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Preface

There has been wide interest throughout the financial literature on theoretical and

applied problems in the context of ARCH modelling. While a plethora of articles

exists in various international journals, the literature has been rather sparse when it

comes to books with an exclusive focus on ARCH models. As a result, students,

academics in the area of finance and economics, and professional economists with

only a superficial grounding in the theoretical aspects of econometric modelling,

while able to understand the basic theories about model construction, estimation and

forecasting, often fail to get a grasp of how these can be used in practice.

The present book addresses precisely these issues by interweaving practical

questions with approaches hinging on financial and statistical theory: we have

adopted an interactional exposition of the ARCH theory and its implementation

throughout. This is a book of practical orientation and applied nature intended for

readers with a basic knowledge of time series analysis wishing to gain an aptitude in

the applications of financial econometric modelling. Balancing statistical methodol-

ogy and structural descriptive modelling, it aims to introduce readers to the area of

discrete time applied stochastic volatility models and to help them acquire the ability

to deal with applied economic problems. It provides background on the theory of

ARCH models, but with a focus on practical implementation via applications to real

data (the accompanying CD-ROM provides programs and data) and via examples

worked with econometrics packages (EViews and the G@RCH module for the Ox

package) with step-by-step explanations of their use. Readers are familiarized with

theoretical issues of ARCH models from model construction, fitting and forecasting

through to model evaluation and selection, and will gain facility in employing these

models in the context of financial applications: volatility forecasting, value-at-risk

forecasting, expected shortfall estimation, and volatility forecasts for pricing options.

Chapter 1 introduces the concept of an autoregressive conditionally heterosce-

dastic (ARCH) process and discusses the effects that various factors have on financial

time series such as the leverage effect, the non-trading period effect, and the non-

synchronous trading effect. Chapter 2 provides an anthology of representations of

ARCH models that have been considered in the literature. Estimation and simulation

of the models is discussed, and several misspecification tests are provided. Chapter 3

deals with fractionally integrated ARCH models and discusses a series of tests for

testing the hypothesis of normality of the standardized residuals. Chapter 4 famil-

iarizes readers with the use of EViews in obtaining volatility forecasts. Chapter 5

treats the case of ARCH models with non-normally distributed standardized



innovations – in particular, models with innovations with Student t, beta, Paretian or

Gram–Charlier type distributions, aswell as generalized error distributions. Chapter 6

acquaints readers with the use of G@RCH in volatility forecasting. Chapter 7

introduces realized volatility as an alternative volatility measure. The use of high-

frequency returns to compute volatility at a lower frequency and the prediction of

volatility with ARFIMAXmodels are presented. Chapter 8 illustrates applications of

volatility forecasting in risk management and options pricing. Step-by-step empirical

applications provide an insight into obtaining value-at-risk estimates and expected

shortfall forecasts. An options trading game driven by volatility forecasts produced by

various methods of ARCH model selection is illustrated, and option pricing models

for asset returns that conform to anARCHprocess are discussed. Chapter 9 introduces

the notion of implied volatility and discusses implied volatility indices and their use in

ARCH modelling. It also discusses techniques for forecasting implied volatility.

Chapter 10 deals with evaluation and selection of ARCH models for forecasting

applications. The topics of consistent ranking and of proxy measures for the actual

variance are extensively discussed and illustrated via simulated examples. Statistical

tests for testing whether a model yields statistically significantly more accurate

volatility forecasts than its competitors are presented, and several examples illustrat-

ing methods of model selection are given. Finally, Chapter 11 introduces multivariate

extensions of ARCH models and illustrates their estimation using EViews and

G@RCH.

The contents of the book have evolved from lectures given to postgraduate and

final-year undergraduate students at the Athens University of Economics and

Business and at the University of Central Greece. Readers are not expected to have

prior knowledge of ARCH models and financial markets; they only need a basic

knowledge of time series analysis or econometrics, alongwith some exposure to basic

statistical topics such as inference and regression, at undergraduate level.

The book is primarily intended as a text for postgraduate and final-year under-

graduate students of economic, financial, business and statistics courses. It is also

intended as a reference book for academics and researchers in applied statistics and

econometrics, and doctoral students dealing with volatility forecasting, risk evalua-

tion, option pricing, model selection methods and predictability. It can also serve as a

handbook for consultants as well as traders, financial market practitioners and

professional economists wishing to gain up-to-date expertise in practical issues of

financial econometric modelling. Finally, graduate students on master’s courses

holding degrees from different disciplines may also benefit from the practical

orientation and applied nature of the book.

Writing this book has been both exciting and perplexing.We have tried to compile

notions, theories and practical issues that by nature lie in areas that are intrinsically

complex and ambiguous such as those of financial applications. From numerous

possible topics, we chose to include those that we judged most essential. For each of

these,we have provided an extensive bibliography for the readerwishing to go beyond

the material covered in the book.

Wewould like to extend our thanks to the several classes of studentswhose queries

and comments in the course of the preparation of the book helped in planning our

xii PREFACE



approach to different issues, in deciding the depth to which chosen topics should be

covered and in clearing up ambiguities. We are also grateful to the many people

(university colleagues, researchers, traders and financial market practitioners), who

by occasional informal exchange of views have had an influence on these aspects as

well. Much of the material in this book was developed while the first author was on

sabbatical leave at the Department of Statistics, University of California, Berkeley,

which she gratefully acknowledges for providing her with a wonderful work

environment. Moreover, it has been a pleasure to work on this project with Kathryn

Sharples, Simon Lightfoot, Susan Barclay, Richard Davies, Heather Kay and Ilaria

Meliconi at John Wiley & Sons, Ltd, copy editor Richard Leigh who so attentively

read the manuscript and made useful editing suggestions, and Poirei Sanasam at

Thomson Digital. Most importantly, we wish to express our gratitude to our families

for their support.

May 2009 Evdokia Xekalaki

Stavros Degiannakis
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Notation

� Hadamard (elementwise) product

A Lð Þ Polynomial of ARCH

AD Anderson–Darling statistic

AIC Akaike information criterion

B Matrix of unknown parameters in a multivariate

regression model.

B :; :ð Þ Cumulative distribution function of the binomial distribution

B Lð Þ Polynomial of GARCH

B tð Þ Standard Brownian motion

c :ð Þ Smooth function on [0,1].

ci Autoregressive coefficients

C Lð Þ Polynomial of AR

Ct Matrix of conditional correlations

C
tð Þ
t Call option at time t, with t days to maturity

C
tð Þ
tþ1jt Call option at time tþ 1 given the information available at

time t, with t days to maturity

CGR Correlated gamma ratio distribution

CM Cram�er–von Mises statistic

d Exponent of the fractional differencing operator 1�Lð Þd in

FIGARCHmodels
~d Exponent of the fractional differencing operator 1�Lð Þ~d in

ARFIMAX models
~~d Integer differencing operator

di Moving average coefficients

dti Duration or interval between two transactions, dti � ti�ti�1

D Lð Þ Polynomial of MA

DM A;Bð Þ Diebold–Mariano statistic

ES
ð1�pÞ
tþtjt Expected shortfall t days ahead.

ES
ð1�pÞ
tþ1jt Expected shortfall forecast at time tþ 1 based on information

available at time t, at 1�pð Þ probability level.

f :ð Þ Probability density function

fað:Þ a-quantile of the distribution with density function f :ð Þ
f BGð Þ x; y;_T ; r

� �
Probability density function of the bivariate gamma

distribution



f CGRð Þ x; 2�1 _
T ; r

� �
Probability density function of the correlated gamma ratio

distribution

fd 0ð Þ Spectral density at frequency zero

f GCð Þ zt; n; gð Þ Probability density function of Gram–Charlier distribution

f GEDð Þ zt; nð Þ Probability density function of generalized error distribution

f GTð Þ zt; n; gð Þ Probability density function of generalized t distribution

f SGEDð Þ zt; n; yð Þ Probability density function of skewed generalized error

distribution

f skTð Þ zt; n; gð Þ Probability density function of skewed Student t distribution

f tð Þ zt; nð Þ Probability density function of standardized Student

t distribution.

Fð:Þ Cumulative distribution function

2F2 :; :; :; :; :ð Þ Generalized hypergeometric function

Fil Filter

FoEn 1;2ð Þ Forecast encompassing statistic of Harvey et al. (1998)

g :ð Þ Functional form of conditional variance

gst Constant multiplier in SWARCH model

GED Generalized error distribution

GT Generalized t distribution

Ht Conditional covariance matrix of multivariate stochastic

process, Ht � Vt�1 ytð Þ
Hitt Index of VaR violation minus expected ratio of violations,

Hitt ¼ ~It�p

HQ Hannan and Quinn information criterion

i Vector of ones.

It Information set
~It Index of VaR violations

JB Jarque–Bera test

k Dimension of vector of unknown parameters b
~k Number of slices

K Exercise (or strike) price
~K Number of regimes in SWARCH model� � �
K Number of factors in the

� � �
K Factor ARCH p; qð Þ model

KS Kolmogorov–Smirnov statistic

KS* Kuiper statistic

Ku Kurtosis

l Order of the moving average model

li Eigenvalue

lt :ð Þ Log-likelihood function for the tth observation

log Natural logarithm

L Lag operator

LT :ð Þ Full-sample log-likelihood function based on a sample

of size T

LRcc Christoffersen’s likelihood ratio statistic for conditional

coverage.
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LRin Christoffersen’s likelihood ratio statistic for independence of

violations

LRun Kupiec’s likelihood ratio statistic for unconditional coverage.

m Number of intraday observations per day

mDM A;Bð Þ Modified Diebold–Mariano statistic

MGN A;Bð Þ Morgan–Granger–Newbold statistic

n Dimension of the multivariate stochastic process, ytf g
nij Number of points in time with value i followed by j

N Total number of VaR violations, N ¼ S~T
t¼1
~It

N :ð Þ Cumulative distribution function of the standard normal

distribution

NRTt Net rate of return at time t from trading an option.

p Order of GARCH form

pi;t Filtered probability in regime switch models (the probability

of the market being in regime i at time t)

pt Switching probability in regime switch models

P :ð Þ Probability

P
tð Þ
t Put option at time t, with t days to maturity

P
tð Þ
tþ1jt Put option at time tþ 1 given the information available at time

t, with t days to maturity

~q Order of BEKK p; q; ~qð Þ model.

qt Switching probability in regime switch models

rft Rate of return on a riskless asset

R2 Coefficient of multiple determination

RTt Rate of return at time t from trading an option

st Regime in SWARCH model.

y �̂it Risk-neutral log-returns at time t.

q Order of ARCH form

Q LBð Þ Ljung–Box statistic

rj Autocorrelation of squared standardized residuals at j lags

skT Skewed Student t distribution

St Market closing price of asset at time t
~S Tð Þ Terminal stock price adjusted for risk neutrality

SBC Schwarz information criterion

SGED Skewed generalized error distribution

SH Shibata information criterion

Sk Skewness

SPA i*ð Þ Superior predictive ability statistic for the benchmarkmodel i�

T Number of total observations, T ¼ ~T þ T
^

~T Number of observations for out-of-sample forecasting

T
^

Number of observations for rolling sample
_
T Number of observations for model selection methods in out-

of-sample evaluation vt ¼ e2t�s2t
VaR

ð1�pÞ
t VaR at 1�p probability level at time t

NOTATION xvii



VaR
ð1�pÞ
tþ1jt VaR forecast at time tþ 1 based on information available at

time t, at 1�pð Þ probability level

VaR
ð1�pÞ
tþtjt VaR t days ahead

dVaRð1�pÞ
t VaR in-sample estimate at time t, at 1�p probability level

vech :ð Þ Operator stacks the columns of square matrix.

w Vector of estimated parameters for the density function f

w
^

Number of parameters of vector w

wi Weight

X Transaction cost

yt Log-returns

yt Multivariate stochastic process

ytþ1jt ið Þ One-step-ahead conditional mean at time tþ 1 based on

information available at time t, from model i

y
BCð Þ
t Box–Cox transformed variable of yt
ztþ1jt One-step-ahead standardized prediction errors at time tþ 1

based on information available at time t.

ac Measure of cost of capital opportunity

b Vector of unknown parameters in a regression model

gd ið Þ Sample autocovariance of ith order

gt Dividend yield

et Innovation process for the conditional mean of multivariate

stochastic process, et � yt�lt
etþ1jt One-step-ahead standardized prediction errors at time tþ 1

based on information available at time t

~et Innovation process in SWARCH model

y Vector of estimated parameters for the conditional mean and

variance

yðtÞ
ið Þ Vector of estimated parameters for the conditional mean and

variance at time t from model i

y
^

Number of parameters of vector y
k Order of the autoregressive model

m Instantaneous expected rate of return

m :ð Þ Functional form of conditional mean

mt Predictable component of conditional mean

lt Conditional mean of multivariate stochastic process,

lt � Et�1 ytð Þ
n Tail-thickness parameter

pij Percentage of points in time with value i followed by j,

pij ¼ nij=Sjnij
r Correlation coefficient

s Instantaneous variance of the rate of return

si;j;t Conditional covariance between asset returns i and j at time t.

s2tþ1 True, but unobservable, value of the variance at time tþ 1
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s2tþ1jt One-step-ahead conditional variance at time tþ 1 based on

information available at time t.

s2tþ1jt ið Þ One-step-ahead conditional variance at time tþ 1 based on

information available at time t, from model i.

s2tþsjt s-days-ahead conditional variance at time tþ s based on

information available at time t

s2 tð Þ
tþ1 True, but unobservable, value of variance for a period of t

days, from tþ 1 until tþ t
s2 tð Þ
tþ1jt Variance forecast for a period of t days, from tþ 1 until tþ t,

given the information available at time t

~s2 tð Þ
tþ1 Proxy for true, but unobservable, value of variance for a period

of t days, from tþ 1 until tþ t
�s tð Þ
tþ1jt Average standard deviation forecasts from tþ 1 up to tþ t,

given the information available at time t,

�s tð Þ
tþ1jt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t�1

Pt
i¼1

p
s2tþijt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t�1s2 tð Þ

tþ1jt
q

ŝ2tþ1 In-sample conditional variance at time tþ 1 based on the

entire available data set T

ŝ2 tð Þ
tþ1 In-sample conditional variance for a period of t days, from

tþ 1 until tþ t, based on the entire available data set T

ŝ2 RVð Þ
unð Þ;tþ1

In-sample realized volatility at time tþ 1 based on the entire

available data set T

s2 RVð Þ
tþ1 Observable value of the realized variance at time tþ 1

s2 RVð Þ tð Þ
tþ1 Observable value of the realized variance for a period of t

days, from tþ 1 until tþ t
s2 RVð Þ

unð Þ;tþ1jt One-day-ahead conditional realized variance at time tþ 1

based on information available at time t

t Point in time (i.e. days) for out-of-sample forecasting. Also

days to maturity for options

ut Vector of predetermined variables included in It
f :ð Þ Functional form of conditional variance in conditional mean

in GARCH-M model

F :; :; :ð Þ Confluent hypergeometric function

F Lð Þ Polynomial of FIGARCH

j t; a; b; s; mð Þ Characteristic function of stable Paretian distribution

w2gð Þ Pearson’s chi-square statistic

c Vector of estimated parameters for the conditional mean,

variance and density function, c0 ¼ y0;w0ð Þ
c :ð Þ Euler psi function

c
^

Number of parameters of vector c, c
^¼ y

^þw
^

ĉ
Tð Þ

Maximum likelihood estimator of c based on a sample

of size T
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�C tð Þ
SEð Þ ið Þ Mean squared error loss function for model i volatility

forecasts t days ahead,
i.e. �C tð Þ

SEð Þ ið Þ ¼ ~T
�1 P

t¼1~T s2 tð Þ
tþ1jt ið Þ�s2 tð Þ

tþ1 ið Þ
� �2

C tð Þ
SEð Þt ið Þ Squared error loss function for models i volatility forecasts t

days ahead
�C tð Þ

Average of a loss function for t-days-ahead volatility

forecasts, i.e. �C tð Þ ¼ ~T
�1 P~T

t¼1 C
tð Þ
t

C tð Þ
t ið Þ Loss function that measures the distance between actual

volatility over a t-day period and model i volatility forecast

over the same period

Ct ið Þ Loss function that measures the distance between one-day

actual volatility and its forecast by model i, i.e. Ct ið Þ � C 1ð Þ
t ið Þ

C tð Þ
t i�;ið Þ Difference of loss functions (loss differential) ofmodels i� and

i, C tð Þ
t i�;ið Þ ¼ C tð Þ

t i�ð Þ�C tð Þ
t ið Þ

�C tð Þ
i�;ið Þ Sample mean loss differential of models i� and i, �C tð Þ

i�;ið Þ ¼ ~T
�1P~T

t¼1 C
tð Þ
t i�;ið Þ
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1

What is an ARCH process?

1.1 Introduction

Since the first decades of the twentieth century, asset returns have been assumed to

form an independently and identically distributed (i.i.d.) random process with zero

mean and constant variance. Bachellier (1900) was the first to contribute to the theory

of random walk models for the analysis of speculative prices. If Ptf g denotes the

discrete time asset price process and ytf g the process of continuously compounded

returns, defined by yt ¼ 100 log Pt=Pt�1ð Þ, the early literature viewed the system that

generates the asset price process as a fully unpredictable random walk process:

Pt ¼ Pt�1 þ et
et �i:i:d: N 0; s2ð Þ; ð1:1Þ

where et is a zero-mean i.i.d. normal process. Figures 1.1 and 1.2 show simulated

Ptf gTt¼1 and ytf gTt¼1 processes for T ¼ 5000, P1 ¼ 1000 and s2 ¼ 1.

However, the assumptions of normality, independence and homoscedasticity do

not always hold with real data.

Figures 1.3 and 1.4 show the daily closing prices of the London Financial Times

Stock Exchange 100 (FTSE100) index and the Chicago Standard and Poor’s 500

Composite (S&P500) index. The data cover the period from 4April 1988 until 5 April

2005. At first glance, one might say that equation (1.1) could be regarded as the data-

generating process of a stock index. The simulated process Ptf gTt¼1 shares common

characteristics with the FTSE100 and the S&P500 indices.1 As they are clearly

ARCH Models for Financial Applications Evdokia Xekalaki and Stavros Degiannakis

� 2010 John Wiley & Sons, Ltd

1 The aim of the visual comparison here is not to ascertain a model that is closest to the realization of the

stochastic process (in fact another simulated realization of the process may result in a path quite different

from that depicted in Figure 1.1). It ismerely intended as a first step towards enhancing the reader’s thinking

about or conceiving of these notions by translating them into visual images. Higher-order quantities, such as

the correlation, absolute correlation and so forth, aremuchmore important tools in the analysis of stochastic

process than their paths.



non-stationary, the autocorrelations presented in Figure 1.5 are marginally less than

unity in any lag order. Figure 1.6 plots the distributions of the daily FTSE100 and

S&P500 indices as well as the distribution of the simulated process Ptf gTt¼1. The

density estimates are based on the normal kernel with bandwidths method calculated

according to equation (3.31) of Silverman (1986). S&P500 closing prices and the

simulated process Ptf gTt¼1 have similar density functions.

However, this is not the case for the daily returns. Figures 1.7 and 1.8 depict the

FTSE100 and S&P500 continuously compounded daily returns, yFTSE100;t
� �T

t¼1
and
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Figure 1.2 Simulated ytf g process, where yt¼ 100 log(Pt=Pt�1), Pt ¼ Pt�1 þ et,
P1 ¼ 1000 and et �i:i:d: N 0; 1ð Þ.
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Figure 1.1 Simulated Ptf g process, where Pt ¼ Pt�1 þ et, P1 ¼ 1000 and et �i:i:d:
N 0; 1ð Þ.
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ySP500;t
� �T

t¼1
, while Figure 1.9 presents the autocorrelations of ytf gTt¼1, yFTSE100;t

� �T
t¼1

and ySP500;t
� �T

t¼1
for lags of order 1, . . ., 35. The 95% confidence interval for the

estimated sample autocorrelation is given by�1:96=
ffiffiffiffi
T

p
, in the case of a process with

independently and identically normally distributed components. The autocorrelations

of the FTSE100 and the S&P500 daily returns differ from those of the simulated

process. In both cases, more than 5% of the estimated autocorrelations are outside the

above 95% confidence interval. Visual inspection of Figures 1.7 and 1.8 shows clearly

that themean is constant, but thevariance keeps changing over time, so the return series

does not appear to be a sequence of i.i.d. random variables. A characteristic of asset

returns, which is noticeable from the figures, is the volatility clustering first noted by
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Figure 1.4 FTSE100 equity index closing prices from 4 April 1988 to 5 April 2005.
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Figure 1.3 S&P500 equity index closing prices from 4 April 1988 to 5 April 2005.
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Mandelbrot (1963): ‘Large changes tend to be followed by large changes, of either sign,

and small changes tend to be followed by small changes’. Fama (1970) also observed

the alternation between periods of high and low volatility: ‘Large price changes are

followed by large price changes, but of unpredictable sign’.

Figure 1.10 presents the histograms of the stock market series. Asset returns are

highly peaked (leptokurtic) and slightly asymmetric, a phenomenon observed by

Mandelbrot (1963):

The empirical distributions of price changes are usually too peaked to be

relative to samples fromGaussian populations . . . the histograms of price

changes are indeed unimodal and their central bells [recall] the Gaussian

ogive. But, there are typically so many outliers that ogives fitted to the

mean square of price changes are much lower and flatter than the

distribution of the data themselves.
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t=1tP
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Figure 1.6 Density estimate of the S&P500 and FTSE100 closing prices, and of the

simulated process Ptf gTt¼1.
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Figure 1.5 Autocorrelation of the S&P500 and the FTSE100 closing prices and of

the simulated process Ptf gTt¼1, for t ¼ 1 1ð Þ35 lags. Dashed lines present the 95%

confidence interval for the estimated sample autocorrelations given by �1:96=
ffiffiffiffi
T

p
.
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According to Table 1.1, for estimated kurtosis2 equal to 7.221 (or 6.241) and an

estimated skewness3 equal to �0.162 (or �0.117), the distribution of returns is flat

(platykurtic) and has a long left tail relative to the normal distribution. The Jarque and

Bera (1980, 1987) test is usually used to test the null hypothesis that the series is

normally distributed. The test statistic measures the size of the difference between the

skewness, Sk, and kurtosis, Ku, of the series and those of the normal distribution. It is

computed as JB ¼ T
�
Sk2 þ � Ku�3ð Þ2=4��=6,whereT is the number of observations.

Under the null hypothesis of a normal distribution, the JB statistic is w2 distributed
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Figure 1.7 S&P500 equity index continuously compounded daily returns from

5 April 1988 to 5 April 2005.

2 Kurtosis is a measure of the degree of peakedness of a distribution of values, defined in terms of a

normalized form of its fourth central moment by m4=m
2
2 (it is in fact the expected value of quartic

standardized scores) and estimated by

Ku ¼ T
XT
t¼1

yt��yð Þ4
, XT

t¼1

yt��yð Þ2
 !2

;

where T is the number of observations and�y is the samplemean,�y ¼PT
t¼1 yt. The normal distribution has a

kurtosis equal to 3 and is calledmesokurtic. A distribution with a kurtosis greater than 3 has a higher peak

and is called leptokurtic, while a distribution with a kurtosis less than 3 has a flatter peak and is called

platykurtic. Some writers talk about excess kurtosis, whereby 3 is deducted from the kurtosis so that the

normal distribution has an excess kurtosis of 0 (see Alexander, 2008, p. 82).
3 Skewness is a measure of the degree of asymmetry of a distribution, defined in terms of a normalized

form of its third central moment of a distribution by m3=m
3=2
2 (it is in fact the expected value of cubed

standardized scores) and estimated by

Sk ¼
ffiffiffiffi
T

p XT
t¼1

yt��yð Þ3
, XT

t¼1

yt��yð Þ2
 !3=2

:

The normal distribution has a skewness equal to 0.A distributionwith a skewness greater than 0 has a longer

right tail is described as skewed to the right, while a distributionwith a skewness less than 0 has a longer left

tail and is described as skewed to the left.
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with 2 degrees of freedom. The two return series were tested for normality using JB

resulting in a p-value that was practically zero, thus signaling non-validity of the

hypothesis. Due to the fact that the JB statistic frequently rejects the hypothesis

of normality, especially in the presence of serially correlated observations, a series of

more powerful test statistics (e.g. the Anderson–Darling and the Cram�er–von Mises

statistics) were also computed with similar results. A detailed discussion of the

computation of the aforementioned test statistics is given in Section 3.3.
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Figure 1.9 Autocorrelation of the S&P500 and FTSE100 continuously com-

pounded daily returns and of the simulated process ytf gTt¼1, for t ¼ 1 1ð Þ35 lags.

Dashed lines present the 95% confidence interval for the estimated sample auto-

correlations given by �1:96=
ffiffiffiffi
T

p
.
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Figure 1.8 FTSE100 equity index continuously compounded daily returns from

5 April 1988 to 5 April 2005.
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In the 1960s and 1970s, the regularity of leptokurtosis led to a literature on

modelling asset returns as i.i.d. random variables having some thick-tailed distribu-

tion (Blattberg and Gonedes, 1974; Clark, 1973; Hagerman, 1978;Mandelbrot, 1963,

1964; Officer, 1972; Praetz, 1972). These models, although able to capture the

leptokurtosis, could not account for the existence of non-linear temporal dependence

such as volatility clustering observed from the data. For example, applying an

autoregressive model to remove the linear dependence from an asset returns series

and testing the residuals for a higher-order dependence using the Brock–Dechert–

Scheinkman (BDS) test (Brock et al., 1987, 1991, 1996), the null hypothesis of i.i.d.

residuals was rejected.

Table 1.1 Descriptive statistics of the S&P500 and the FTSE100 equity index returns

S&P500 FTSE100

Mean 0.034% 0.024%

Standard deviation 15.81% 15.94%

Skewness �0.162 �0.117

Kurtosis 7.221 6.241

Jarque–Bera 3312.9 1945.6

[p-value] [0.00] [0.00]

Anderson–Darling 44.3 28.7

[p-value] [0.00] [0.00]

Cram�er–von Mises 8.1 4.6

[p-value] [0.00] [0.00]

The annualized standard deviation is computed by multiplying the standard deviation of daily

returns by 2521/2, the square root of the number of trading days per year. The Jarque–Bera,

Anderson–Darling and Cram�er–von Mises statistics test the null hypothesis that the daily

returns are normally distributed.

FTSE100 S&P500 

0

200

400

600

800

1000

1200

1400

−6 −4 −2 0 2 4 6
0

200

400

600

800

1000

1200

−6 −4 −2 0 2 4 6

Figure 1.10 Histogram of the S&P500 and FTSE100 index log-returns.
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1.2 The autoregressive conditionally

heteroscedastic process

Autoregressive conditional heteroscedasticity (ARCH) models have been widely

used in financial time series analysis and particularly in analysing the risk of

holding an asset, evaluating the price of an option, forecasting time-varying

confidence intervals and obtaining more efficient estimators under the existence

of heteroscedasticity.

Before we proceed to the definition of the ARCHmodel, let us simulate a process

able to capture the volatility clustering of asset returns. Assume that the true data-

generating process of continuously compounded returns, yt, has a fully unpredictable

conditional mean and a time-varying conditional variance:

yt ¼ et;

et ¼ zt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 þ a1e2t�1

p
;

ð1:2Þ

where zt �i:i:d: N 0; 1ð Þ, zt is independent of et, a0 > 0 and 0 < a1 < 1. The uncondi-

tional mean of yt is E ytð Þ ¼ E ztð ÞE� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 þ a1e2t�1

p � ¼ 0, as E ztð Þ ¼ 0 and zt and et�1

are independent of each other. The conditional mean of yt given the lag values of et
is E ytjet�1; . . . ; e1ð Þ ¼ 0. The unconditional variance is V ytð Þ ¼ Eðe2t Þ�E etð Þ2 ¼
E z2t a0 þ a1e2t�1

� �� � ¼ a0 þ a1Eðe2t�1Þ. AsEðe2t Þ ¼ Eðe2t�1Þ,V ytð Þ ¼ a0 1�a1ð Þ�1
. The

conditional variance is V ytjet�1; . . . ; e1ð Þ ¼ E e2t jet�1; . . . ; e1
� � ¼ a0 þ a1e2t�1. The

kurtosis of the unconditional distribution equals Eðe4t Þ=Eðe2t Þ2¼ 3ð1�a21Þ=ð1�3a21Þ.
Note that the kurtosis exceeds 3 for a1 > 0 and diverges if a1 approaches

ffiffiffiffiffiffiffiffi
1=3

p
.

Figure 1.11 plots the unconditional kurtosis for 0 � a1 < 1=
ffiffiffi
3

p
.

Both the unconditional and conditional means and the unconditional variance of

asset returns remain constant, but the conditional variance has a time-varying

character as it depends on the previous values of et. Let us consider equation (1.2)

as the true data-generating function and produce 5000 values of yt. Figure 1.12
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Figure 1.11 Theunconditional kurtosis of et ¼ zt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 þ a1e2t�1

p
for 0 � a1 < 1=

ffiffiffi
3

p
and a0 > 0.
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