Geochemical Sediments and Landscapes
Published

Geochemical Sediments and Landscapes
Edited by David J. Nash and Sue J. McLaren
Driving Spaces: A Cultural-Historical Geography of England's M1 Motorway
Peter Merriman
Badlands of the Republic: Space, Politics and Urban Policy
Mustafa Dikeç
Geomorphology of Upland Peat: Erosion, Form and Landscape Change
Martin Evans and Jeff Warburton
Spaces of Colonialism: Delhi’s Urban Governmentalities
Stephen Legg
People/States/Territories
Rhys Jones
Publics and the City
Kurt Iveson
After the Three Italies: Wealth, Inequality and Industrial Change
Mick Dunford and Lidia Greco
Putting Workfare in Place
Peter Sunley, Ron Martin and Corinne Nativel
Domicile and Diaspora
Alison Blunt
Geographies and Moralities
Edited by Roger Lee and David M. Smith
Military Geographies
Rachel Woodward
A New Deal for Transport?
Edited by Iain Docherty and Jon Shaw
Geographies of British Modernity
Edited by David Gilbert, David Matless and Brian Short
Lost Geographies of Power
John Allen
Globalizing South China
Carolyn L. Cartier
Geomorphological Processes and Landscape Change: Britain in the Last 1000 Years
Edited by David L. Higgitt and E. Mark Lee

Forthcoming

Politicizing Consumption: Making the Global Self in an Unequal World
Clive Barnett, Nick Clarke, Paul Cloke and Alice Malpass
Living Through Decline: Surviving in the Places of the Post-Industrial Economy
Huw Beynon and Ray Hudson
Swept-Up Lives? Re-envisioning ‘the Homeless City’
Paul Cloke, Sarah Johnsen and Jon May
Climate and Society in Colonial Mexico: A Study in Vulnerability
Georgina H. Endfield
Resistance, Space and Political Identities
David Featherstone
Complex Locations: Women’s Geographical Work and the Canon 1850–1970
Avril Maddrell
Mental Health and Social Space: Towards Inclusionary Geographies?
Hester Parr
Domesticating Neo-Liberalism: Social Exclusion and Spaces of Economic Practice in Post Socialism
Adrian Smith, Alison Stenning, Alena Rochovská and Dariusz Świątek
Value Chain Struggles: Compliance and Defiance in the Plantation Districts of South India
Jeffrey Neilson and Bill Pritchard
Aerial Geographies: Mobilities, Subjects, Spaces
Peter Adey
Queer Visibilities: Space, Identity and Interaction in Cape Town
Andy Tucker
Geochemical Sediments and Landscapes

Edited by

David J. Nash and Sue J. McLaren
Contents

List of Figures vii
List of Tables xv
List of Contributors xvii
Series Editors’ Preface xix
Acknowledgements xx

1 Introduction: Geochemical Sediments in Landscapes 1
 David J. Nash and Sue J. McLaren

2 Calcrete 10
 V. Paul Wright

3 Laterite and Ferricrete 46
 Mike Widdowson

4 Silcrete 95
 David J. Nash and J. Stewart Ullyott

5 Aeolianite 144
 Sue J. McLaren

6 Tufa and Travertine 173
 Heather A. Viles and Allan Pentecost

7 Speleothems 200
 Ian J. Fairchild, Silvia Frisia, Andrea Borsato and Anna F. Tooth
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Rock Varnish</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td>Ronald I. Dorn</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Lacustrine and Palustrine Geochemical Sediments</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td>Eric P. Verrecchia</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Terrestrial Evaporites</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>Allan R. Chivas</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Beachrock and Intertidal Precipitates</td>
<td>365</td>
</tr>
<tr>
<td></td>
<td>Eberhard Gischler</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Sodium Nitrate Deposits and Surface Efflorescences</td>
<td>391</td>
</tr>
<tr>
<td></td>
<td>Andrew S. Goudie and Elaine Heslop</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Analytical Techniques for Investigating Terrestrial Geochemical Sediments</td>
<td>409</td>
</tr>
<tr>
<td></td>
<td>John McAlister and Bernie J. Smith</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Geochemical Sediments and Landscapes: General Summary</td>
<td>443</td>
</tr>
<tr>
<td></td>
<td>Sue J. McLaren and David J. Nash</td>
<td></td>
</tr>
</tbody>
</table>

Index 447
Figures

2.1 Settings for calcrete development. 11
2.2 Calcrete microstructures. 14
2.3 Idealised calcrete profile. 19
2.4 (A) Stage V calcrete. (B) Thick pisolitic calcrete horizon. 20
2.5 (A) Laminar calcrete overlain by an oolitic-pisolitic layer associated with a calcified root mat layer. (B) Stage V–VI profile with hardpan layer overlain by pisolitic and brecciated level with a prominent calcified root mat layer. 21
2.6 End-member types of calcrete microstructure. 22
2.7 Models for pedogenic calcrete development. 28
2.8 Dynamic model for pedogenic calcrete development. 31
2.9 Characteristics of groundwater calcrites. 32
2.10 Geometries of groundwater calcrites and dolocretes. 34
3.1 Schematic diagram showing the laterite–ferricrete genetic relationship, and the natural continuum between the autochthonous (i.e. in situ weathering profiles) and allochthonous end-members. 47
3.2 Examples of mesa-like remnants of a Late Cretaceous lateritised palaeosurface developed on Deccan basalt from widely separated localities across the Maharashtra Plateau, western India. 48
3.3 Generalised vertical section through the autochthonous Bidar laterite weathering profile. 50
3.4 Examples of laterite and ferricrete profiles. 52
3.5 Examples of weathering and lateritic textures at key horizons through the Merces Quarry lateritic weathering profile. 56
3.6 Schematic representation of the downward advancement of the weathering front, showing the relative changes in abundances of the major lateritic components, Si and Fe, during profile evolution. 58

3.7 Schematic representation of changes in element abundances in a lateritic weathering profile affected by the establishment of a water table. 59

3.8 Examples from the ferricrete alteration profile observed at outcrop at Palika Ba, near the Gambia River, Gambia, West Africa. 60

3.9 Pathways of formation of secondary minerals in lateritic weathering profiles. 66

3.10 Ternary or tri-plots (SiO$_2$, Fe$_2$O$_3$, Al$_2$O$_3$) of (a) Bidar, and (b) Merces Quarry data. 75

3.11 (A) Weathering stages of quartz, biotite, K-feldspar and Na-feldspar. (B) Weathering resistance and degree of weathering in humid tropical environments. 79

3.12 Photomicrographs illustrating the micromorphology through a low-level coastal laterite profile of Neogene age developed within Deccan basalt from Guhagar, western India. 80

3.13 Schematic illustration of the formation and evolution of successive laterite facies. 81

4.1 Silcretes in the landscape. 96

4.2 Geomorphological classification of silcretes. 100

4.3 Pedogenic silcrete profiles. 100

4.4 Groundwater silcrete outcrops. 101

4.5 (A) Massive drainage-line silcrete in the floor of the Boteti River, Botswana, at Samedupe Drift. (B) Close-up of a partially silicified non-pedogenic calcrete beneath the floor of Kang Pan, near Kang, Botswana. (C) Sheet-like pan/lacustrine silcrete developed through the desiccation of formerly floating colonies of the silicafixing cyanobacteria Chloriflexus at Sua Pan, Botswana. 102

4.6 Photomicrographs of pedogenic and groundwater silcretes. 110

4.7 Photomicrographs of drainage-line and pan/lacustrine silcretes. 111

4.8 (A) Variations in silica solubility with pH. (B) The release and sorption of monosilicic acid by a black earth soil under varying pH. 116

4.9 (A) Schematic representation of a ‘typical’ pedogenic silcrete profile. (B) Model of groundwater silcrete development in the Paris Basin. 121
4.10 (A) Cores extracted from the bed of the Boteti River at Samedupe Drift, Botswana. (B) Section of silcretes in the Mirackina palaeochannel, South Australia. (C) Schematic representation of geochemical sedimentation patterns in the vicinity of a pan or playa.

5.1 Aeolianite from North Point, San Salvador, The Bahamas.

5.2 Internal sedimentary structures, Wahiba Sands, Oman.

5.3 Differentially cemented laminae.

5.4 Alternating darker wet and lighter dry layers in a modern-day dune, Studland, UK.

5.5 Rim cements developed in an aeolianite from Cabo de Gato, southern Spain.

5.6 Micritic envelopes developed around a former shell fragment that has undergone dissolution and has been partially replaced by secondary porosity and neomorphic spar, Campo de Tiro, Mallorca.

5.7 Aeolianite from Cap Blanc, Tunisia.

5.8 Scanning electron microscopy image showing needle fibre cement developed in a root mould, Campo de Tiro, Mallorca.

6.1 Thin section of a sample of tufa from a Holocene paludal deposit at Wateringbury, Kent.

6.2 Vertical section through a stream crust colonised by the cyanobacterium *Phormidium incrustatum*.

6.3 Some tufa morphologies.

6.4 Silver Falls, Tianxing Bridge Park, Guizhou Province, China.

6.5 Pearl Shoal, Juizhaigou, Sichuan, China.

6.6 Large tufa deposit on the edge of the Naukluft Mountains, Namibia.

6.7 (A) Highly porous, actively forming Vaucheria tufa from Fleinsbrunnen Bach, Schwabian Alb, Germany. (B) Leaf relics from ancient tufa barrage at Caerwys, North Wales. (C) Large bladed spar crystals developed under high water flow rates at Goredale waterfall, Yorkshire. (D) Laminated cyanobacterial tufa from Fleinsbrunnenbach, Schwabian Alb, Germany (E) Fine-grained, thinly laminated tufa from Whit Beck, North Yorkshire (F) Laminated sparite from dense, recrystallised laminated tufa in the Naukluft Mountains, Namibia.
6.8 (A) Scanning electron microscopy image of diatom frustules within actively forming barrage tufas at Cwm Nash, Glamorgan.

7.1 Speleothem characteristics.

7.2 (A) Conceptual model of the karst system with its physiology of water flow and CO₂ transport and release. (B) Cartoon of speleothem occurrence in relation to cave sedimentational history. (C) The concept of karstic capture of high-resolution climatic signals.

7.3 (A) Seasonal variations in drip rate with superimposed short-term hydrological events from a stalactite in Pere-Nōel cave in Belgium. (B) Variations in cation loads, as monitored by electroconductivity, of drip waters in response to seasonal patterns and individual infiltration events for two drips at Ernesto cave.

7.4 (A) Dissolved Ca loads resulting from dissolution of pure limestone to saturation and their relationship with (soil or epikarst) pCO₂. (B) Plumbing model illustrating processes affecting dripwater hydrology and hydrochemistry.

7.5 Soda straw stalactites from Ernesto cave and Crag Cave.

7.6 Stalagmite calcite fabrics.

7.7 Stalagmite laminae.

7.8 (A, B) Examples of modelled speleothem macro-morphologies. (C) Modelled maximal growth rates of speleothems under a stagnant fluid layer.

7.9 (A) Cross-section through the Alpine Ernesto cave, Trentino province, Italy. (B) Interpretation of Mg and δ¹³C records through stalagmite ER76.

7.10 Diagrammatic relationships between the flow-related and cave-related geomorphological factors and the high-resolution properties of speleothems.

8.1 Rock varnish at a road cut between Death Valley, California and Las Vegas, Nevada.

8.2 Rock varnish varies considerably over short distances, over a single boulder and over a single hillslope.

8.3 Microcolonial fungi are common inhabitants on desert rocks that experience warm season convective precipitation.

8.4 Rock varnish on Hanaupah Canyon alluvial fan, Death Valley.

8.5 Forms of varnish micromorphology.
8.6 High resolution transmission electron microscopy imagery of manganese and iron minerals that appear to be moving from the granular remnants of bacterial sheaths into adjacent clay minerals. 260
8.7 Budding bacteria morphologies actively concentrating manganese. 261
8.8 Clay minerals that appear to be weathering by the insertion of Mn-Fe. 262
8.9 Conceptual models of rock varnish formation. 263
8.10 Varnish microlaminations. 284
8.11 Rock varnish interlayers with iron film and silica glaze at Whoopup Canyon, Wyoming. (A) Iron film (BSE image) acts as a case hardening agent, and rock varnish accretes on top of the iron film exposed by petroglyph manufacturing. (B) Varnish actively assists in case hardening (BSE image) when the leached cations reprecipitate with silica glaze in sandstone pores. 285
9.1 Diagrammatic cross-section of a typical hard-water temperate lake during summer. 300
9.2 Sketch of the relationships between oxygen, temperature and biogenic activity in a meromictic lake, at noon in summer. 301
9.3 (A) Classification of lacustrine sedimentation in Jura Mountains lakes. (B) Aerial and (C) field view from the palustrine (marsh) zone towards the deep lake (Lake Neuchâtel, Switzerland) in a hard-water lake environment. 306
9.4 Simplified sketch of the geomorphological evolution of some lacustro-palustrine landscapes. 309
9.5 (A) Horizontal beds forming a transition from floodplain deposits to a palusto-lacustrine environment and lacustrine limestones. (B) Lacustrine deposits with stromatolitic bioherms (C) Palustrine limestone with abundant root traces. (D) Lacustrine bottom-set sediments enriched in organic matter and showing thin turbiditic layers. (E) Palustrine limestone with a well developed palaeosol at the top. (F) Various types of crushed shell fragments in a lacustrine mud. (G) Lacustrine bioclastic and oolitic sand deposited near a shore. 311
9.6 (A) ‘Glacial’ varves from a Last Glacial Maximum lake. (B) Slab of a transition from lacustrine to palustrine. (C) Succession of lacustrine mud deposits undergoing short emergence. (D) Lamina of dark micrite and
microsparite with ostracod test fragments and *Chara* encrustations. (E) Pedogenic pseudomicrokarst in emerged lacustrine mud. (F) Traces of pedogenesis in emerged micrite. (G) Palustrine micritic limestone infilled by a dark secondary micrite associated with gypsum crystals. 312

9.7 Simplified chart showing the evaporite precipitation sequence from waters of various compositions. 318

9.8 (A) Clayey and calcareous diatomite from northern Lake Chad. (B) Spherule-like crystals of kenyaitite (hydrous sodium silicate) precipitated in apolyhaline interdunal ponds, Lake Chad. (C) Zeolite crystals inside a crack between a mass of magadiite. (D) Dead Sea brine showing regular salt deposits related to the fluctuation of the lake water level, Israel. (E) Close-up of salt deposits, mainly constituted by halite and sylvite. (F, G) Lake Lisan regular varval deposits composed of detritic marl and endogenous aragonite, Israel. 319

9.9 Scanning electron micrographs of lacustrine calcareous sediments. 321

9.10 Sketch showing the relationship between space and time in a palustro-lacustrine environment. 325

10.1 (A) Playa system at Death Valley, California. (B) Salar de Cauchari, Jujuy Province, Puna, northern Argentina. (C) Laguna Santa Rosa, part of the Salar de Maricunga, east of Copiapó, Chile. (D) Halite crust, Dabuxan Lake, Qaidam Basin, China. 331

10.2 Distribution of areas without surface drainage and with interior basin (or endorheic) drainage. 333

10.3 (A) Surface halite crust, Lake Koorkoordine, Southern Cross, Western Australia. (B) Lake Eyre North, Australia, after partial flooding and evaporative retreat. (C) Western shoreline of Lake Frome, South Australia. (D) Halite crust, Lake Frome, South Australia. (E) Halite crust with sinuous salt-crystallisation pressure ridges, Sickle Lake, Northern Territory, Australia. (F) Pervasive mudcracked texture, Dry Mudflat facies, Lake Eyre North, Australia. (G) Regressive strandlines, Lake Buchanan, Queensland, Australia. (H) Regressive shorelines, Lake Buchanan, Queensland, Australia. (I) An island composed of Archaean bedrock draped
by gypcrete in the halite-encrusted floor of Lake Lefroy, near Kambalda, Western Australia. (J)
Carnallite ($\text{MgCl}_2.\text{KCl}.6\text{H}_2\text{O}$) crystals from the commercial evaporating ponds that use brines trapped within the Qarhan salt plain, Qaidam Basin, China.

10.4 Playa depositional/evaporative facies arranged parallel to, and potentially concentrically in plan around, the shorelines of an evaporating lake.

10.5 Depositional cycle within a playa system.

10.6 Hydrological classification of playa types and their topographic settings.

10.7 Evaporation sequence for seawater.

10.8 Brine evolution pathways and a hydrological classification of progressively evaporating non-marine waters.

11.1 Photographs of beachrock outcrops: Basse Terre, Guadeloupe, West Indies; Halfmoon Cay, Lighthouse Reef, Belize; Kuramathi island, Rasdu Atoll, Maldives.

11.2 Photographs of beachrock outcrops: Kubbar Island, Kuwait, Arabian-Persian Gulf; Andros Island, Bahamas.

11.3 Outcrop and hand specimens of beachrock.

11.4 Diagenetic environments and typical cements, and the formation of beachrock in relation to other cemented coastal deposits.

11.5 Photomicrographs of marine beachrock cements.

11.6 Scanning electron microscopy images of marine beachrock cements.

11.7 Scanning electron microscopy images of marine beachrock and meteoric cayrock cements.

11.8 Photomicrographs of meteoric cements.

11.9 Outcrops of beachrock and other cemented beach deposits: Ras Al-Julayah, southern Kuwait; Cay Bokel, Turneffe Islands, Belize; Hurasdhoo, lagoon of Ari Atoll, Maldives.

11.10 Outcrops of other cemented beach deposits: Cat Cay, western margin of Great Bahama Bank; Barbados, West Indies; Andros Island, Bahamas.

12.1 The distribution of sodium nitrate deposits in northern Chile.

12.2 An abandoned officina in the Atacama near Iquique, northern Chile.
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3</td>
<td>The hyperarid, salt mantled landscape of the Atacama inland from Iquique.</td>
</tr>
<tr>
<td>12.4</td>
<td>Cemented regolith on a raised beach south of Iquique.</td>
</tr>
<tr>
<td>12.5</td>
<td>The hygroscopic and deliquescent nature of sodium nitrate crystals observed under the scanning electron microscope in the laboratory.</td>
</tr>
<tr>
<td>12.6</td>
<td>The solubility of sodium nitrate in water.</td>
</tr>
<tr>
<td>13.1</td>
<td>Diffractograms showing the importance of correct choice of extractant for the selective dissolution of crystalline Fe from a laterite.</td>
</tr>
<tr>
<td>13.2</td>
<td>Diffractograms comparing XRD analysis from glass slide and membrane mounted samples of the same weathered granite from Meniet (central Algeria).</td>
</tr>
</tbody>
</table>
Tables

2.1 Morphological types of calcrete horizons. 17
3.1 Common alteration minerals found in laterites and bauxites. 67
3.2 Geochemical analyses of autochthonous laterite profiles developed on Deccan basalt exposed at Bidar, India and on Proterozoic greywacke exposed at Merces Quarry near Panjim, Goa, India. 71
3.3 Geochemical analyses of the ferricrete alteration profile exposed at Palika Ba, Gambia, West Africa. 77
4.1 Genetic classification of duricrusts. 97
4.2 Morphological classification of silcrete. 97
4.3 Classification of silcrete according to matrix (cement) type and macromorphology. 98
4.4 Micromorphological classification of silcrete. 98
4.5 Genetic classification of silcrete. 99
4.6 Examples of regional investigations of silcrete. 103
4.7 Bulk chemistry of world silcretes. 107
6.1 Tufa morphologies and facies characteristics for the four major tufa types. 182
8.1 Different types of rock coatings. 247
8.2 A few of the misunderstandings in the literature surrounding rock varnish and its environmental relations. 252
8.3 Examples of elemental variation exhibited in bulk chemical analyses of rock varnishes found in desert regions. 258
8.4 Criteria that have been used to adjudicate competing models of rock varnish formation. 271
8.5 Performance of alternative rock varnish conceptual models with respect to adjudicating criteria. 274
8.6 Different methods that have been used to assess rock varnish chronometry.

9.1 Main minerals and mineral groups associated with lacustrine geochemical sediments and their possible origins.

10.1 Classification of evaporites by solute sources and geological setting.

12.1 Salt minerals present in caliche deposits of the Atacama.

13.1 Characterisation of a selected range of analytical techniques.

13.2 Selective extraction of a rock varnish highlighting its ability to partition a sample into its constituent phases.
Contributors

Dr Andrea Borsato – Museo Tridentino de Scienze Naturali, via Calepina 14, 38100 Trento, Italy. Email: borsato@mtsn.tn.it

Professor Allan R. Chivas – GeoQuEST Research Centre, School of Earth and Environmental Sciences, University of Wollongong, NSW 2522, Australia. Email: toschi@uow.edu.au

Professor Ronald I. Dorn – School of Geographical Sciences, Arizona State University, P.O. Box 870104, Tempe, Arizona 85287-0104, USA. Email: ronald.dorn@asu.edu

Professor Ian Fairchild – School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK. Email: i.j.fairchild@bham.ac.uk

Dr Silvia Frisia – School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia. Email: silvia.frisia@newcastle.edu.au

Professor Eberhard Gischler – Institut für Geowissenschaften, Universität Frankfurt am Main, Senckenberganlage 32–34, Postfach 11 19 32, D-60054 Frankfurt am Main, Germany. Email: gischler@em.unifrankfurt.de

Professor Andrew S. Goudie – School of Geography, Centre for the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, UK. Email: andrew.goudie@stx.ox.ac.uk

Dr Elaine Heslop – School of Geography, Centre for the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, UK.

Dr John McAlister – School of Geography, Queens University, Belfast BT7 1NN, UK. Email: j.mcalister@qub.ac.uk
Dr Sue J. McLaren – Department of Geography, University of Leicester, University Road, Leicester LE1 7RH, UK. Email: sjm11@leicester.ac.uk

Dr David J. Nash – School of Environment and Technology, University of Brighton, Lewes Road, Brighton BN2 4GJ, UK. Email: d.j.nash@bton.ac.uk

Dr Allan Pentecost – Department of Life Sciences, Kings College London, Franklin-Wilkins Building, 150 Stamford St, London SE1 9NN, UK. Email: allan.pentecost@kcl.ac.uk

Professor Bernie J. Smith – School of Geography, Queens University, Belfast BT7 1NN, UK. Email: b.smith@qub.ac.uk

Dr Anna Tooth – Groundwater and Contaminated Land, The Environment Agency, Guildbourne House, Chatsworth Road, Worthing, West Sussex BN11 1LD, UK. Email: anna.tooth@environment-agency.gov.uk

Dr J. Stewart Ullyott – School of Environment and Technology, University of Brighton, Lewes Road, Brighton BN2 4GJ, UK. Email: j.s.ullyott@bton.ac.uk

Professor Eric P. Verrecchia – Institut de Géologie, Université de Neuchâtel, Rue Emile-Argand 11, CP 2, CH-2007 Neuchâtel, Switzerland. Email: eric.verrecchia@unine.ch

Dr Heather A. Viles – School of Geography, Centre for the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, UK. Email: heather.viles@ouce.ox.ac.uk

Dr Mike Widdowson – Department of Earth Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK. Email: m.widdowson@open.ac.uk

Professor V. Paul Wright – School of Earth, Ocean and Planetary Sciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3YE, UK. Email: wrightvp@cardiff.ac.uk
The RGS-IBG Book Series only publishes work of the highest international standing. Its emphasis is on distinctive new developments in human and physical geography, although it is also open to contributions from cognate disciplines whose interests overlap with those of geographers. The Series places strong emphasis on theoretically-informed and empirically-strong texts. Reflecting the vibrant and diverse theoretical and empirical agendas that characterize the contemporary discipline, contributions are expected to inform, challenge and stimulate the reader. Overall, the RGS-IBG Book Series seeks to promote scholarly publications that leave an intellectual mark and change the way readers think about particular issues, methods or theories.

For details on how to submit a proposal please visit: www.blackwellpublishing.com/pdf/rgsibg.pdf

Kevin Ward
University of Manchester, UK

Joanna Bullard
Loughborough University, UK

RGS-IBG Book Series Editors
Acknowledgements

In addition to the editors, who reviewed all the individual chapters, numerous external referees, selected for their expertise in specific geochemical sediments, provided constructive and conscientious reviews of the manuscript. These included: Ana Alonso-Zarza, Department of Petrology and Geochemistry, Universidad Complutense, Madrid, Spain; Mark Bateman, Department of Geography, University of Sheffield, UK; Joanna Bullard, Department of Geography, Loughborough University, UK; Ian Candy, Department of Geography, Royal Holloway, University of London, UK; Frank Eckardt, Department of Environmental and Geographical Science, University of Cape Town, South Africa; Frank McDermott, School of Geological Sciences, University College Dublin, Eire; Martyn Pedley, Department of Geography, University of Hull, UK; Heather Viles, School of Geography, Centre for the Environment, University of Oxford, UK; John Webb, Department of Earth Sciences, La Trobe University, Melbourne, Australia; and Brian Whalley, School of Geography, Archaeology and Palaeoecology, Queen’s University Belfast, UK.

The majority of the photographs, line diagrams and tables within this volume are the authors’ own. The following organisations and publishers are thanked for their permission to reproduce figures (which, in some instances, may have been redrawn or slightly modified): Association des géologues du bassin de Paris, for permission to reproduce Figure 4.9B (from Thiry, M. & Bertrand-Ayrault, M., 1988, ‘Les grès de Fontainebleau: Genèse par écoulement de nappes phréatiques lors de l’entaille des vallées durant le Plio-Quaternaire et phénomènes connexes’, Bulletin d’Information des géologues du Bassin de Paris 25, 25–40. © Association des géologues du bassin de Paris). Cooperative Research Centre for Landscape Environments and Mineral Exploration, for permission to reproduce Figure 3.9 (from Anand, R.R., 2005, ‘Weathering history, landscape evolution and implications for exploration’, In: Anand, R.R. & de Broekert, P. (Eds) (2005) Regolith Landscape Evolution Across Australia, pp. 2–40. © Cooperative Research Centre for Landscape Environments and Mineral Exploration). Elsevier, for permission to reproduce Figure
Finally, our thanks go to the British Geomorphological Research Group (now British Society for Geomorphology) for supporting the working group from which this collection arose, and to Jacqueline Scott, Angela Cohen and Rebecca du Plessis at Blackwell Publishing for their patience and assistance during the long, painful gestation period leading to the publication of Geochemical Sediments and Landscapes.

David J. Nash
Sue J. McLaren
Brighton and Leicester, August 2007
1.1 Scope of This Volume

Geochemical sediments of various types are an often overlooked but extremely important component of global terrestrial environments. Where present, chemical sediments and residual deposits may control slope development and landscape evolution, increase the preservation potential of otherwise fragile sediments, provide important archives of environmental change, act as relative or absolute dating tools and, in some cases, be of considerable economic importance. Chemical sedimentation may occur in almost any terrestrial environment, providing there is a suitable dissolved mineral source, a mechanism to transfer the mineral in solution to a site of accumulation and some means of triggering precipitation. However, given the increased importance of chemical weathering in the tropics and sub-tropics, they tend to be most widespread in low-latitude regions (Goudie, 1973).

Despite their global significance, terrestrial geochemical sediments have not been considered collectively for over 20 years. Indeed, the last book to review the full suite of chemical sediments and residual deposits was Goudie and Pye’s seminal volume *Chemical Sediments and Geomorphology* (Goudie and Pye, 1983a). Since then, selected geochemical sediments have been discussed in volumes such as Wright and Tucker (*Calcretes*; 1991), Martini and Chesworth (*Weathering, Soils and Palaeosols*; 1992), Ollier and Pain (*Regolith, Soils and Landforms*; 1996), Thiry and Simon-Coinçon (*Palaearctic Earth History, Palaeosurfaces and Related Continental Deposits*; 1999), Dorn (*Rock Coatings*; 1998), Taylor and Eggleton (*Regolith Geology and Geomorphology*; 2001), and Chen and Roach (*Calcrete: Characteristics, Distribution and Use in Mineral Exploration*; 2005). However, many of these texts tend to discuss geochemical sediments within either a geological or pedological framework, often with little attempt to position them in their
geomorphological context. As will be seen in section 1.3 and many of the chapters in this volume, understanding the influence of landscape setting upon geochemical sedimentation is of paramount importance if the resulting chemical sediments and residua are to be correctly interpreted. The need for a follow-up volume to Goudie and Pye (1983a) became very apparent during meetings of the British Geomorphological Research Group (BGRG) fixed-term working group on Terrestrial Geochemical Sediments and Geomorphology, convened by the editors and Andrew Goudie, which ran between 2001 and 2004. Indeed, the majority of the authors within this collection were members of the working group, and all royalties from this book will go to the BGRG (now the British Society for Geomorphology).

The individual chapters within Geochemical Sediments and Landscapes focus largely on the relationships between geomorphology and geochemical sedimentation. Given the emphasis on landscape, the range of precipitates and residual deposits considered are mainly those which form in terrestrial settings. An exception is the chapter on beachrock and intertidal precipitates (Gischler, Chapter 11), which develop at the terrestrial–marine interface but, where present, have a significant impact upon coastal geomorphology and sedimentology. The definition of geochemical sediments used in the volume is a deliberately broad one, reflecting the wide range of environments under which chemical sedimentation can occur. As Goudie and Pye (1983b) suggest, geochemical sediments are conventionally defined as sedimentary deposits originating through inorganic chemical processes. This distinguishes them from clastic, volcanioclastic, biochemical and organic sediments. However, this definition is not especially useful, since the majority of the geochemical sediments reviewed here comprise a mixture of detrital clastic particles which are bound together by various intergranular chemical precipitates. Certainly, there are some very ‘pure’ chemical precipitates, such as speleothems (see Fairchild et al., Chapter 7) and some lacustrine deposits (Verrecchia, Chapter 9), but these are the exception rather than the rule. The conventional definition also places greatest emphasis on the role of physico-chemical processes in geochemical sedimentation. However, as will be seen from many chapters in this collection, biogeochemical processes are increasingly recognised as being of vital importance for the formation of a wide range of supposedly ‘chemical’ precipitates. Indeed, biological agencies may be directly implicated in the formation of many chemical sediments, and play a key role in the weathering and release of solutes for a wide range of other precipitates.

1.2 Organisation

Geochemical Sediments and Landscapes is organised into 14 chapters. These are arranged so that the main duricrusts (calcrete, laterite and silcrete) are
discussed first (Chapters 2–4), followed by a consideration of deposits precipitated in various aeolian, slope, spring, fluvial, lake, cave and near-coastal environments (Chapters 5–12). The volume concludes with an overview of the range of techniques available for analysing geochemical sediments (McAlister and Smith, Chapter 13) and a general summary which includes a consideration of directions for future research (McLaren and Nash, Chapter 14).

The specific content of individual chapters, inevitably, reflects the primary research interests of the contributing authors. However, all contributors were requested, where appropriate, to include information about the nature and general characteristics, distribution, field occurrence, landscape relations, macro- and micromorphology, chemistry, mineralogy, mechanisms of formation or accumulation, and palaeoenvironmental significance of their respective geochemical sediment. Individual deposits are treated as discrete entities in their specific chapters. However, in recognition of the fact that individual chemical sediments may grade laterally or vertically into geochemically allied materials, for example along pH (e.g. calcrete and silcrete) or other environmental gradients (e.g. beachrock and coastal aeolianite), authors were also asked to highlight any significant relationships to other terrestrial geochemical sediments. Despite its title, the chapters within *Geochemical Sediments and Landscapes* do not include lengthy discussions of the physics of geochemical sedimentation; authors were instead asked to cite suitable references so that interested readers can access such materials.

1.3 Significance of Geochemical Sediments in Landscapes

The geochemical precipitates and residual deposits discussed within this volume are significant from a range of geomorphological, palaeoenvironmental and economic perspectives. From a geomorphological standpoint, the more indurated and resistant chemical sediments such as calcrete (Wright, Chapter 2), ferricrete (Widdowson, Chapter 3) and silcrete (Nash and Ullyott, Chapter 4) exert a major influence upon the topographic evolution of many parts of the world. This influence is most noticeable in tropical and sub-tropical areas because such duricrusts are most widespread in these regions (Goudie, 1973). Geochemical crusts that have developed over palaeosurfaces may be preserved as horizontal to sub-horizontal caprocks on plateaux and mesas (Goudie, 1984). Along the southern coast of South Africa, for example, silcrete and ferricrete accumulation within deeply weathered bedrock has led to the preservation of remnants of the post-Gondwana ‘African Surface’ (Summerfield, 1982, 1983a; Marker et al., 2002). In contrast, where geochemical sediment formation took place preferentially in a topographic low, usually as a product of
groundwater-related cementation, relief and drainage inversion may occur if surrounding uncemented and less resistant materials are removed by erosion (Pain and Ollier, 1995). In Australia, silcretes developed within palaeochannels may now crop out in inverted relief (e.g. Barnes and Pitt, 1976; Alley et al., 1999; Hill et al., 2003). In either case, the presence of a duricrust caprock exerts a control upon slope development and hydrology and may significantly retard landscape denudation. The undercutting and subsequent collapse of caprocks may lead to the development of characteristic features such as ‘breakaways’ with the resulting slope surfaces mantled by duricrust-derived regolith.

Geochemical sedimentation may also play a more subtle but equally important role in preserving ‘ephemeral’ sediment bodies which would otherwise be highly susceptible to erosion and destruction. Calcium carbonate, gypsum or halite cementation of near-coastal and desert dune sands may, for example, significantly enhance their preservation potential once they are transformed to aeolianite (e.g. McKee, 1966; Gardner, 1998; McLaren and Gardner, 2004; see McLaren, Chapter 5). Similarly, the induration of fluvial terrace sediments through the development of pedogenic or groundwater calcretes may increase their resistance to erosion and reworking and hence preserve key palaeohydrological evidence (e.g. Candy et al., 2004a; see Wright, Chapter 2). In extreme cases, geochemical sedimentation may lead to the complete preservation of relict landforms, as, for example, in the case of the silica- and carbonate cemented palaeochannels described by Maizels (1987, 1990) from central Oman.

In addition to their geomorphological roles, chemical sediments of various types may act as important archives of palaeoenvironmental information. Even in the most arid deserts, where detailed hydrological or climatic data are often sparse, the occurrence of crusts such as calcrete or gypcrete at or near the land surface is a clear indication that the mobilisation and precipitation of minerals in the presence of water has occurred in the past. Evaporites in Death Valley, USA, for example, have been used to unravel sequences of regional climatic changes over the past 200,000 years (Lowenstein et al., 1999; see Chivas, Chapter 10). The accumulation of thick sequences of geochemical precipitates usually requires lengthy periods of landscape stability. As such, vast thicknesses of any fossil deposit may indicate relative tectonic, climatic and/or hydrological stability. However, it is essential that the morphological and geochemical characteristics of chemical sediments, as well as the environmental factors controlling their formation, are fully appreciated before they are used as evidence in palaeoenvironmental reconstruction. For example, when attempting to distinguish the significance of a calcrete within a sedimentary sequence, it is essential to determine whether it formed by pedogenic or non-pedogenic processes (see Wright, Chapter 2), since different processes of cementation may operate at different rates and represent different palaeohydrological
conditions (e.g. Nash and Smith, 1998). This becomes even more critical when dealing with calcrites in the geological record (Pimentel et al., 1996) where fabrics may have been altered over time through processes of diagenesis and paragenesis.

Successful palaeoenvironmental interpretation is highly dependent upon the availability of representative and well-documented modern analogues. For many geochemical sediments, this is unproblematic as the processes involved in, and the controls upon, their formation are well understood. Studies of dripwater chemistry and environmental conditions within contemporary cave systems, for example, have greatly improved the hydrogeochemical interpretation of ancient speleothems (see Fairchild et al., 2006a,b; and Fairchild et al., Chapter 7). Similarly, Zhang et al. (2001) and Chen et al. (2004) have investigated the physico-chemical controls on contemporary carbonate precipitation at waterfalls, which has considerably enhanced our understanding of tufa and travertine formation (see Viles and Pentecost, Chapter 6). However, for materials such as silcrete (Nash and Ullyott, Chapter 4), there are virtually no representative modern equivalents, and debate continues over the precise environments under which they form (e.g. Summerfield, 1983b, 1986; Nash et al., 1994; Ullyott et al., 1998). Disagreements over the role of biological and physico-chemical mechanisms in the formation of rock varnish have also historically hindered their effective use as a palaeoenvironmental indicator, although recent developments will hopefully rectify this situation (see Liu, 2003; and Dorn, Chapter 8).

Geochemical sediments are increasingly being used as both relative and absolute age indicators. Duricrusts formed on palaeosurfaces as a result of pedogenic processes, for example, may represent important marker horizons and can, with considerable care, be used as a broad-scale correlative tool. However, it is the potential for absolute dating of geochemical sediments that is currently generating greatest interest. The dating of many CaCO$_3$-cemented sediments has long been considered inappropriate due to concerns over whether the carbonate-cementing environment could be viewed as geochemically ‘closed’. Advances in the use of U-series dating mean that previously problematic materials such as calcrete can now be systematically dated (Kelly et al., 2000; Candy et al., 2004b, 2005). Similarly, the analysis and dating of microlaminations is permitting both palaeoenvironmental information and calibrated ages to be derived from rock varnish (see Liu et al., 2000; and Dorn, Chapter 8). These improvements may mean that such chemical sediments will, in the future, be used as routinely as speleothems (Fairchild et al., Chapter 7) and laminated lacustrine deposits (Verrecchia, Chapter 9) as chronometric and palaeoenvironmental tools.

Finally, many geochemical sediments are of major economic importance, both as sources of minerals and construction materials, and because
of their potential impacts on human livelihoods through their influence upon soil properties and groundwater chemistry. In regions where alternative construction materials are scarce, geochemical sediments such as calcrete (Wright, Chapter 2), laterite (Widdowson, Chapter 3) and beachrock (Gischler, Chapter 11) may be used as building materials. For example, certain types of air-hardening laterite are widely employed as building bricks in Asia (Goudie, 1973), and calcrete was used as one of the main sources of road aggregate during the construction of the Trans-Kalahari Highway in Botswana in the late 1990s (Lawrance and Toole, 1984). In terms of mineral prospecting, evaporite sequences (Chivas, Chapter 10, and Goudie and Heslop, Chapter 12) provide economically significant sources of gypsum, nitrate, sulphate and borax, bauxite (Widdowson, Chapter 3) remains a key source of aluminium ore (e.g. Anand and Butt, 2003) and groundwater calcrete (Wright, Chapter 2) may contain significant concentrations of uranium (Carlisle et al., 1978; Carlisle, 1983).

Even where geochemical sediments are, in themselves, of little direct economic value, they may be of considerable utility in basin analysis, oil reservoir or aquifer characterisation and for locating economically important ore bodies (e.g. Smith et al., 1993; Abdel-Wahab et al., 1998; Butt et al., 2005). For example, chemical analyses of pedogenic calcretes are increasingly used as a gold-prospecting tool in southern Australia due to the preferential concentration of Au within profiles during bedrock weathering and cementation (Lintern et al., 1992); elevated levels of Au within the calcrete regolith may represent the near-surface expression of an area of concealed primary or secondary gold mineralisation (Lintern, 2002). Similarly, the upper ferruginous zone of lateritic profiles is frequently used as a sample medium for the detection of underlying Au ore bodies in southern and Western Australia (Butt et al., 2005). However, for these techniques to be successful, it is essential that sampling is undertaken with full regard to the local landform context (Craig, 2005), which requires that detailed regolith-landform mapping is carried out during the early phases of any mineral exploration programme (e.g. Hill et al., 2003). This ongoing work reinforces the premise behind this volume, namely that understanding the influence of landscape context upon the formation of any geochemical sediment is key to the successful exploitation of that precipitate or residual deposit. We are confident that as our understanding of the genesis of all geochemical sediments improves, then their economic value can only increase.

References