Stable Isotope Forensics

An Introduction to the Forensic Application of Stable Isotope Analysis

Wolfram Meier-Augenstein

Centre for Anatomy & Human Identification
University of Dundee, UK
SCRI, Invergowrie, Dundee, UK
Stable Isotope Forensics
Stable Isotope Forensics

An Introduction to the Forensic Application of Stable Isotope Analysis

Wolfram Meier-Augenstein

Centre for Anatomy & Human Identification
University of Dundee, UK
SCRI, Invergowrie, Dundee, UK
Contents

Series Foreword: Developments in Forensic Science Niamh Nic Daéid ix

Foreword: Sean Doyle xi

List of Figures xiii

List of Tables xix

Introduction: Stable Isotope ‘Fingerprinting’ or Chemical ‘DNA’: A New Dawn for Forensic Chemistry? xxi

I How It Works 1

I.1 What are Stable Isotopes? 3
I.2 Natural Abundance Variation of Stable Isotopes 5
I.3 Chemically Identical and Yet Not the Same 8
I.4 Isotope Effects, Mass Discrimination and Isotopic Fractionation 10
 I.4.1 Physical Chemistry Background 10
 I.4.2 Fractionation Factor α and Enrichment Factor ϵ 11
 I.4.3 Isotopic Fractionation in Rayleigh Processes 13
 I.4.4 Isotopic Fractionation Summary 14
I.5 Stable Isotopic Distribution and Isotopic Fractionation of Light Elements in Nature 16
 I.5.1 Hydrogen 16
 I.5.2 Oxygen 19
 I.5.2.1 18O in Bone Bio-apatite and Source Water 20
 I.5.2.2 Bone Remodelling 23
 I.5.2.3 Bone Diagenesis 24
 I.5.2.3.1 Diagenetic Changes of Bio-apatite 24
 I.5.3 Carbon 25
 I.5.4 Nitrogen 27
 I.5.4.1 Food Chain and Trophic Level Shift 29
 I.5.4.2 Diagenetic Changes of Structural Proteins 32
 I.5.5 Sulfur 33
I.6 Stable Isotope Forensics in Everyday Life 36
 I.6.1 ‘Food Forensics’ 37
 I.6.1.1 Authenticity and Provenance of Single-Seed Vegetable Oils 38
 I.6.1.2 Authenticity and Provenance of Beverages 39
 I.6.1.3 Authenticity and Provenance of other Premium Foods 41
CONTENTS

I.6.2 Counterfeit Pharmaceuticals 42
I.6.3 Environmental Forensics 43
I.6.4 Wildlife Forensics 46
I.6.5 Anti-Doping Control 47
I.7 Summary of Part I 49
I.8 Set problems 50
References 51

II Instrumentation and Analytical Techniques 65
 II.1 Mass Spectrometry versus Isotope Ratio Mass Spectrometry 67
 II.2 Instrumentation and δ Notation 72
 II.2.1 Dual-Inlet Isotope Ratio Mass Spectrometry 74
 II.2.2 Continuous Flow Isotope Ratio Mass Spectrometry 74
 II.2.3 Bulk Material Stable Isotope Analysis 77
 II.2.4 Compound-Specific Stable Isotope Analysis 78
 II.2.4.1 CSIA and Compound Identification 79
 II.2.4.2 Position-Specific Isotope Analysis 81
 II.2.4.3 CSIA of Polar, Non-Volatile Organic Compounds 83
 II.3 Isotopic Calibration and Quality Control in Continuous Flow Isotope Ratio Mass Spectrometry 85
 II.3.1 Two-Point or End-member Scale Correction 86
 II.3.1.1 Scale Correction of Measured δ2HV Values 87
 II.3.1.2 Scale Correction of Measured δ13CV Values 88
 II.4 Statistical Analysis of Stable Isotope Data within a Forensic Context 91
 II.4.1 Chemometric Analysis 91
 II.4.2 Bayesian Analysis 94
 II.5 Forensic Stable Isotope Analytical Procedures 100
 II.5.1 FIRMS Network 101
 II.6 Generic Considerations for Stable Isotope Analysis 102
 II.6.1 Generic Considerations for Sample Preparation 102
 II.6.2 Generic Considerations for BSIA 104
 II.6.2.1 Isobaric Interference 104
 II.6.3 Particular Considerations for 2H-BSIA 105
 II.6.3.1 Keeping Your Powder Dry 105
 II.6.3.2 Total δ2H versus True δ2H Values 106
 II.6.3.2.1 2H Isotope Analysis of Human Hair 108
 II.6.3.3 Ionization Quench Effect 113
 II.6.4 Generic Considerations for CSIA 116
 II.6.4.1 Isotopic Calibration during GC/C-IRMS 116
 II.6.4.2 Isotope Effects in GC/C-IRMS during Sample Injection 117
 II.6.4.3 Chromatographic Isotope Effect in GC/C-IRMS 118
 II.7 Summary of Part II 121
 II.8 Set Problems 122
 II.A How to Set Up a Laboratory for Continuous Flow Isotope Ratio Mass Spectrometry 123
 II.A.1 Pre-Installation Requirements 124
 II.A.2 Laboratory Location 124
 II.A.3 Temperature Control 125
 II.A.4 Power Supply 125
 II.A.5 Gas Supply 126
CONTENTS

II.A.6 Forensic Laboratory Considerations 129
II.A.7 Finishing Touches 130
References 136

III Stable Isotope Forensics: Case Studies and Current Research 143

III.1 Forensic Context 145
III.2 Distinguishing Drugs 149
 III.2.1 Natural and Semisynthetic Drugs 149
 III.2.1.1 Marijuana 149
 III.2.1.2 Morphine and Heroin 150
 III.2.1.3 Cocaine 152
 III.2.2 Synthetic Drugs 154
 III.2.2.1 Amphetamines 154
 III.2.2.2 MDMA: Synthesis and Isotopic Signature 157
 III.2.2.2.1 Three Different Synthetic Routes – Controlled Conditions 157
 III.2.2.3 Methamphetamine: Synthesis and Isotopic Signature 164
 III.2.2.3 Conclusions 167
 III.2.3 Conclusions 167
III.3 Elucidating Explosives 169
 III.3.1 Bulk Isotope Analysis of Explosives and Precursors 170
 III.3.1.1 Ammonium Nitrate 171
 III.3.1.2 Hexamine, RDX and Semtex 172
 III.3.1.3 Hydrogen Peroxide and Peroxides 176
 III.3.2 Isotopic Product/Precursor Relationship 179
 III.3.3 Potential Pitfalls 182
 III.3.4 Conclusions 183
III.4 Matching Matchsticks 184
 III.4.1 13C-Bulk Isotope Analysis 185
 III.4.2 18O-Bulk Isotope Analysis 186
 III.4.3 2H-Bulk Isotope Analysis 187
 III.4.4 Matching Matches from Fire Scenes 188
 III.4.5 Conclusions 189
III.5 Provenancing People 190
 III.5.1 Stable Isotope Abundance Variation in Human Tissue 191
 III.5.2 The Skull from the Sea 194
 III.5.3 A Human Life Recorded in Hair 197
 III.5.4 Found in Newfoundland 201
 III.5.5 The Case of ‘The Scissor Sisters’ 207
 III.5.6 Conclusions 211
III.6 Stable Isotope Forensics of other Physical Evidence 214
 III.6.1 Microbial Isotope Forensics 214
 III.6.2 Paper, Plastic (Bags) and Parcel Tape 215
 III.6.2.1 Paper 215
 III.6.2.2 Plastic and Plastic Bags 216
 III.6.2.3 Parcel Tape 218
 III.6.3 Conclusions 221
III.7 Summary 222
CONTENTS

III.A ‘Play True?’: Stable Isotopes in Anti-doping Control or Quis custodiet ipsos custodes? 224
 III.A.1 Testosterone Metabolism and 13C Isotopic Composition 226
 III.A.2 Analytical Methodology: Gas Chromatography and Peak Identification 230

III.B Sample Preparation Procedures 236
 III.B.1 Preparing Silver Phosphate from Bioapatite for 18O Isotope Analysis 236
 III.B.2 Acid Digest of Carbonate from Bioapatite for 13C and 18O Isotope Analysis 238
 III.B.3 Standard Protocol for Preparing Hair Samples for 2H Isotope Analysis 240

References 242

Government Agencies and Institutes with Dedicated Stable Isotope Laboratories 253

Acknowledgements 255

Recommended Reading 257

Author’s Biography 261

Index 263
Series Foreword
Developments in Forensic Science

The world of forensic science is changing at a very fast pace. This is in terms of the provision of forensic science services, the development of technologies and knowledge, and the interpretation of analytical and other data as it is applied within forensic practice. Practicing forensic scientists are constantly striving to deliver the very best for the judicial process, and as such need a reliable and robust knowledge base within their diverse disciplines. It is hoped that this book series will be a valuable resource for forensic science practitioners in the pursuit of such knowledge.

The Forensic Science Society is the professional body for forensic practitioners in the United Kingdom. The Society was founded in 1959 and gained professional body status in 2006. The Society is committed to the development of the forensic sciences in all of its many facets, and in particular to the delivery of highly professional and worthwhile publications within these disciplines through ventures such as this book series.

Dr Niamh Nic Daeid
Series Editor
Foreword

I am delighted to be able to write the foreword for this, the first textbook of stable isotope forensics.

The breadth of material covered is wide, ranging from fundamentals to policy issues, and therefore this text will be of benefit to practitioners, researchers and investigators, indeed to anyone who has an interest in this new forensic discipline.

The year 2001 saw the formation of the Forensic Isotope Ratio Mass Spectrometry (FIRMS) Network. Since then much has been achieved in terms of advancing the forensic application of stable isotope analysis, this textbook being the latest significant step.

These advances have been made in the face of considerable challenges resulting from the novelty and complexity of the technique. Isotope forensics has already proved a powerful tool in the investigation and prosecution of high-profile crimes, including terrorism. Stable isotope analysis enables questions regarding the source and history of illicit and other forensic materials to be addressed – questions which might otherwise remain unanswered.

Isotope forensics is now being widely adopted for profiling illicit materials and human provenancing. Stable isotope analysis has already been used successfully in two major terrorist trials in the United Kingdom, and in a variety of investigations and trials in the United Kingdom, Europe and the United States.

Dr Meier-Augenstein is to be commended for his vision in recognizing the forensic potential of stable isotopes, for his energy in developing and optimizing the methodology, and in promoting the technique to end-users. He is also well aware of the risk of contributing to a miscarriage of justice and recognizes that only an appropriate regulatory framework can significantly mitigate that risk.

The development of suitable databases of reference materials and appropriate tools for evaluation remain significant tasks; once complete the next decade should see isotope forensics taking a deserved place in mainstream forensic science and, to a greater extent, contributing to the efficient and effective delivery of justice.

Sean Doyle
Past Chair of the FIRMS Network
Principal Scientist, Forensic Explosives Laboratory, Defence Science and Technology Laboratory
September 2009
List of Figures

Part I

Figure I.1 \(\delta^2H \) and \(\delta^{18}O \) values of whole wood and plant sugars (beet and cane sugar) in the framework of the global meteoric water line 18

Figure I.2 Correlation plot of source water \(\delta^2H \) values versus \(\delta^2H \) values of fresh soft fruit water 19

Figure I.3 Correlation graphs according to Daux et al., Longinelli, and Luz and Kolodny for \(\delta^{18}O_{\text{phosphate}} \) versus \(\delta^{18}O_{\text{water}} \) and the resulting different solutions of \(\delta^{18}O_{\text{water}} \) for the same \(\delta^{18}O_{\text{phosphate}} \) 23

Figure I.4 Bivariate graph plotting \(\delta^{15}N \) versus \(\delta^{13}C \) values of scalp hair samples volunteered by residents in different countries reflecting their regionally different diet 26

Figure I.5 Schematic representation of typical \(\delta^{15}N \) values in relation to trophic level 28

Figure I.6 \(^{13}C \) isotopic composition of various food and animal tissue 29

Figure I.7 Bivariate graph plotting \(\delta^{15}N \) versus \(\delta^{13}C \) values from scalp hair of a vegan and an omnivore who has a relatively strong meat component in their diet 31

Figure I.8 Approximate \(\delta^{13}C \) values for \(^{13}C \) isotopic composition of various body pools and tissue 32

Figure I.9 Natural variation in \(^{13}C \) isotopic composition of single-seed vegetable oils and selected fatty acids isolated from these oils 39

Figure I.10 Bivariate plot of \(\delta^2H \) and \(\delta^{13}C \) values of ethanol from a selection of European white wines, including one suspect sample of wine labelled as vintage Austrian wine 41

Figure I.11 Isotopic bivariate plot of \(\delta^{13}C \) and \(\delta^{15}N \) values of the API folic acid from three different manufacturers at three different locations 44
LIST OF FIGURES

Figure I.12 Isotopic bivariate plot of δ^{13}C and δ^{18}O values of the API naproxen from six different manufacturers at four different locations 44

Part II

Figure II.1 Schematic (top) and picture (bottom) of a modern IRMS magnetic sector instrument with a multicollector analyser 70
Figure II.2 Schematic (top) and picture (bottom) of a typical EA-IRMS system 75
Figure II.3 Schematic (top) and picture (bottom) of a TC/EA-IRMS system 78
Figure II.4 Schematic (top) and picture (bottom) of a GC/C-IRMS system 80
Figure II.5 Schematic (top) and picture (bottom) of a GC(-MS)/C-IRMS hybrid system 82
Figure II.6 Trivariate plots of measured δ^{13}C, δ^2H and δ^{15}N values of 10 Ecstasy tablets from eight different seizures in two different European countries 92
Figure II.7 HCA (furthest neighbour, Euclidean distance) using δ^2H, δ^{13}C, δ^{15}N and δ^{18}O values as well as MDMA content from 10 Ecstasy tablets from eight different seizures in two different European countries 93
Figure II.8 Plot of PCA score factors for the first two principal components of multivariate data from farmed and wild European sea bass 93
Figure II.9 Means of δ^2H, δ^{13}C and δ^{18}O observations for each of 51 samples of white paints plotted over the smoothed bivariate density (darker equates to higher density) for each variate pair 97
Figure II.10 Costech Zero-Blank autosampler as used in our laboratory for BSIA by EA- or TC/EA-IRMS 107
Figure II.11 (Top) Untreated ammonium nitrate from six different sources. Note the already ‘wet’ appearance of the sample in the top right corner. (Bottom) The same samples after an 8-day exposure to ambient atmosphere 109
Figure II.12 Effect of argon concurrently present in the ion source on measured δ^{13}C values of same sized aliquots of CO$_2$ (accepted δ^{13}C$_{VPDB}$: –32.56‰) 114
Figure II.13 Illustration of the potential interference on a H$_2$ peak caused by a partial overlap with a following N$_2$ peak 115
Figure II.14 Comparison of peak heights, peak shape and retention time of a H$_2$ peak in the absence (left) and presence (right) of N$_2$ 115
LIST OF FIGURES

Figure II.15 Illustration of the time displacement caused by the ‘inverse’ chromatographic isotope effect between the 13CO$_2$ and 12CO$_2$ aspects of a compound CO$_2$ peak and the resulting S-shaped 45/44 ratio signal 119

Figure II.A.1 Pressure triggered change-over unit for helium supply 128

Figure II.A.2 Laboratory gas delivery manifold fed from an external gas supply 129

Part III

Figure III.1 Morphine and heroin 151
Figure III.2 Cocaine 154
Figure III.3 Six amphetamine powders from the 18 seizures isotopically profiled in Figure III.4 156
Figure III.4 Bivariate plot of δ^{15}N versus δ^{13}C values for 18 amphetamine seizures 157
Figure III.5 Schematic synthetic route for PMK from safrole 158
Figure III.6 Schematic synthetic routes for MDMA from PMK 158
Figure III.7 Bivariate plot of δ^{15}N versus δ^{13}C values of 18 MDMA batches from three different synthetic routes 159
Figure III.8 Bivariate plot of δ^2H versus δ^{13}C values of 18 MDMA batches from three different synthetic routes 159
Figure III.9 Three-dimensional plot of δ^2H versus δ^{15}N versus δ^{13}C values of MDMA hydrochloride samples synthesized from aliquots of the same precursor PMK but by three different routes of reductive amination 162
Figure III.10 HCA of 18 batches of MDMA; three variables, Euclidean distance, single linkage 163
Figure III.11 Schematic synthetic routes ‘Emde’ and ‘Nagai’ for methamphetamine from ephedrine or pseudoephedrine 166
Figure III.12 Bivariate plot of δ^{15}N versus δ^{18}O values for ammonium nitrate prills from various sources (country of origin shown where known) 171
Figure III.13 Ammonium nitrate prills from various sources 172
Figure III.14 Detailed bivariate plot of δ^{15}N versus δ^{13}C values for the explosive RDX from two different sources demonstrating homogeneity of the samples and reproducibility of isotope analysis 174
LIST OF FIGURES

Figure III.15 Hexamine to RDX 174
Figure III.16 Three-dimensional plot of δ^2H versus δ^{15}N versus δ^{13}C values for the RDX precursor hexamine 175
Figure III.17 Dendrogram of a HCA (single linkage, Euclidean distance) for the trivariate stable isotope dataset of 14 hexamine samples 176
Figure III.18 Changing δ^2H values of a hydrogen peroxide solution with increasing dilution 178
Figure III.19 Changing δ^{18}O values of a hydrogen peroxide solution with increasing dilution 178
Figure III.20 Bivariate plot of δ^2H versus δ^{13}C values from matchsticks recovered at the crime scene and seized from the suspect’s house as well as from the controls 188
Figure III.21 Global map for δ^{18}O values in precipitation 191
Figure III.22 You are what and where you eat and drink – a few stable isotopes in the human body 192
Figure III.23 Diagram of the area of skull submitted for isotope analysis 195
Figure III.24 Sample of scalp hair as submitted for sequential stable isotope analysis 198
Figure III.25 Time-resolved changes in 15N isotopic composition of the victim’s scalp hair 199
Figure III.26 Time-resolved changes in 2H isotopic composition of the victim’s scalp hair 200
Figure III.27 Geographic life history for the last 17 months prior to death as gleaned from 2H isotope analysis of scalp hair segments from the body found at Minerals Road, Conception Bay South, Newfoundland 205
Figure III.28 Poster based on information derived from, amongst other sources, stable isotope analysis for a public appeal for information regarding the murder victim found at Minerals Road, Conception Bay South, Newfoundland 207
Figure III.29 Geographic life trajectory of the murder victim found in the Dublin Royal Canal based on 18O isotope analysis of bone phosphate extracted from his femur 210
Figure III.30 (Top) Global map with highlighted areas with model predictions for δ^{18}O values in precipitation ranging from -10.1 to -7.6%o illustrating the constraining power of stable isotope profiling in aid of human provenancing. (Bottom)
LIST OF FIGURES

Zoomed-in version of the global map focusing on Central Europe and the United Kingdom 213

Figure III.31 Bivariate plots of δ^2H versus δ^{13}C values of (top) intact (untreated) brown parcel tape samples and (bottom) treated brown parcel tape samples (i.e. backing material only) 220

Figure III.A.1 Schematic of the metabolic pathway of testosterone 227
List of Tables

Part I

<table>
<thead>
<tr>
<th>Table I.1</th>
<th>Stable isotopes of light elements and their typical natural abundance</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table I.2</td>
<td>Representative but not concise list of international reference materials for stable isotope ratio mass spectrometry (IRMS) administered and distributed by the IAEA (Vienna, Austria)</td>
<td>7</td>
</tr>
<tr>
<td>Table I.3</td>
<td>Isotopic abundance of 13C and 2H in sugar from different sources and geographic origin</td>
<td>9</td>
</tr>
</tbody>
</table>

Part II

Table II.1	Comparison of MS and IRMS system performance when applied to stable isotope analysis at near-natural abundance levels	68
Table II.2	Key dates in instrument research and development influencing design and evolution of commercially available CF-IRMS systems	76
Table II.3	Sample batch sequence composition in BSIA favouring high sample throughput under stable experimental conditions using 2H isotope analysis of water as an example	86
Table II.4	Sample VSMOW – SLAP δ2H scale correction	87
Table II.5	Organic 13C reference materials available from the IAEA	89
Table II.6	Sample two-end-member VPDB δ13C scale corrections showing the effect on appropriate and inappropriate choice of end-members	89
Table II.7	List of 51 white architectural paints from different sources	95
Table II.8	Percentage distributions for the likelihood ratios from each comparison	99
Table II.A.1	List of useful tools and equipment in an IRMS laboratory	130
LIST OF TABLES

Table II.A.2 List of secondary organic standards for stable isotope analysis (courtesy of Arndt Schimmelmann, University of Indiana) 132

Part III

Table III.1 Observed ranges for δ²H, δ¹³C, δ¹⁵N and δ¹⁸O values of natural and hemisynthetic drugs 15
Table III.2 Summary δ²H, δ¹³C and δ¹⁵N values of MDMA hydrochloride samples synthesized from aliquots of the same precursor PMK, but by three different synthetic routes of reductive amination 161
Table III.3 Reported δ²H, δ¹³C and δ¹⁵N values of ephedrine hydrochloride and pseudo-ephedrine from various sources 165
Table III.4 Summary of fraction factors α and enrichment factors ε for individual hexamine/RDX precursor/product pairs 181
Table III.5 Results of stable isotope analysis of the tissue samples studied in the case of the unidentified body found at Minerals Road, Conception Bay South, Newfoundland 204
Table III.A.1 Athlete’s versus reported Δδ¹³C values for pathway-linked testosterone metabolites 229
Introduction

Stable Isotope ‘Fingerprinting’ or Chemical ‘DNA’: A New Dawn for Forensic Chemistry?

Starting with the conclusion first, I would say neither of the above two terms is appropriate, although I am convinced information locked into the stable isotopic composition of physical evidence may well represent a new dawn for forensic chemistry.

The title for this general introduction is a deliberate analogy to the term ‘DNA Fingerprinting’ coined by Professor Sir Alec J. Jeffreys. I seek to draw the reader’s attention to the remarkable analogy between the organic, life-defining material DNA and the more basic (and, on their own, lifeless) chemical elements in their various isotopic forms when examined in the context of forensic sciences, and human provenancing in particular. At the same time, it has also been my intention to alert readers from the start to the dangers of expecting miracles of stable isotope forensics. DNA evidence is at its most powerful when it can be matched against a comparative sample or a database entry and the same is true to a degree for the information locked into the isotopic composition of a given material. One could argue that the random match probability of 1 : 1 billion for a DNA match based on 10 loci and the theoretical match probability of an accidental false-positive match of a multi-isotope signature were also seemingly matched with multivariate or multifactor probabilistic equations being the common denominator for both. If we consider a material such as hair keratin and we make the simplifying assumption this material may exist naturally in as many different isotopic states per element as there are whole numbers in the natural abundance range for each isotope given in δ units of per mil (‰) (Fry, 2006), we can calculate a hypothetical figure for the accidental match probability of such a multi-element isotope analysis that is comparable to that of a DNA fingerprint.

For example, the widest possible natural abundance range for carbon-13 (13C) is 110‰ (Fry, 2006), so for the purpose of this example we could say keratin can assume 110 different integer 13C values. Analysing hair keratin for its isotopic composition with regard to the light elements hydrogen (H), carbon (C), nitrogen (N), oxygen (O) and sulfur (S) could thus theoretically yield a combined specificity ranging from 1 : 638 million to 1 : 103.95 billion. In fact, one can calculate that the analysis of hair keratin for its isotopic composition with regard to hydrogen, carbon, nitrogen, oxygen and
sulfur would theoretically yield a combined specificity of 1 : 1 billion, thus suggesting a ‘stable isotope fingerprint’ based on these four letters of the chemical alphabet may have the same accidental match probability as a DNA fingerprint that ultimately is based on the four letters of the DNA alphabet, A (adenine), C (cytosine), G (guanine) and T (thymine) (see Box). However, it should be stressed that it has as yet not been fully explored if this hypothetical level of random match probability and, hence, level of discrimination is actually achievable given that actually assumed natural abundance ranges of organic materials are usually much narrower than the widest possible range. We will learn more about that in the course of this book. Thus, forensic scientists and statisticians such as Jurian Hoogewerff and Jim Curran suggest more conservative estimates, and put the potentially realized random match probability of stable isotope fingerprints at levels between 1 : 10 000 and 1 : 1 million, depending on the nature and history of the material under investigation. However, even at these lower levels, stable isotope profiling is a potentially powerful tool.

Analogies between DNA and stable isotopes of light elements

<table>
<thead>
<tr>
<th>Biological DNA versus Chemical ‘DNA’</th>
<th>Alphabet of Biological DNA comprises the letters</th>
<th>Alphabet of Chemical ‘DNA’ comprises the letters</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>^2H</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>^{13}C</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>^{15}N</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>^{18}O</td>
<td></td>
</tr>
<tr>
<td>[U]</td>
<td>^{34}S</td>
<td></td>
</tr>
</tbody>
</table>

Random match probability of Biological DNA is approximately 1 : 1 billion (1×10^9) for a DNA profile based on 10 loci. Random match probability of a five-element stable isotope profile can theoretically range from 1 : 693 million (6.93×10^8) to as high as 1 : 1.04×10^{11}. Note this is for illustrative purposes only and does not denote any equivalence between DNA bases and chemical elements.

While one can make a good case that isotopic abundances of ^2H, ^{13}C, ^{15}N and ^{34}S are independent variables, and figures representing their abundance range can hence be combined in a probabilistic equation, the same is not entirely the case for ^2H and ^{18}O, which when originating both from water behave like dependent variables. More relevant to this issue is the question if and to what degree isotopic abundance varies for any given material or compound. While across all materials and compounds known to man ^{13}C isotopic abundance may indeed stretch across a range of 110 units, its range in a particular material such as coca leaves may only extend to 7 units (Ehleringer et al., 2000).
Another reason why the analogy between DNA fingerprinting and stable isotope profiling should only be used in conjunction with qualifying statements is the fact that both a DNA fingerprint and a physical fingerprint are immutable – they do not change over time. Drawing on an example from environmental forensics, calling a gas chromatography or gas chromatography-mass spectrometry profile from a sample of crude oil spillage a fingerprint of that oil is a misnomer since ageing processes such as evaporation will lead to changes in the oil’s composition with regard to the relative abundance of its individual constituents. Incidentally, due to isotopic fractionation during evaporation the isotopic composition of any residual compound will have changed as compared to its isotopic composition at the point of origin. A more apt analogy would therefore be the use of the term stable isotope signature. Just as a person’s signature can change over time or under the burden of stress, so can the stable isotopic composition of the residual sample have changed by the time it ends up in our laboratories. Furthermore, in the same way a forensic expert relies on more than one physicochemical characteristic as well as drawing on experience and contextual information to arrive at an interpretation regarding similarity or dissimilarity, the stable isotope scientist combines measured data with experience, expertise and contextual information to come to a conclusion as to what the stable isotope signature does or does not reveal.

Despite these caveats it is easy to see why the prospect of potentially having such powerful a tool at one’s disposal for combating crime and terrorism has caused a lot of excitement in both the end-user and scientific communities. However, if the history of applying DNA fingerprinting in a forensic context has taught us anything then it is this – great potential is no substitute for good forensic science and good forensic science cannot be rushed or packaged to meet externally driven agendas. At first there was no great interest in this new forensic technique; however, after a few spectacular successes demand for what seemed to be the silver bullet to connect suspect perpetrators to victims or crime scenes increased faster than research, still concerned with answering underlying fundamental questions, could keep up with – and history has all but repeated itself recently on the subject of low template DNA. Good forensic science cannot be rushed, but is the outcome of good forensic science research and, in turn, becomes the foundation of good forensic practice. While the former requires proper funding, the latter requires proper regulation, and both requirements must be addressed and met.

Not surprisingly, therefore, even at the time of writing this book we still have a mountain to climb if we are to turn stable isotope forensics into a properly validated forensic analytical tool or technique that is fit-for-purpose. Even though this technique has been successfully applied in a number of high-profile criminal cases where salient questions could be answered by comparative analysis, this should not blind us to the fact that a considerable amount of time, effort, money and careful consideration still has to be spent to develop and finely hone this technique into the sharp investigative tool it promises to be.

Similar to DNA, data have to be generated and databases have to be compiled for a statistically meaningful underpinning of this technique and the interpretation of its analytical results. Equally important, if not more so, all the steps from sample collection, storage and preparation through to the analytical measurement and final data reduction
INTRODUCTION

have to be carefully examined either to avoid process artefacts or, if unavoidable, to quantify such artefacts and develop fit-for-purpose correction protocols to avoid stable isotope forensics suffering the same fate as low template DNA.

One way of ensuring appropriate and well-advised use of this technique in a forensic context is to advise and instruct upcoming generations of forensic scientists in this technique as early as possible. Fortunately, in spite of the aforementioned drawbacks, this is possible for two main reasons; (i) Thanks to end-user interest, there is a sufficient amount of actual case work and associated background research, and their results provide part of the foundations on which this book is built. (ii) Contrary to the misconception of many an analytical chemist, there is a huge body of knowledge and insight gained in scientific areas ranging from archaeology, biochemistry, environmental chemistry, geochemistry, palaeoecology to zoology, to name but a few, that is based on stable isotope chemistry and stable isotope analytical techniques.

In this book, the theory, instrumentation, potential and pitfalls of stable isotope analytical techniques are discussed in such a way as to provide an appreciation of this analytical technique. To this end some of the physical chemistry background relating to such aspects as mass discrimination, isotopic fractionation and mass balance is only touched upon, while some of the practical consequences of the aforementioned on the analytical process, the kind of information obtainable or the level of uncertainty associated with stable isotope data from a particular type of sample are discussed in finer detail. There are a number of excellent books and review articles dealing with the fundamental principles of stable isotope techniques, both from the instrumentation side and a physical chemistry point of view, which the interested reader is strongly encouraged to use for further study. These books and review articles are listed separately in the ‘Recommended Reading’ section at the back of this book.

In the main, what follows will focus on stable isotopes of light elements of which all organic material is comprised, and why and how stable isotope composition of an organic material can yield an added dimension of information with regard to ‘Who, Where and When?’.

References

Part I
How it Works
Chapter I.1
What are Stable Isotopes?

Of the 92 natural chemical elements, almost all occur in more than one isotopic form – the vast majority of these being stable isotopes, which do not decay, unlike radioisotopes, which are not stable and, hence, undergo radioactive decay. In this context, ‘almost all’ means with the exception of 21 elements, including fluorine and phosphorous, which are mono-isotopic. The word isotope was coined by Professor Frederick Soddy at the University of Glasgow, and borrows its origin from the two Greek words *isos* (ἰσος) meaning ‘equal in quantity or quality’ and *topos* (τοπος) meaning ‘place or position’, with isotope thus meaning ‘in an equal position’ (of the periodic table of chemical elements). Frederick Soddy was later awarded the Nobel Prize in Chemistry in 1921 for his work on the origin and nature of isotopes. By coining this term he referred to the fact that isotopes of a given chemical element occupy the same position in the periodic table of elements since they share the same number of protons and electrons, but have a different number of neutrons. Therefore, as is so often mistakenly thought, the word isotope does not denote radioactivity. As mentioned above, radioactive isotopes have their own name – radioisotopes. Non-radioactive or stable isotopes of a given chemical element share the same chemical character and only differ in atomic mass (or mass number \(A \)), which is the sum of protons and neutrons in the nucleus.

Moving from the smallest entity upwards, atoms are comprised of positively charged protons and neutral neutrons, which make up an atom’s nucleus, and negatively charged electrons, which make up an atom’s shell (‘electron cloud’). Due to charge balance constraints, the number of protons is matched by the number of electrons. A chemical element and its position in the periodic table of elements is determined by the number of protons in its nucleus. The number of protons determines the number of electrons in the electron cloud, and the configuration of this electron cloud in turn determines chemical characteristics such as electronegativity and the number of covalent chemical bonds a given element can form. Owing to this link, the number of protons in the atomic nucleus of a given chemical element is always the same and is denoted by the atomic number \(Z \), while the number of neutrons (in its nucleus) may vary. Since the number of neutrons \((N) \) has no effect on the number of electrons in the electron...
cloud surrounding an atom the overall chemical properties of an element are not affected. In other words, a chemical element like carbon will always behave like carbon irrespective if the number of neutrons in its nucleus is \(N \) or \(N + 1 \). However, differences in mass-dependent properties can cause compounds containing different amounts of carbon with \(N \) or \(N + 1 \) neutrons or at different positions to behave subtly differently, both chemically and physically.

Mass number \(A \) (\(= Z + N \)) and atomic number \(Z \) are denoted as whole numbers in superscript and subscript, respectively, to the left of the element symbol. So carbon-12 comprised of six protons and six neutrons would be written as \(^{12}\text{C} \), while carbon-13 that is comprised of six protons and seven neutrons would be written as \(^{13}\text{C} \). In general practice different isotopes of the same chemical element are denoted by mass number and chemical symbol only (e.g. \(^{2}\text{H} \) or \(^{13}\text{C} \)).

For example, the simplest of chemical elements, hydrogen (H) in its most abundant isotopic form has a nucleus comprised of a single proton and therefore has the atomic mass of 1 (in atomic mass units (amu)) and this is indicated by adding a superscript prefix to the element letter (i.e. \(^{1}\text{H} \)). The less abundant, by one neutron heavier hydrogen isotope is therefore denoted as \(^{2}\text{H} \), although one will also find the symbol D being used since this stable hydrogen isotope has been given the name deuterium. The discovery of this isotope won Harold C. Urey the Nobel Prize in Chemistry in 1934 and Urey is today regarded as one, if not the father of modern stable isotope chemistry.

Staying with hydrogen as an example, one could say \(^{1}\text{H} \) and its sibling deuterium, \(^{2}\text{H} \) (or D), are identical twins but are of different weight and of different abundance. Deuterium \((^{2}\text{H}) \) is the heavier twin whose weight differs from that of hydrogen \((^{1}\text{H}) \) by 1 amu. Deuterium is also the less abundant of the two hydrogen isotopes. The same is true for the carbon twins. Here, sibling \(^{13}\text{C} \) is the heavier twin, weighing 1 amu more than its sibling \(^{12}\text{C} \), and as for the two hydrogen isotopes, the heavier \(^{13}\text{C} \) is the less abundant of the two carbon isotopes. Where the normal weight versus overweight twin analogy has its limitations is the matter of abundance or occurrence, but only for as long as we stay with the example of two complete twins. We will revisit the twin example in the following chapter after a brief excursion on the natural abundance of stable isotope and natural abundance level variations.