinated plastics, waterproof clothes, biomaterials for cardiovascular or retinal surgeries, kitchen wares, and so forth;
- the beneficial influence of fluoride on dental caries;
- the dominant use of fluorinated molecules in agrochemistry and phytosanitary products;
- the dramatic increase of fluorine-containing molecules for medicine and pharmacy, as efficient imaging products, as dental composites for cariostatic improvement, and so forth;
- the use of ¹⁸F-labelled molecules in positron emission tomography (PET) for early diagnosis of cancer and Alzheimer's disease.

In the case of inorganic fluorinated solids, numerous improvements have recently been achieved through the elaboration and functionalization of the materials on a nanometric scale. The present book covers several classes of nanostructured and functionalized inorganic fluorides, oxide-fluorides, hybrids, mesoporous materials and fluorinated oxides such as silica and alumina. The morphologies concerned range from powders or glass-ceramics to thin layers and coatings whereas the applications involved include catalysts, inorganic charges, superconductors, ionic conductors, ultaviolet (UV) absorbers, phosphors, materials for integrated optics, and so forth. Several books have been devoted to the reactivity of carbon-based materials with fluorine (carbon fibres, fullerene, carbon nanotubes, etc) [1,2,5,6], so these types of materials will not be treated in the present book.

The book arose from discussions that took place during the FUNFLUOS project (2004–2008), carried out within the Sixth European Framework Programme. This project involved about ten groups from Germany, France, Slovenia and the UK, all aimed at the synthesis and characterization of fluorinated materials with properties tailored for specific applications.

The topics appearing in the book range from new synthesis routes to physical-chemical characterizations. They address important properties of these materials, including morphology, structure, thermal stability, superconductivity, magnetism, spectroscopic and optical behaviour. Detailed *ab initio* investigations and simulations provide a comparison with experimental results, and potential applications of the final products are also proposed.

In the first section, two innovative routes toward nanoscaled metal fluorides and hydroxyfluorides are presented: the *fluorolytic* sol-gel synthesis by E. Kemnitz et al. and the microwave-assisted route by D. Dambournet et al. In a second section, several physical-chemical characterizations are developed in order to understand the mechanisms that are responsible for the improvement of the properties of these materials: investigation of the main characteristics of high-surface-area aluminium fluorides as catalysts by E. Kemnitz and S. Rüdiger; determination of surface acidities (Lewis and Brønsted types) using a large range of probe molecules, by A. Vimont et al.; a better knowledge of the environment of the different nuclei using high-resolution solid-state nuclear magnetic resonance (NMR) by C. Legein et al. The theoretical investigation of these topics is highlighted by the predictive modelling of aluminium fluoride surfaces by C. Bailey et al., which allows a better understanding of the underlying processes at the molecular and nano levels. An example of industrial application of the inorganic fluorides is given by P. Garcia Juan et al. In the following section, some examples of outstanding optical properties of nanostructured fluorides are proposed: nanostructured fluorocompounds as UV absorbers, by A. Demourgues et al.; transparent oxyfluoride glass-ceramics by M. Mortier and G. Dantelle; luminescent and antireflective coating of (oxy)fluorinated materials obtained by the sol-gel technique, by S. Fujihara; planar optical waveguides based on fluoride glasses, by B. Boulard. Hybrids, composites and mesoporous fluorides are original materials with great potential and the interesting nature of such materials is illustrated in the next section by the chapters on polyanion condensation in inorganic-organic hybrid fluorides, by K. Adil et al.; superconducting/magnetic properties of Cuand Mn-based oxyfluorides, by E. Antipov and A. Abakumov; ionic conductivity of fluoride-containing phases by E. Ardashnikova et al.; intercalation in hybrid compounds containing perfluoroalkyl groups, by Y. Matsuo.

The two following chapters deal with the synthesis of microporous frameworks using the fluoride and F_2 -gas routes, respectively. The examples concern either compounds based on silica, germanium, phosphates and clays, by J. L. Paillaud *et al.*, or highly fluorinated silica, by A. Demourgues *et al.* The optical and magnetic properties of oxyfluoride glasses based on rare-earth elements are illustrated by S. Yonezawa *et al.* Finally the chapter by A. Tressaud *et al.* describes the use of surface fluorination of porous alumina for applications in offset technology.

A very wide range of materials, properties, and applications have therefore been gathered in this book, which covers various new fields in which inorganic fluorides are part of the innovating process. Among the information that can bring answers to some crucial questions in materials science, we can quote new synthesis routes towards more

efficient and less aggressive catalysts, protection against harmful UV radiation, new integrated lasers and optical amplifiers, antireflective coatings, solid-state ionic conductors, highly hydrophobic silica and switchable coatings for offset technology.

Erhard Kemnitz and Alain Tressaud
Berlin and Bordeaux
September 2009

References

- [1] Advanced Inorganic Fluorides, T. Nakajima, B. Zemva, A. Tressaud (Eds), Elsevier, Amsterdam (2000).
- [2] Fluorinated Materials for Energy Storage, T. Nakajima, H. Groult (Eds), Elsevier, Amsterdam (2005).
- [3] Fluorine and the Environment, Vol. 1 and Vol. 2, A. Tressaud (Ed.), Elsevier, Amsterdam (2006).
- [4] Fluorine and Health, A. Tressaud and G. Haufe (Eds), Elsevier, Amsterdam (2008).
- [5] Graphite Fluorides and Carbon-Fluorine Compounds, T. Nakajima (Ed.), CRC Press, Boca Raton, FL (1991).
- [6] 'Fluorofullerenes', in *Dekker Encyclopedia of Nanoscience and Nanotechnology*, O. V. Boltalina, S. H. Strauss, 2nd edition, Dekker, New York (2009).

The Funfluos European Network (2004): First row (from left to right): D. Menz, B. Žemva, E. Kemnitz (Coordinator), A. Demourgues, A. Tressaud, and J. Winfield. Second row (from left to right): U. Gross, M. Feist (partly hidden), S. Rüdiger, P. Millet (European Commission), N. Harrison, A. Wander, T. Skapin and S. Schröder

List of Contributors

Artem M. Abakumov, Department of Chemistry, Moscow State, University, Moscow, Russia

Karim Adil, Laboratoire des Oxydes et Fluorures, UMR CNRS, Le Mans, France

Evgeny V. Antipov, Department of Chemistry, Moscow State, University, Moscow, Russia

Elena I. Ardashnikova, Department of Chemistry, Moscow State, University, Moscow, Russia

Christine L. Bailey, Computational Science and Engineering Department, STFC Daresbury Laboratory, Warrington, Cheshire, UK

Monique Body, Laboratoire de Physique de l'Etat Condensé, UMR-CNRS, Université der Maine, Le Mans, France

Brigitte Boulard, Laboratoire des Oxydes et Fluorures, UMR CNRS, Le Mans, France

Jocelyne Brendlé, Laboratoire de Matériaux à Porosité Contrôlée, UMR-CNRS, Université de Haute Alsace, Mulhouse, France

Jean-Yves Buzaré, Laboratoire de Physique de l'Etat Condensé, UMR-CNRS, Université der Maine, Le Mans, France

Amandine Cadiau, Laboratoire des Oxydes et Fluorures, UMR CNRS, Le Mans, France

Philippe Caullet, Laboratoire de Matériaux à Porosité Contrôlée, UMR-CNRS, Université de Haute Alsace, Mulhouse, France

Damien Dambournet, Institute of Condensed Matter Chemistry of Bordeaux (ICMCB-CNRS), University Bordeaux 1, Pessac, France

Géraldine Dantelle, Laboratoire de Photonique Quantique et Moléculaire (LPQM), UMR CNRS, Cachan, France

Marco Daturi, ENSICAEN, Université de Caen, CNRS, Caen, France

Alain Demourgues, Institute of Condensed Matter Chemistry of Bordeaux (ICMCB-CNRS), University Bordeaux 1, Pessac, France

Etienne Durand, Institute of Condensed Matter Chemistry of Bordeaux (ICMCB-CNRS), University Bordeaux 1, Pessac, France

Johannes Eicher, Solvay Fluor GmbH, Hannover, Germany

Shinobu Fujihara, Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan

Placido Garcia Juan, Solvay Fluor GmbH, Hannover, Germany

Nicholas Harrison, Computational Science and Engineering Department, STFC Daresbury, Laboratory, Warrington, Cheshire, UK Department of Chemistry, Imperial College London, London, UK

Annie Hémon-Ribaud, Laboratoire des Oxydes et Fluorures, UMR CNRS, Le Mans, France

Erhard Kemnitz, Institute for Chemistry, Humboldt University of Berlin, Berlin, Germany

Jae-ho Kim, Graduate School of Engineering, University of Fukui, Fukui, Japan

Ilya B. Kutsenok, Department of Chemistry, Moscow State, University, Moscow, Russia

Christine Labrugère, Institute of Condensed Matter Chemistry of Bordeaux (ICMCB-CNRS), University Bordeaux 1, Pessac, France

Emilie Lataste, Institute of Condensed Matter Chemistry of Bordeaux (ICMCB-CNRS), University Bordeaux 1, Pessac, France

Marc Leblanc, Laboratoire des Oxydes et Fluorures, UMR CNRS, Le Mans, France

Christophe Legein, Laboratoire des Oxydes et Fluorures, CNRS, Le Mans, France

Vincent Maisonneuve, Laboratoire des Oxydes et Fluorures, UMR CNRS, Le Mans, France

Charlotte Martineau, Laboratoire des Oxydes et Fluorures, UMR CNRS, Le Mans, France, Tectospin, Université de Versailles Saint Quentin en Yvelines, Versailles, France

Yoshiaki Matsuo, Department of Materials Science and Chemistry, University of Hyogo, Hyogo, Japan

Michel Mortier, Laboratoire de Chimie de la Matière Condensée de Paris, UMR CNRS, Paris, France

Sanghamitra Mukhopadhyay, Department of Chemistry, Imperial College London, London, UK

Jean-Louis Paillaud, Laboratoire de Matériaux à Porosité Contrôlée, UMR-CNRS, Université de Haute Alsace, Mulhouse, France

Joël Patarin, Laboratoire de Matériaux à Porosité Contrôlée, UMR-CNRS, Université de Haute Alsace, Mulhouse, France

Nicolas Penin, Institute of Condensed Matter Chemistry of Bordeaux (ICMCB-CNRS), University Bordeaux 1, Pessac, France

Vladimir A. Prituzhalov, Department of Chemistry, Moscow State, University, Moscow, Russia

Stephan Rüdiger, Institute for Chemistry, Humboldt University of Berlin, Berlin, Germany

Gudrun Scholz, Institute for Chemistry, Humboldt University of Berlin, Berlin, Germany

Thomas Schwarze, Solvay Fluor GmbH, Hannover, Germany

Barry Searle, Computational Science and Engineering Department, STFC Daresbury Laboratory, Warrington, Cheshire, UK

Gilles Silly, Institut Charles Gerhardt Montpellier, Physicochimie des Matériaux Désordonnés et Poreux, Université de Montpellier II, Montpellier, France

Angélique Simon-Masseron, Laboratoire de Matériaux à Porosité Contrôlée, UMR-CNRS, Université de Haute Alsace, Mulhouse, France

Laetitia Sronek, Institute of Condensed Matter Chemistry of Bordeaux (ICMCB-CNRS), University Bordeaux 1, Pessac, France

Hans-Walter Swidersky, Solvay Fluor GmbH, Hannover, Germany

Masayuki Takashima, Graduate School of Engineering, University of Fukui, Fukui, Japan

Alain Tressaud, Institute of Condensed Matter Chemistry of Bordeaux (ICMCB-CNRS), University Bordeaux 1, Pessac, France

xxiv List of Contributors

Alexandre Vimont, ENSICAEN, Université de Caen, CNRS, Caen, France

Adrian Wander, Computational Science and Engineering Department, STFC Daresbury Laboratory, Warrington, Cheshire, UK

John M. Winfield, Department of Chemistry, University of Glasgow, Glasgow, UK

Susumu Yonezawa, Graduate School of Engineering, University of Fukui, Fukui, Japan

1

Sol-Gel Synthesis of Nano-Scaled Metal Fluorides – Mechanism and Properties

Erhard Kemnitz, Gudrun Scholz and Stephan Rüdiger

Humboldt-Universität zu Berlin, Institut für Chemie, Brook – Taylor – Str. 2,

D – 12489 Berlin, Germany

1.1 Introduction

Sols are dispersions of nanoscopic solid particles in, for example, liquids – i.e., colloidal solutions. The particles can agglomerate forming a three-dimensional network in the presence of large amounts of the liquid thus forming a gel. Inorganic sols are prepared via the sol-gel process, the investigation of which started in the nineteenth century. This process received great impetus from the investigations of Stöber *et al.* [1], who studied the use of pH adjustment on the size of silica particles prepared via sol-gel hydrolysis of tetra-alkoxysilanes.

1.1.1 Sol-Gel Syntheses of Oxides – An Intensively Studied and Widely Used Process

Hydrolysis of alkoxysilanes and later on of metal alkoxides in organic solutions has become an intensively studied and widely used process [2]. The most common products are almost homodispersed nanosized silica or metal oxide particles for, e.g., ceramics or

glasses, or the aqueous sols are used to prepare different coatings for, e.g., optical purposes. Optical applications depend on differences in the respective indices of refraction of the coated material and the applied layer. The latter has to be of very uniform and thoroughly adjusted thickness.

The sol-gel hydrolysis of alkoxysilanes, the most intensively explored one, basically proceeds in two steps. The first step is the hydrolytic replacement of alkoxy groups, OR, by hydroxyl groups, OH, shown schematically in Equation (1.1) for the first alkoxy group:

$$Si(OR)_4 + H_2O \rightarrow (RO)_3SiOH + ROH$$
 (1.1)

Because of their relatively high hydrolytic stability, hydrolysis of alkoxysilanes (1.1) has to be catalysed by Brønstedt acids or bases.

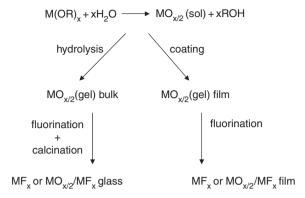
In the second step, the primary hydrolysis products undergo condensation reactions under elimination of water (Equation (1.2)) or alcohol (Equation (1.3)).

$$X_3Si-OH + HO-SiX_3 \rightarrow X_3Si-O-SiX_3 + H_2O(X = OR, OH)$$
 (1.2)

$$X_3Si-OH + RO-SiX_3 \rightarrow X_3Si-O-SiX_3 + ROH(X = OR, OH)$$
 (1.3)

As a result tiny particles with a very open structure are formed. The overall process can be controlled by adjusting the reaction conditions. The colloidal solution of these particles, the sol, can be used as such for, e.g., coating or it can be worked up to yield, eventually, nanoscopic oxide particles. However, metal oxide sols obtained in this way always contain a sometimes remarkable organic part. Its separation demands calcination temperatures of at least 623 K in order to convert the 'precursors' into pure metal oxide materials.

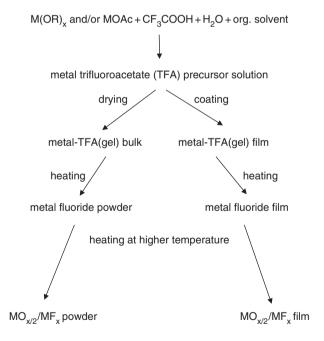
Substituting a certain part of the alkoxidic groups by nonhydrolysable ones, such as alkyl groups in the case of alkoxysilanes or phosphonic acid in the case of metal alkoxides, organically modified oxides, i.e. inorganic-organic hybrid materials, have been prepared.


1.1.2 Sol-Gel Syntheses of Metal Fluorides – Overview of Methods

Selected metal fluorides can, in application-relevant fields, outperform metal oxides and silica. Thus, for instance, magnesium fluoride and aluminium fluoride and, in particular, alkali hexafluoroaluminates have both a lower index of refraction and a much broader spectral range of transparency even than silica, making them very interesting for optical layers.

Consequently, several approaches for the preparation of nanoscopic metal fluorides and metal fluoride thin layers have been developed and proposed. Besides physical methods such as milling, laser dispersion or molecular-beam epitaxy, different chemical methods exist. Basically, three approaches can be distinguished:

(i) Postfluorination of a metal oxide preformed via sol-gel route [3].


This route is shown schematically in Scheme 1.1. The disadvantages of this route are, to name two, incomplete fluorination of the bulk metal oxides and decrease of surface area in course of the fluorination.

Scheme 1.1 Metal fluoride preparation via post fluorination of sol-gel prepared metal oxides (Reproduced from [4] by permission of Elsevier Publishers)

(ii) Preparation of a precursor containing a metal compound with organically bound fluorine such as trifluoroacetate, which is calcined to decompose the fluoroorganic component under formation of metal fluoride [5].

This route, shown in Scheme 1.2, also starts from metal alkoxides, which are reacted in solution with, e.g., trifluoroacetic acid to form metal trifluoroacetate sol. This can be

Scheme 1.2 Metal fluoride preparation via metal fluoroacetate sol-gel formation and following thermal decomposition. (Reproduced from [4] by permission of Elsevier Publishers)

4 Functionalized Inorganic Fluorides

used for coating experiments. The decisive final step is the thermal decomposition of the fluoro-organic constituent, because of which thermolabile materials cannot be coated. Another disadvantage is the probability that oxidic components can be formed as admixtures or oxofluorides.

(iii) Fluorolytic sol-gel process as counterpart to the hydrolytic one.

The fluorolytic sol-gel route follows rather strictly the 'classical' hydrolytic one by reacting metal alkoxides in anhydrous solution with hydrogen fluoride instead of the hydrogen oxide of the 'classical' process. Consequently, it results eventually in metal fluorides instead of metal oxides.

The fluorolytic sol-gel process, its execution, mechanism, scope as well as properties and possible fields of application of its products are the subjects of this chapter.

1.2 Fluorolytic Sol-Gel Synthesis

Metal alkoxides can be regarded as metal salts of alcohols, where the latter are very weak Brønstedt acids. Acids that are stronger than the respective alcohol can therefore replace alkoxy groups attached to the metal ion under liberation of the alcohol and formation of the metal fluoride according to Equation (1.4).

$$M(OR)_n + x \ HF \ \rightarrow M(OR)_{n-x} F_x + x \ ROH \ (M = metal \ ion) \eqno(1.4)$$

In fact, starting with aluminium isopropoxide [6], a broad range of metal alkoxides have been subjected to a sol-gel-like liquid-phase fluorination with hydrogen fluoride in organic solution [4, 7]. Although Equation (1.4) closely resembled Equation (1.1) there is an important difference in that condensation reactions like those of Equations (1.2) and (1.3) are not possible in the fluorolysis system. On the other hand, the fluorolysis reactions typically result in the formation of a sol-gel. The formation of a gel was already mentioned in the first paper on metal alkoxide fluorolysis, reporting the reaction of aluminium isopropoxide in alcoholic solution with an ethereal solution of hydrogen fluoride [6]. The gel formation is obviously due to an important consequence of the replacement of alkoxy groups by fluoride, i.e., the Lewis acidity of the metal ion increases leading to a strengthening of the interaction between (liberated) alcohol molecules and metal ions. As a result alcohol molecules that can occupy ligand positions might establish a loose net between (partly) fluorinated metal ions resulting eventually in metal fluoride sol or even gels. Surprisingly, attempts to isolate pure AlF₃ by drying and calcining the gel were not successful; the product obtained had an understoichiometric amount of fluorine even when the primary reaction has been carried out with an overstoichiometric amount of HF [8]. An additional fluorination of the dried gel under gentle conditions (see below) has proved to be a suitable way to remove the attached organic components resulting in X-ray amorphous, highly Lewis acidic aluminium fluoride with unusual large specific surface area, named HS-AlF₃ [9].