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PREFACE

Physics is central to an understanding of biomedical science. We are aware that many
students studying for a career in biomedicine are not primarily motivated by physics;
they are interested in other areas of science. We are also aware that no currently avail-
able first-year textbook takes the physics needs of health-science students seriously.

In this textbook we have several goals. Firstly, we are trying to present the necessary
base concepts of physics as clearly as possible. Secondly, the textbook is designed to
remove any unnecessary conceptual load from students by removing all physics that
is not absolutely necessary for health-science students. The decision as to which parts
of physics are necessary has been determined in close collaboration with the physi-
cists and teachers of the Department of Physics and the professional clinicians and
academics in the Faculty of Health Science at the University of Otago. Thirdly, we are
keenly aware that student motivation is always an issue in the study of physics for the
health sciences. We have tried to add as many applications to the biomedical sciences
as possible to the text in an attempt to aid this motivation. The companion website for
this book is available at www.wiley.com/go/biological_physics.

The production of a textbook is an enormous task and this textbook is no excep-
tion. In writing this book, we have relied on the expertise and goodwill of a large group
of academic colleagues. We would like to express our gratitude to Mr Gordon Sander-
son of the Ophthalmology Department and Professor Terence Doyle of the Radiology
Department in the University of Otago Medical School. We would like to thank Dai Red-
shaw for the many hours he has spent reading through the text and working through
the problem sets and Dr Phil Sheard from the Department of Physiology for his in-
spiring review lectures on bioelectricity. We would particularly like to thank Dr Don
Warrington for his diligent and careful reading of the entire manuscript, and for his
many corrections and suggestions. Finally we would like to thank the staff of the De-
partment of Physics at Otago for the time and support that they have rendered over
the past years. While the staff of the Department of Physics are listed as authors of this
textbook we would particularly like to thank Gerry Carrington, Pat Langhorne, Craig
Rodger, Rob Ballagh, Neil Thomson and Bob Lloyd.

Finally, the goal of this textbook is to provide for the needs of our students. In or-
der to achieve this goal, we have depended on the feedback provided by our students.
There will of course still be errors which have escaped our editing process, and for these
we apologise in advance, and we welcome feedback from our readers.





I

Mechanics
Mechanics is the study of motion. It may be divided into two related areas: kinemat-
ics and dynamics. Kinematics is the study of the fundamental properties of motion:
displacement, acceleration, velocity, distance, and speed. These concepts allow us
to quantify motion and this allows for its scientific study. Dynamics is the study of
force as described by Newton’s three laws. Forces produce accelerations and thus cause
changes in the motion of objects.

Mechanics is the most fundamental subject in physics: it shows how the forces of
nature produce the changes which are observed in nature. The concepts introduced in
mechanics will be used throughout the rest of this book.

Mechanics is of central importance in the health sciences. The applications of me-
chanics in biological systems appear whenever the concepts of force, energy or mo-
mentum appear. There are, however, many more direct applications of the ideas of
mechanics. The working of the musculoskeletal system in humans and other verte-
brates cannot be understood without an understanding of mechanical concepts such
as torque, force, levers and tension. The energy and forces required for everyday activ-
ities in nature – jumping, flying, accelerating to elude capture – can only be evaluated
using the techniques introduced in this section.
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1KINEMATICS

1.1 Introduction

1.2 Distance and Displacement

1.3 Speed and Velocity

1.4 Acceleration

1.5 Average Velocity or Speed

1.6 The Acceleration Due to Gravity

1.7 Independence of Motion in 2D

1.8 Summary

1.9 Problems

1.1 Introduction

Kinematics is that part of mechanics which is concerned with the description of mo-
tion. This is a vital first step in coming to an understanding of motion, since we will not
be able to describe its causes, or how it changes, without a clear understanding of the
properties of motion. Kinematics is about the definition and clarification of those con-
cepts necessary for the complete description of motion. Only six concepts are needed:
time, distance, displacement, speed, velocity and acceleration.

We will begin by focussing on linear motion in one dimension. Later we will expand
this to include motion in two and three dimensions, and we will then look at three
particularly important special cases of motion in one and two dimensions: circular
motion, simple harmonic motion, and wave motion.

Key Objectives

• To develop an understanding of the concepts used to describe motion: time, dis-
tance, displacement, speed, velocity and acceleration.

• To understand the relationships between time, displacement, velocity and accel-
eration.

• To understand the distinction between average and instantaneous velocity and
acceleration.

• To understand that the horizontal and vertical components of vector quantities,
such as acceleration and velocity, may be treated independently.

1.2 Distance and Displacement

Motion is characterised by the direction of movement, as well as the amount of move-
ment involved. It is not surprising that we must use vector quantities in kinematics.
The distance an object travels is defined as the length of the path that the object took
in travelling from one place to another. Distance is a scalar quantity. Displacement, on
the other hand, is the distance travelled, but with a direction associated. Thus a road
trip of 100 km to the north covers the same distance as a road trip of 100 km to the
south, but these two trips have quite different displacements. The use of displacement
rather than distance to give directions is commonplace.

1.3 Speed and Velocity

We are accustomed to talking about the speed at which an object is moving. We also
talk about the velocity with which an object is moving. In normal usage these two
words mean the same thing. I can talk about the speed with which a car is travelling, or
I can talk about its velocity. In physics, we redefine these two words, speed and veloc-

ity, so that they have similar, but distinct meanings.

Introduction to Biological Physics for the Health and Life Sciences Franklin, Muir, Scott, Wilcocks and Yates
©2010 John Wiley & Sons, Ltd



1 · KINEMATICS

Key concept:

The velocity of an object is the change in its position, divided by the time it took for
this change to occur. Velocity is a vector and has both a magnitude and a direction.

Mathematically, the velocity of an object is

v = ∆x

∆t
(1.1)

where v is the velocity vector, ∆x is the displacement vector and ∆t is the time interval
over which the displacement occurs. Note that we will use bold symbols, such as v , for
vectors and normal-weight symbols, such as v , for scalar quantities. Note also that the
Greek letter ∆ (capital delta) represents the change in a quantity. In the above expres-
sion, Eq. (1.1), for example, the change in the position of an object is its final position
minus its initial position:

∆x = xf −xi (1.2)

Figure 1.1 A toy car on a race track. How do we
characterise its motion? Key concept:

Speed is the magnitude of the velocity. Speed is a scalar, and it does not have a di-
rection.

The speed of an object is the distance travelled, divided by the time it took to travel
that distance:

v = ∆x

∆t
(1.3)

Note the differences between Eq. (1.1) and Eq. (1.3). In Eq. (1.1), we use bold sym-

Vector equations vs. scalar equations

When demonstrating numerical calculations

the vector character that many quantities pos-

sess will not be explicitly addressed in the

equation itself. Most numerical examples will

be treated as scalar problems without any at-

tempt to represent the various quantities used

as vectors. This is to keep problems simple

and readable. Please note that this does NOT

mean that vector properties are ignored, but

rather that they are addressed in the process

of constructing the problem.

bols for both the v and the x , indicating that we are referring to the velocity and the
displacement in this equation. In Eq. (1.3) we use normal weight symbols, v and x,
indicating that we are referring to the speed and distance in this equation.

Many textbooks use d to represent distances and d to represent displacements
rather than ∆x and ∆x . We will often follow this practice when specific reference to
the initial and final positions is not called for.

Consider Figure 1.1. A toy car is travelling in a circle around a toy race track and we
wish to characterise its motion. If we are interested only in how fast the car is going,
we could say it is travelling at 5 m s−1 (= 18 km h−1). Two cars travelling on the same
circle will be perfectly well distinguished by noting the different lengths of the circle
they traverse in the same time.

Figure 1.2 Linear motion in two directions. The
cars are travelling at different speeds and in dif-
ferent directions.

Now consider the situation illustrated in Figure 1.2. In this case, two cars approach
the same intersection from different directions. In this situation, we might point out
that one of the cars is travelling at 18 km h−1, while the other is travelling at 12 km h−1.
However, this will not cover all of the differences between the two cars. Another impor-
tant fact about them is that they are travelling in different directions. If we wanted to
predict where these two cars would be in an hour (for example) it would not be enough
to just use the magnitude of their velocity; we would also need to take into account
their directions.

1.4 Acceleration

In kinematics, the acceleration, a, is a vector which quantifies changes in velocity. In
everyday conversation we use the word acceleration to mean that the speed of an ob-
ject is increasing. If an object was slowing down we would say that the object was decel-
erating. The concept of acceleration in physics is more general and applies to a larger
set of situations. In physics, acceleration is defined to be the rate of change (in time) of
the velocity:

a = ∆v

∆t
(1.4)

This definition implies several characteristics of the acceleration:

1. Acceleration is a vector: it has a direction as well as a magnitude. The accel-
eration is the rate of change of the velocity, and velocity is a vector, therefore
acceleration must also be a vector.

4 www.wiley.com/go/biological_physics



1.4 ACCELERATION

2. The acceleration vector of an object may point in the opposite direction to that
object’s velocity vector. When this happens, the object’s velocity will decrease
and may even reverse direction. This means that deceleration (slowing down) is
just another acceleration, but in a particular direction.

3. An object may have an acceleration without its speed changing at all. Should
the acceleration vector point in a direction perpendicular to the velocity vector,
the direction of the velocity vector will change, but its length will not. A good
example of this is when an object moves in a circle. In this case, the acceleration
is always perpendicular to the velocity, so the speed of the object is constant, but
its velocity is constantly changing.

To illustrate these ideas, consider a car which starts from rest (v i = 0) and accelerates
along a straight road so that its velocity increases by 2 m s−1 every second. The velocity
of this car is illustrated at a series of later times in Figure 1.3.

a = 2 m s
–2

a = 2 m s
–2

a = 2 m s
–2

a = 2 m s
–2

a = 2 m s
–2

a = 2 m s
–2

v = 2 m s
–1

v = 4 m s
–1

v = 6 m s
–1

v = 8 m s
–1

v = 10 m s
–1

v = 0 m s
–1

t = 0 s

t = 1 s

t = 2 s

t = 3 s

t = 4 s

t = 5 s

Figure 1.3 A car accelerating at 2 m s−2 for 5 s.

Since the velocity changes by the same amount every second (2 m s−1), the accel-
eration of the car is constant. The velocity is changing at a rate of 2 m s−1 per second,
or 2 metres per second per second. This acceleration would normally be written as
a = 2 m s−2 (or 2 m/s2) to the right.

We can calculate the velocity at any time. Since we know how much the veloc-
ity increases every second and we also know that the car was initially stationary, we
just multiply this rate by the time elapsed since the acceleration began, i.e., we use the
equation

v = at (1.5)

Note that this is a vector equation, so that the velocity is in the same direction as the
acceleration. For the car in this example, which is accelerating in a straight line at a
constant rate of 2 m s−2 from rest, after 4 s the speed is v = at = 2 m s−2 ×4 s = 8 m s−1,
and so on.

What if the car had not been at rest initially? Suppose that the car in the previous
example had been travelling at a constant velocity of 5 m s−1 for some unspecified
length of time, and then began to accelerate at 2 m s−2. Figure 1.4 shows this car at
a sequence of later times. Compare this figure with Figure 1.3.

In one most important respect, the situation has not changed. The velocity of the
car still increases at the same rate, so that the change in velocity after the acceleration
begins is given by the equation

∆v = at (1.6)

The difference between Eq. (1.5) and Eq. (1.6) is that we now explicitly recognise that it
is the change in velocity that we are calculating. In the previous example we calculated
the change in velocity, but since the car started at rest, the velocity of the car was the
same as how much the velocity had increased. Since we now have a nonzero initial
velocity, we must recognise that the change in velocity is the final velocity minus the
initial velocity, so

v f −v i = at

www.wiley.com/go/biological_physics 5



1 · KINEMATICS

a = 2 m s
–2

a = 2 m s
–2

a = 2 m s
–2

a = 2 m s
–2

a = 2 m s
–2

a = 2 m s
–2

v = 7 m s
–1

v = 9 m s
–1

v = 11 m s
–1

v = 13 m s
–1

v = 15 m s
–1

v = 5 m s
–1

t = 0 s

t = 1 s

t = 2 s

t = 3 s

t = 4 s

t = 5 s

Figure 1.4 A car accelerates from an initial velocity of 5 m s−1 with a constant acceleration of 2 m s−2.

Thus after 5 s we would find that 15 m s−1 − 5 m s−1 = 2 m s−2 × 5 s. We are normally
interested in calculating the final velocity, so we write the above equation in the form

v f = v i +at (1.7)

We can use this equation to find the final velocity at any later time, so long as the accel-
eration has not changed.

Note that the velocity calculated using this formula is the instantaneous velocity of
the car at that time. This is the velocity that you would read off the car’s speedometer.
We will discuss instantaneous and average velocities in more detail next.

1.5 Average Velocity or Speed

The discussion above allows us to calculate the instantaneous velocity of an object
moving with constant acceleration. This is the velocity of the object at a particular
instant of time. It is also often useful, when we are dealing with motion in a straight
line, to use the average velocity of an object to solve problems. The average velocity is

v av =
total displacement

total time
= d

t
(1.8)

If you drive a car from Dunedin to Christchurch (370 km away) in 5 h, your average
speed is given by

vav =
d

t
= 370 km

5 h
= 74 km h−1

It is important to realise that this calculation does not require any knowledge of the
details of your trip. You may have traveled at a constant 74 km h−1 the whole way, or
(more likely) you may have varied your speed significantly. You may even have stopped
to look at the view and eat lunch for half an hour. These details are not needed for the
calculation of the average velocity.

We will now derive a general relationship between the distance travelled by an ob-
ject, its initial velocity, and its constant acceleration. If an object, for example a car, a
plane or a soccer ball, has constant acceleration, then the displacement, d , occurring
in some given time, t , is

d = v avt = 1

2
(v i +v f) t

= 1

2
(v i +v i +at ) t

=
(

v i +
1

2
at

)
t

d = v it +
1

2
at 2 (1.9)
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1.6 THE ACCELERATION DUE TO GRAVITY

Often v i = 0, i.e., the object is starting from rest, so then

d = 1

2
at 2 (1.10)

We will now investigate an acceleration which is particularly important for the motion
of objects near the surface of the earth: the acceleration due to gravity.

Problem: If you drop a cricket ball from a 125 m high tower, how far will it fall in 5 s?

Example 1.1 Falling ball (1D kinematics)

Solution: We can solve this problem in two different ways. We can find the average velocity of the ball over the first 5 s
and use this average velocity to calculate a displacement, or we can calculate a displacement directly.

(a) The acceleration due to gravity is 10 m s−2 downwards and so the velocity increases by 10 m s−1 in the downwards
direction every second. The initial velocity is 0 m s−1 so the final velocity must be 5 s×10 m s−2 = 50 m s−1 in the
downwards direction. The average velocity of the cricket ball is therefore

v av =
0 m s−1 +50 m s−1

2
= 25 m s−1 downwards

Using this average velocity, the distance that the cricket ball will fall in 5 s is 25 m s−1 ×5 s = 125 m.

(b) The second technique uses Eq. (1.10) (since the initial velocity is zero) using g for the acceleration. The change
in displacement of the ball is

d = 1

2
g t 2 = 1

2
×10 m s−2 × (5 s)2 = 125 m

which is the same answer as we found with the previous method.

1.6 The Acceleration Due to Gravity
Air resistance

Actually, the acceleration is only the same in a

vacuum. Objects falling in air are affected by

air resistance which reduces the acceleration.

Often this is small enough to be ignored.

Galileo found (and countless experiments since have also shown) that all objects falling
freely towards the Earth have the same acceleration. (In order to see this effect, we
must take into account the effect of air resistance when this is significant.) Thus every
object in free fall has its downward speed increased by 10 m s−1 in every second re-
gardless of its mass. Galileo claimed that this was an experimental fact and is reported
to have shown it by dropping two balls of unequal mass from the top of the Leaning
Tower of Pisa. Later we will discuss the theoretical explanation for this experimen-
tal fact when we investigate the relationship between acceleration and the concept of
force. The value of this constant acceleration is given by

g = 9.81 m s−2 ≈ 10 m s−2 (1.11)

This quantity, g , is called the acceleration due to gravity. (The value of 9.8 m s−1 is the
value at sea level on the surface of the Earth; the value will change with altitude.)

Consider an object released from rest and accelerating in free fall. Assuming that
the air resistance is negligible, we are able to calculate its velocity after 5 s:

Precision and g

In mathematical examples where we wish to

find an accurate result, we will often use a

value for g of 9.8 or 9.81 m s−2. However,

in cases where we are more interested in the

concepts and methods than the exact answer

we will frequently approximate the value as

10 m s−2 to keep things simpler.

v = g t = 10 m s−2 ×5 s = 50 m s−1

Note that the mass of this object is not even mentioned in the original question. Also
note that we have not considered the vectorial character of either the acceleration due
to gravity or of the velocity achieved by this object after 5 seconds. These quantities are
of course vectors, but their directions may be assumed to be towards the centre of the
Earth and need not be considered in this problem. This is not always the case.
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1 · KINEMATICS

Problem: If you throw a cricket ball straight up at 12 m s–1, how high will it go?

Example 1.2 A ball thrown straight up (I) (1D kinematics)

Solution: This problem is very similar to the previous one, except now the cricket ball has an initial velocity. This initial
velocity is in the opposite direction to the acceleration due to gravity. This means that, at first, gravity will reduce the
upward velocity of the cricket ball by 10 m s−1 every second. At some point the upward velocity of the cricket ball will
have been reduced to zero – the cricket ball has stopped travelling up so it has reached its maximum height.

To calculate the maximum height that the ball reaches we need to find the time taken for the upward velocity to
decrease to zero as this is also the time for the ball to reach its maximum height. We then calculate the average velocity
and use this combined with the elapsed time to calculate the change in displacement of the ball.

For this problem we will define the upwards direction as positive, and define d = 0 m to be the height at which the
ball was released.

The change in velocity of the ball is vf − vi = −12 m s−1 (i.e., the velocity goes from +12 m s−1 initially to 0 m s−1 at
its highest point). The time it takes the acceleration due to gravity (−10 m s−2, as it points in the downwards direction)
to cause this change in velocity is,

∆v = g t

t = ∆v

g
= −12 m s−1

−10 m s−1
= 1.2 s

The average velocity is 6 m s−1 (vav = 1
2

(
v f + vi

) = 1
2

(
12 m s−1 +0 m s−1

) = 6 m s−1) and using this we calculate the
change in displacement of the cricket ball during the 1.2 seconds it takes to reach the maximum height,

d = vavt = 6 m s−1 ×1.2 s = 7.2 m

The highest point the ball reaches is 7.2 m above the point at which it was released.

Problem: How long does it take the ball in Example 1.2 to fall to its original position from its maximum height?

Example 1.3 A ball thrown straight up (II) (1D kinematics)

Solution: The ball reaches a maximum height of 7.2 m above the point at which it is thrown. At its maximum height
it has a velocity of 0 m s−1. The time taken to fall a distance of 7.2 m back to its original position can be found using
Eq. (1.9):

d = vit +
1

2
at 2

Since the initial velocity, vi, is the velocity of the ball at its maximum height, i.e., vi = 0 m s−1 this can be reduced to

d = 1

2
at 2

The time in this equation, t , is the time the ball takes to fall back to its original position. We rearrange this
equation to solve for t where (using the same sign convention as in Example 1.2) d =−7.2 m and a = g =−10 m s−2

t =
√

2d

g
=

√
2×−7.2 m

−10 m s−2

= 1.2 s

Note that this is the same time it took the ball to reach its maximum height from the point at which it was initially
thrown in Example 1.2. This is a useful general result. Projectile motion is symmetrical about the point of maximum
height. It takes the same amount of time to reach the maximum height from a starting height as it does to get back to
that height from the maximum height.
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1.7 INDEPENDENCE OF MOTION IN 2D

Problem: What is the velocity of the ball in Examples 1.2 and 1.3 when it falls back to the height at which it was

released?

Example 1.4 A ball thrown straight up (III)

Solution: As in the previous problem we can think of the ball starting at its maximum height and falling 7.2 m under
the influence of gravity to its original height, which we found would take 1.2 s, the same as the time taken to reach its
maximum height from the point at which it was released. The change in velocity over the three seconds in which it is
falling from its maximum height is

∆v = at =−10 m s−2 ×1.2 s

=−12 m s−1

The ball is travelling at the same speed at it was when released, but in the opposite direction! Again this is a useful
general result we can apply to many kinematics problems without going through an extensive derivation.

Problem: If the ball in the Example 1.2 was released (travelling upwards) at a height of 1.2 m above the ground, what

is the velocity of the ball just before it hits the ground?

Example 1.5 A ball thrown straight up (IV) (1D kinematics)

Solution: We will first need to find the time it takes for the ball to hit the ground and then use ∆v = at to find the change
in velocity, and hence the final velocity. Initially it is tempting to try to use Eq. 1.9 to solve this problem directly.

d = vit +
1

2
at 2

We know the change in position of the ball (as, in this case, the ball ends up 1.2 m below it’s starting point), the
initial velocity of the ball (vi = 12 m s−1), and acceleration (g =−9.8 m s−2). In order to use this equation, however, we
would need to solve for t , which would require solving a quadratic equation. Even using the shortcuts highlighted in
the previous two examples does not allow us to avoid this quadratic as we still end up with two terms featuring t . If
you’re confident doing this, that is great. If you are not very confident at solving quadratic equations however, all is not
lost.

We can simplify the problem by using the fact that we know a bit more about the situation than is apparent from the
question. From Example 1.2, we know that the ball reaches a maximum height of 7.2 m above the point at which it was
released. This means that the ball will reach a height of 7.2+1.2 = 8.4 m above the ground. At this maximum height, the
velocity of the ball is 0 m s−1, and by ignoring the first part of the ball’s motion, we can simplify Eq. (1.9) to d = 1

2 at 2,
where d is the change in displacement of the ball as it moves from its maximum height to the ground, d =−8.4 m, and
a = g =−9.8 m s−2:

d = 1
2 at 2

t =
√

2d
g =

√
2×−8.4 m
−9.8 m s−2

= 1.3 s

This gives a change in velocity of ∆v = g t =−9.8 m s−2×1.3 s =−13 m s−1, so the ball will be travelling at 13 m s−1 in the
downwards direction as it hits the ground.

1.7 Independence of Motion in 2D

In the previous section we considered objects which move vertically up and down. This
means that in these cases the velocity vector is always parallel to the acceleration vec-
tor. These objects would go straight upward and fall straight downward. They will not
move horizontally since there is no initial velocity in the horizontal direction, and no
acceleration in the horizontal direction to cause a non-zero horizontal velocity to de-
velop. What would happen if the initial velocity was not straight upward? What would
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have happened if the initial velocity was at some angle to the vertical? This is the sit-
uation shown in Figure 1.5, using the example of a cricket ball launched upward at an
angle. In Figure 1.5, the cricket ball has a vertical velocity and a horizontal velocity and

Figure 1.5 The trajectory of a cricket ball initially launched upward at an angle to the vertical. The vertical and
horizontal components of the ball’s velocity are shown at a number of times in its trajectory.

this results in a net velocity at an angle to the vertical. The acceleration due to gravity,
however, acts only in the vertical direction, and changes only the vertical component
of the velocity. The horizontal component of the velocity is initially 10 m s−1 and is still
10 m s−1 when the ball reaches its maximum height at 45 m after 3 s, and is 10 m s−1

when the ball reaches the ground again after a total of 6 s. There is no acceleration in
the horizontal direction, so the velocity component in this direction cannot change.

The vertical component of the velocity is changed by the acceleration due to gravity.
This can be seen in Figure 1.5 as well. In point of fact, the vertical component of the
velocity behaves in exactly the same way as it did in the examples above. The vertical
velocity is initially 30 m s−1 upward. After 3 s this has dropped to 0 m s−1 when the ball
reaches its maximum height. The vertical velocity is again 30 m s−1 just before the ball
hits the ground after 6 s, but now the velocity is in the downward direction.

This is what we mean when we say that the horizontal and vertical components
of the velocity vector are independent. These components are acted on separately by
the accelerations in those directions. An acceleration in the horizontal direction would
not change the velocity component in the vertical direction. This means that when we
are attempting to solve a kinematics problem in three dimensions, we may look at the
components of the velocity and acceleration in a given direction independently of their
components in the other two directions.

Figure 1.6 Independence of the vertical and hor-
izontal components of velocity.

This effect may be seen in the following experiment. Suppose that we have two
identical balls which are held on a platform in a darkened room. (The balls do not need
to have the same mass for this experiment to work, but we will simplify the discussion
by assuming that they do.) Now suppose that we drop one ball directly downward from
a platform and at the same instant fire the other ball horizontally out from the same
platform. As the balls fall, a strobe light flashes at regular intervals and the trajectory of
the two balls is recorded on a camera with a very long exposure time. Figure 1.6 is an
example of the sort of image that would be obtained from this experiment.

In this figure, we observe that the balls are at the same height at each interval, i.e.,
at each flash of the strobe light. This means that their vertical velocity components are
the same at each time. Their horizontal velocity components are quite different, how-
ever. The ball which is simply dropped has no horizontal velocity component, whereas
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1.7 INDEPENDENCE OF MOTION IN 2D

the horizontal velocity component of the other ball is constant.

Problem: A modern artist throws a bottle of paint towards the wall of a nearby building. The bottle leaves the artist’s

hand at a height of 2.00 m, a speed of 16.0 m s–1, and at an angle of 30.0° above the horizontal. If the building is

15.0 m away

(a) At what height H does the bottle hit the wall?

(b) At what velocity v is the bottle travelling as it hits the wall?

Example 1.6 Projectile motion (2D kinematics)

Solution:

Figure 1.7 An artist throws a bottle against a wall.

A good first step for this kind of problem is to draw a diagram like
Figure 1.7. Remember that when dealing with 2D kinematics you
can always separate out the horizontal and vertical motions. Note
also that since we are given numerical quantities to two significant
figures, we will use this level of numerical precision throughout the
problem, i.e., we will use g =−9.8 m s−2.

In order to answer both of the questions, we will need to know
how long after the bottle leaves the artist’s hand it hits the wall. We
can calculate this time by looking at the horizontal motion of the
bottle. As the acceleration due to gravity is in the vertical direction
only, we know that the horizontal velocity is constant and has a mag-
nitude of vx = 16.0 m s−1 × cos30° = 13.9 m s−1. So the time it takes
the bottle to travel the 15 m horizontally to the wall is

dx = vxt

t = dx

vx
= 15 m

13.9 m s−1
= 1.08 s

(a) The difference in height between the bottle’s initial height of 2.0 m and its final height of H is hf. We can calculate
this height by using the initial vertical velocity of the ball (vyi = 16 m s−1×sin30° = 8.0 m s−1) and the fact that the
ball is accelerating in the vertical direction at a rate of a = g =−9.8 m s−2.

hf = vit +
1

2
g t 2

= 8.0 m s−1 ×1.08 s+ 1

2
× (−9.8 m s−2)× (1.08 )2

= 2.93 m

So the bottle must hit the wall a total of 4.9 m above the ground (giving solution to two significant figures).

(b) In order to find the final velocity of the bottle we will have to add together the vertical and horizontal components
of the bottle’s velocity as it hits the wall. We already know that the horizontal velocity of the bottle is constant as
there is no acceleration in the horizontal direction, therefore the horizontal component of the final velocity is
vx = 14 m s−1. To find the final vertical velocity we can use vf = vi + at where vi = vyi = 8.0 m s−1 and a = g =
−9.8 m s−2.

vyf = vyi + g t

= 8.0 m s−1 + (−9.8 m s−2)×1.08 s =−2.58 m s−1

By the time the bottle has hit the wall, it has reached its maximum height (at which vy = m s−1) and has started
moving back down, hence the negative vertical velocity.
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Figure 1.8 The velocity vector components of the bottle as it hits the wall.

We can get the magnitude of the final velocity by vector addition of the two components vx, and vyf:

|vf| =
√

v2
x + v2

yf

=
√(

13.9 m s−1
)2 + (−2.58 m s−1

)2 = 14.14 m s−1

The direction in which the bottle is traveling can be found by using trigonometry.

tanθ f =
vyf

vx

θ f = tan−1
(

vyf

vx

)

= tan−1
(

2.58 m s−1

13.9 m s−1

)
= 10.52°

So as the bottle hits the wall it is travelling at a speed of 14 m s−1, 11° below the horizontal (to 2 s.f.).

1.8 Summary

Key Concepts

elapsed time (∆t) The time interval between two events

distance (d or ∆x) The length of a path between two spatial positions.

displacement (d or ∆x) The vector equivalent of distance, which specifies the distance and di-
rection of one point in space relative to another. It depends only on the initial and final
spatial positions, and is independent of the path taken from one position to the other.

speed (v) A scalar measure of the rate of motion. The SI unit of speed is metres per second (m/s
or m s−1).

velocity (v) A vector measure of the rate of motion, which specifies both the magnitude and
direction of the rate of motion.

acceleration (a) A measure of the rate of change of the velocity. Acceleration is a vector quantity.
The SI units of acceleration are m/s2 or m s−2.

Equations

d = v avt

∆v = at

v av =
1

2
(v i +v f)

d = v it +
1

2
at 2
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1.9 Problems

1.1 A dog chasing a ball starts at rest and accelerates uniformly
over a distance of 5 meters. It takes the dog 1 s to cover that first
5 m. What is the dog’s acceleration, and what speed is the dog trav-
elling when it reaches the 5 m point?

1.2 During a particular car crash, it takes just 0.18 s for the car to
come to a complete stop from 50 km h−1.

(a) At what rate is the car accelerating during the crash?

(b) How many times larger than the acceleration due to gravity
is this?

1.3 A jogger starting their morning run accelerates from a stand-
still to their steady jogging pace of 8.0 km h−1. They reach a speed
of 8.0 km h−1, 5 s after starting. How long does it take the jogger to
reach the end of their 20 m driveway?

1.4 A driver in a blue car travelling at 50 km h−1 sees a red car
approaching in his rear-view mirror. The red car is travelling at
60 km h−1 and is 30 m behind the blue car when first spotted.

(a) How many seconds from the time the driver of the blue car
first noticed it until the red car passes the blue car?

(b) How much farther down the road will the blue car travel in
this time?

1.5 You are abducted by aliens who transport you to their home
world in a galaxy far far away. Oddly, the only thing you can
think of doing is measuring the acceleration due to gravity on this
strange new world. You drop an alien paperweight from a height of
12 m and use an alien stopwatch to measure the interval of 1.36 s it
takes the paperweight to hit the ground below. What is the accel-
eration due to gravity on the alien home world?

1.6 In a bid to escape from your alien captors you hurl your paper-
weight straight up towards the door switch on a space ship above
you. If the switch is 25 m above you how fast does the paperweight
need to leave your hand?

1.7 An initially stationary hovercraft sits on a large lake. When
a whistle blows the hovercraft accelerates due north at a rate of
1.2 m s−2 for 10 s, does not accelerate at all for the next 10 s, and

then accelerates at a rate of 0.6 m s−2 due east for another 10 s. The
hovercraft then coasts for another 10 s without any acceleration.

(a) What is the velocity of the hovercraft 40 s after the whistle
blows?

(b) What is the displacement of the hovercraft 40 s after the
whistle blows?

1.8 A jogger takes the following route to the entrance of their local
park: north 120 m, west 100 m, south 35 m, and finally west 50 m.
It takes them 2 minutes 18 seconds to reach the park entrance.

(a) What distance did the jogger travel?

(b) What is the displacement of the jogger as she enters the
park?

(c) What is the average speed of the jogger?

(d) What is the average velocity of the jogger?

1.9 A tennis ball is hit down at an angle of 30° below the horizontal
from a height of 2 m. It is initially travelling at 5.0 m s−1. What is
the velocity of the ball when it hits the ground if we can neglect air
resistance?

1.10 A stunt rider is propelled upward from his motorbike by a
spring loaded ejector seat. The rider was travelling horizontally
at 60 km h−1 when the ejector seat was triggered, and as they leave
the seat they are travelling with a vertical velocity of 15 m s−1.The
seat is 1.0 m off the ground.

(a) What is the initial velocity of the stunt rider (in km h−1)?

(b) How high does the stunt rider reach?

(c) How far along the track does the stunt rider land on the
ground?

(d) What is the velocity of the stunt rider when they hit the
ground (in km h−1)?

1.11 A bullet is fired horizontally from a gun that is 1.5 m from the
ground. The bullet travels at 1000 m s−1 and strikes a tree 150 m
away. How far up the tree from the ground does the bullet hit? [Ne-
glect air resistance.]
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2FORCE AND NEWTON’S LAWS OF

MOTION
2.1 Introduction

2.2 The Concept of Force

2.3 Kinds of Force

2.4 Newtonian Gravity

2.5 Summary

2.6 Problems2.1 Introduction

We now have a clear and complete description of motion. This description relates the
primary properties of motion – displacement, velocity, acceleration and elapsed time
– to each other. The question now arises: what causes a change in the motion of an
object? This amounts to asking: ‘Where does acceleration come from?’ The answer
to this question is deceptively simple: ‘Accelerations are caused by the application of
forces.’ The purpose of this chapter is to explain clearly what a ‘force’ is in physics and
how it can be used to solve problems relating to the motion of objects. When forces are
included in the discussion of motion, it is called dynamics.

Key Objectives

• To understand the concept of force.

• To understand the relationship between force and motion.

• To be able to identify action–reaction pairs of forces.

• To understand normal, friction and tension forces.

• To be able to solve straightforward problems in dynamics.

2.2 The Concept of Force

Force vectors in figures

In this text force vectors are represented as

acting on the centre of mass of an object. It

should be noted that other texts use differing

conventions for contact force vectors in which

a contact force is shown acting at the surface

between two objects. The distinction between

the two ways of representing contact force vec-

tors is partially style, although when dealing

with contact forces that may act to rotate an

object the exact position of action of a force is

important. Such cases will not be dealt with in

this text and so the simpler standard in which

all force vectors are shown to act at the cen-

tre of mass of an object has been used in the

interests of clarity.

In everyday conversation we use the word ‘force’ quite liberally. The Oxford English
Dictionary gives a number of definitions of the noun ‘force’:

1. physical strength or energy accompanying action or movement.

2. (Physics) a measurable influence that causes something to move.

3. pressure to do something backed by the use of threat of violence.

4. influence or power.

5. a person or thing having influence: a force for peace.

6. an organised group of soldiers, police or workers.

The word is also used as a verb, as in sentences like: ‘She forced the committee to
consider her application seriously.’ In physics, the word ‘force’ has a very precise mean-
ing, and this is given by Newton’s laws. These laws define force by listing the essential
properties of a force. If some phenomenon does not have all of these properties, then
it is not a force. In this section we will go through Newton’s Laws and explain each of
them in turn.

Introduction to Biological Physics for the Health and Life Sciences Franklin, Muir, Scott, Wilcocks and Yates
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2 · FORCE AND NEWTON’S LAWS OF MOTION

Newton’s First Law

In the list of Oxford English Dictionary definitions of force given above, the second
item is closest to the definition used by physicists. A force is essentially anything that is
measurable and causes a change in the motion of an object. For example, if an object
is at rest, then we must apply a force to it to cause it to accelerate and to develop a
non-zero velocity.

Newton’s first law states that any object continues at rest, or at constant velocity
(constant speed in a straight line), unless an external force acts on it. Figure 2.1 il-
lustrates the effect of a force on the motion of an object. This object is travelling in a
straight line until an external force acts on it in a direction perpendicular to its motion.
This causes the object to be deflected from its straight-line motion.

External force

Figure 2.1 A pair of objects initially travel in the same direction. The lower object is subject to a force and its motion
then deviates from a straight line while the force acts on it, but continues on in a new straight line after the force
ceases to act.

Newton’s Second Law

Key concept:

An external force gives an object an acceleration. The acceleration produced is pro-
portional to the force applied, and the constant of proportionality is the mass.

Newton’s second law can be summarised with the following equation:

F = ma (2.1)

In this equation, a is the acceleration (in m s−2) as usual, m is the mass (in kg), and F

is the force (in N) (N = newton). The SI unit of force is the newton; one newton (1 N) is
the force which would accelerate a 1 kg mass at 1 m s−2 (i.e., would cause its velocity to
increase by 1 m s−1 in every second).

Figure 2.2 If the force applied to an object does
not change, but the mass of the object is dou-
bled, then the acceleration is halved. If the mass
does not change and the force is doubled, then
the acceleration is doubled also.

As is illustrated in Figure 2.2, if the mass of an object on which the force is applied
does not change, but the force is doubled, then the acceleration of this object will also
be doubled (see diagram to the right in Figure 2.2). If the applied force is not changed,
but the mass of the object is doubled, then the acceleration will be halved (see centre
diagram of Figure 2.2). For numerical examples of the relationship between mass, force
and acceleration, see Table 2.1.

Weight and Mass

Since any object of mass m near the surface of the Earth falls with acceleration g down-
wards, it must be acted on by a force:

F = ma

= mg downwards
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This downward force is due to the gravitational attraction between the Earth and the
object and is often called the object’s weight, i.e., the magnitude of the force, W , is

W = mg (2.2)

Key concept:

The weight of an object is a force, not a mass.

m (kg) a (m s−2) F (N)
1 1 1
1 2 2
2 1 2
2 2 4
4 5 20

Table 2.1 Newton’s second law and the relation-
ship between force, mass and acceleration.

When we step on our bathroom scales and are told our mass in kilograms, we are
effectively being given our weight in newtons with a zero removed. The scales do not
directly measure our mass or weight – they measure the magnitude of the contact force
(also referred to as the normal force or support force) between the scales and our feet. If
we were to step onto our scales while resident on the International Space Station (ISS),
we would read a weight of nearly zero kilograms. Our mass has not changed; what has
happened is that both the scales and ourselves are in free fall, and there is no significant
contact force between the scales and our feet.

Interestingly, because the ISS orbits at an altitude of only 350 km (6.34× 106 m+
0.35×106 m = 6.69×106 m from the centre of the Earth), the difference in the gravita-
tional force, and hence acceleration due to gravity, between an object on the surface of
the Earth and on the ISS is quite small (Fgrav, ISS ≈ 0.90× Fgrav, sea level). (The strength
of the gravitational force is discussed in Section 2.4.

Forces are Vectors

When I push against an object, say, an apple, I push hard or not so hard, and I push
in a particular direction. For example, I could be pushing the apple across the table
towards you, or I could be pulling the apple toward myself. It seems that forces have
both magnitude and direction; this means that we must represent forces as vectors.
This fits with what we have said so far about forces. Thus to find the total or net force
on an object, we must find the vector sum of all of the individual forces on that object.
It is the net force acting on an object that produces an acceleration. Since acceleration
is a vector, and the mass is not, the force that acts on the object must also be a vector
(see Eq. (2.1).) This means that if several forces are acting on the same object, we find
the total force using vector addition to add up all of the applied forces.

As in the case of the velocity and acceleration vectors, we may treat the components
of a force vector as separate independent vectors. Thus, in calculations we are able to
look at the behaviour of the horizontal components of the force, acceleration, velocity
and displacement, and then the vertical components of these vectors. Once we have
completed these separate calculations we can combine the components of the relevant
vector quantities to find the total force, velocity or acceleration.

Newton’s Third Law

Key concept:

For every action there is an equal and opposite reaction.

Newton’s third law states that forces come in pairs – for every force that is applied
to a body, there is a force applied by that body. The ‘action’ referred to in the box above
is the force applied by one object on the other. Suppose that the ‘action’ is the force
exerted by object 1 on object 2. Newton’s third law then states that object 2 will exert a
force of equal size, but in the opposite direction, on object 1. This second force is the
‘reaction’ to the force exerted by object 1.

Forces act in pairs and each force acts between a pair of objects. These force pairs
are called action–reaction pairs or third-law force pairs. It is important to correctly
identify the action–reaction pairs in a problem. For example, the weight force of an
object is due to the gravitational interaction between that object and the Earth. Thus
the Earth exerts a force on the object and the object exerts an equal, but opposite, force
on the Earth. The object will accelerate toward the Earth under the influence of the
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Figure 2.3 Three examples of action–reaction pairs. The gravitational force between the Earth and the Moon, the
downward contact force a block exerts on a surface and the upwards support force the surface exerts on the block,
and a person pushing against a wall.

gravitational force exerted by the Earth – this is source of the acceleration due to gravity.
These equal and opposite forces exist whether the object under discussion is in free fall
toward the Earth or is sitting on a set of bathroom scales being weighed; in both of
these cases the action–reaction pair is the force of the Earth on the object and the force
of the object on the Earth. Later we will discuss the electric force, the force described
by Coulomb’s Law. This is a force which again acts between two objects (which are
charged), with the force on one being equal and opposite to the force on the other.

In Figure 2.3 we illustrate Newton’s third law with three examples. In the first ex-
ample, the Earth (E) exerts an attractive gravitational force on the Moon (M), FE on M.
In turn, the Moon exerts and equal, but opposite (and hence also attractive), force on
the Earth, FM on E. In the second example, the surface (S) on which a block (B) is sitting
exerts an upward (normal or support) force FS on B, on the block, which exerts an equal
and opposite force, FB on S, on the surface. Note that the downward force exerted by
the block is not necessarily the weight force of the block. If I push down on the block,
the downward force is the sum of the forces acting downward, and the support force
provided by the surface will increase to equal it. Finally, a person (P) pushing against a
wall (W) applies a force FP on W to the wall, and the wall applies an equal and opposite
force FW on P to the person. It is important to note that each force in an action–reaction
pair acts on a different object. It is always the case that action–reaction pairs act on
different objects.

Problem:

Figure 2.4 Two boxes being pushed along a
frictionless surface

As shown in Figure 2.4, a large 3 kg box is being pushed with a horizontal force of

F P = 5 N and as a result is accelerating along the horizontal frictionless surface

upon which it rests. The large box has a smaller 1 kg box resting on top of it. This

box does NOT slide from the top of the big box as it accelerates.

(a) At what rate are the boxes accelerating?

(b) What are the magnitudes and directions of the friction forces acting on

each box?

(c) What are the magnitudes and directions of the normal forces acting on

each box?

Example 2.1 A box on a box

Solution: Because the small box does not slide around on top of the large one, the small box accelerates at the same rate
as the large one aS = aL. Drawing a diagram of all the forces acting on each box will be helpful at this point. Because
each box is accelerating horizontally, there must be a net force on each box which is horizontal. The sum of all vertical
forces on each box must be zero.
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