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Editors’ Preface to the
Manchester Physics Series

The Manchester Physics Series is a series of textbooks at first degree level. It grew
out of our experience at the University of Manchester, widely shared elsewhere,
that many textbooks contain much more material than can be accommodated in a
typical undergraduate course; and that this material is only rarely so arranged as
to allow the definition of a short self-contained course. In planning these books
we have had two objectives. One was to produce short books so that lecturers
would find them attractive for undergraduate courses, and so that students would
not be frightened off by their encyclopaedic size or price. To achieve this, we
have been very selective in the choice of topics, with the emphasis on the basic
physics together with some instructive, stimulating and useful applications. Our
second objective was to produce books which allow courses of different lengths
and difficulty to be selected with emphasis on different applications. To achieve
such flexibility we have encouraged authors to use flow diagrams showing the
logical connections between different chapters and to put some topics in starred
sections. These cover more advanced and alternative material which is not required
for the understanding of latter parts of each volume.

Although these books were conceived as a series, each of them is self-contained
and can be used independently of the others. Several of them are suitable for
wider use in other sciences. Each Author’s Preface gives details about the level,
prerequisites, etc., of that volume.

The Manchester Physics Series has been very successful since its inception
40 years ago, with total sales of more than a quarter of a million copies. We are
extremely grateful to the many students and colleagues, at Manchester and else-
where, for helpful criticisms and stimulating comments. Our particular thanks go
to the authors for all the work they have done, for the many new ideas they have
contributed, and for discussing patiently, and often accepting, the suggestions of
the editors.



xii Editors’ Preface to the Manchester Physics Series

Finally we would like to thank our publishers, John Wiley & Sons, Ltd., for
their enthusiastic and continued commitment to the Manchester Physics Series.

F. K. Loebinger
F. Mandl

D. J. Sandiford
August 2008



Authors’ Preface

In writing this book, our goal is to help the student develop a good understanding of
classical dynamics and special relativity. We have tried to start out gently: the first
part of the book aims to provide the solid foundations upon which the second half
builds. In the end, we are able, in the final chapter, to cover some quite advanced
material for a book at this level (when we venture into the terrain of Einstein’s
General Theory of Relativity) and it is our hope that our pedagogical style will
lead the keen student all the way to the denouement. That said, we do not assume
too much prior knowledge. A little calculus, trigonometry and some exposure to
vectors would help but not much more than that is needed in order to get going.
We have in mind that the first half of the book covers material core to a typical first
year of undergraduate studies in physics, whilst the second half covers material that
might appear in more advanced first or second year courses (e.g. material such as
the general rotation of rigid bodies and the role of four-vectors in special relativity).

The classical mechanics of Newton and the theory of relativity, developed by
Einstein, both make assumptions as to the structure of space and time. For Newton
time is an absolute, something to be agreed upon by everyone, whilst for Einstein
time is more subjective and clocks tick at different rates depending upon where
they are and how they are moving. Such different views lead to different physics
and by presenting Newtonian mechanics alongside relativity, as we do in this book,
it becomes possible to compare and contrast the two. Of course, we shall see how
Newtonian physics provides a very good approximation to that of Einstein for most
everday phenomena, but that it fails totally when things whizz around at speeds
approaching the speed of light.

In this era of electronic communications and online resources that can be
researched at the push of a button, it might seem that the need for textbooks is
diminished. Perhaps not surprisingly we don’t think that is the case. Quiet time
spent with a textbook, some paper and a pen, reading and solving problems, is
probably still the best way to do physics. Just as one cannot claim to be a pianist
without playing a piano, one cannot claim to be a physicist without solving
physics problems. It is a point much laboured, but it is true nonetheless. The
problems that really help develop understanding are usually those that take time
to crack. The painful process of failing to solve a problem is familiar to every
successful physicist, as is the excitement of figuring out the way forward. Our
advice when solving the problems in this book is to persevere for as long as



xiv Authors’ Preface

possible before peeking at the solution, to try and enjoy the process and not to
panic if you cannot see how to start a problem.

We have deliberately tried to keep the figures as simple as possible. A good
drawing can often be an important step to solving a physics problem, and we
encourage you to make them at every opportunity. For that reason, we have illus-
trated the book with the sorts of drawings that we would normally use in lectures
or tutorials and have deliberately avoided the sort of embellishments that would
undoubtedly make the book look prettier. Our aim is to present diagrams that are
easy to reproduce.

A comment is in order on our usage of the word “classical”. For us “classical”
refers to physics pre-Einstein but not everyone uses that terminology. Sometimes,
classical is used to refer to the laws of physics in the absence of quantum mechanics
and in that sense, special relativity could be said to be a classical theory. We have
nothing to say about the quantum theory in this book, except that quantum theories
that are also consistent with relativity lie at the very heart of modern physics.
Hopefully this book will help whet the appetite for further studies in that direction.

We should like to express our gratitude to all those who have read the manuscript
and provided helpful suggestions. In particular we thank Rob Appleby, Richard
Battye, Mike Birse, Brian Cox, Joe Dare, Fred Loebinger, Nicola Lumley, Franz
Mandl, Edward Reeves, David Sandiford and Martin Yates.

Finally, we would like to express particular gratitude to our parents, Thomas &
Sylvia Forshaw and Roy & Marion Smith, for their constant support. For their love
and understanding, our heartfelt thanks go to Naomi, Isabel, Jo, Ellie, Matt and
Josh.

Jeffrey R. Forshaw
A. Gavin Smith

October 2008
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Introductory Dynamics





1
Space, Time and Motion

1.1 DEFINING SPACE AND TIME

If there is one part of physics that underpins all others, it is the study of motion.
The accurate description of the paths of celestial objects, of planets and moons,
is historically the most celebrated success of a classical mechanics underpinned
by Newton’s laws1. The range of applicability of these laws is vast, encompass-
ing a scale that extends from the astronomical to the microscopic. We have come
to understand that many phenomena not previously associated with motion are in
fact linked to the movement of microscopic objects. The absorption and emission
spectra of atoms and molecules arise as a result of transitions made by their con-
stituent electrons, and the random motion of ensembles of atoms and molecules
forms the basis for the modern statistical description of thermodynamics. Although
atomic and subatomic objects are properly described using quantum mechanics, an
understanding of the principles of classical mechanics is essential in making the
conceptual leap from continuous classical systems with which we are most familiar,
to the discretised quantum mechanical systems, which often behave in a manner
at odds with our intuition. Indeed, the calculational techniques that are routinely
used in quantum mechanics have their roots in the classical mechanics of particles
and waves; a close familiarity with their use in classical systems is an asset when
facing problems of an inherently quantum mechanical nature.

As we shall see in the second part of this book, when objects move at speeds
approaching the speed of light classical notions about the nature of space and
time fail us. As a result, the classical mechanics of Newton should be viewed as a
low-velocity approximation to the more accurate relativistic theory of Einstein2. To
look carefully at the differences between relativistic and non-relativistic theories

1 After Isaac Newton (1643–1727).
2 Albert Einstein (1879–1955).
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4 Space, Time and Motion

forces us to recognise that our intuitive ideas about how things move are often
incorrect. At the most fundamental level, mechanics of either the classical or the
quantum kind, in either the relativistic or non-relativistic limit, is a study of motion
and to study motion is to ask some fundamental questions about the nature of space
and time. In this book we will draw out explicitly the different underlying structures
of space and time used in the approaches of Newton and Einstein.

1.1.1 Space and the classical particle

We all have strong intuitive ideas about space, time and motion and it is precisely
because of this familiarity that we must take special care in our attempts to define
these fundamental concepts, so as not to carry too many unrecognised assumptions
along with us as we develop the physics. So let us start by picking apart what
we mean by position. We can usually agree what it means for London to be
further away than Inverness and we all know that in order to go to London from
Inverness we must also know the direction in which to travel. It may also seem
to be fairly uncontentious that an object, such as London, has a position that
can be specified, i.e. it is assumed that given enough information there will be no
ambiguity about where it is. Although this seems reasonable, there is immediately a
problem: day-to-day objects such as tennis balls and cities have finite size; there are
a number of ‘positions’ for a given object that describe different parts of the object.
Having directions to London may not be enough to find Kings Cross station, and
having directions to Kings Cross station may not be enough to find platform number
nine. To unambiguously give the position of an object is therefore only possible if
the object is very small – vanishingly small, in fact. This hypothetical, vanishingly
small object is called a particle. It might be suggested that with the discovery of the
substructure of the atom, true particles, with mass but no spatial extent, have been
identified. However, at this level, the situation becomes complicated by quantum
uncertainty which makes the simultaneous specification of position and momentum
impossible. The classical particle is therefore an idealisation, a limit in which the
size of an object tends to zero but in which we ignore quantum phenomena. Later
we shall see that it is possible to define a point called the centre of mass of an
extended object and that this point behaves much like a classical particle. The
collection of all possible positions for a particle forms what we call space.

The mathematical object possessing the properties we require for the description
of position is called the vector. A vector has both magnitude and direction and we
must be careful to distinguish it from a pure number which has a magnitude, but no
directional properties. The paradigm for the vector comes from the displacement of
a particle from point A to point B as shown in Figure 1.1. The displacement from
A to B is represented by the directed-line-segment AB. We can imagine specifying
the displacement as, for example, “start at A and move 3 km to the northeast”
or “start at A and go 1 parsec in the direction of Alpha Centuri”. Once we have
specified a displacement between the two points A and B we can imagine sliding
each end of the line segment in space until it connects another two points C and D.
To do this, we move each end through the same distance and in the same direction,
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A

B

CAB

CD

a

D

Figure 1.1 Displacement of a particle from point A to point B is illustrated by the directed
line segment AB . Parallel transport of this line gives the displacement from point C to
point D. The displacement vector a is not associated with any particular starting point.

an operation that is known as parallel transport. Now the displacement is denoted
CD but its direction and magnitude are the same. It should be clear that there is
an infinity of such displacements that may be obtained by parallel transport of the
directed line segment. The displacement vector a has the magnitude and direction
common to this infinite set of displacements but is not associated with a particular
position in space. This is an important point which sometimes causes confusion
since vectors are illustrated as directed line segments, which appear to have a
well defined beginning and an end in space: A vector has magnitude and direction
but not location. The position of a particle in space may be given generally by a
position vector r only in conjunction with a fixed point of origin.

Now, all of this assumes that we understand what it means for lines to be
parallel. At this point we assume that we are working in Euclidean space, which
means that parallel lines remain equidistant everywhere, i.e. they never intersect.
In non-Euclidean spaces, such as the two-dimensional surface of a sphere, parallel
lines do intersect3 and extra mathematics is required to specify how local geometries
are transported to different locations in the space. For the moment, since we have
no need of non-Euclidean geometry, we will rest our discussion of vectors firmly
on the familiar Euclidean notion of parallel lines. Later, when we consider the
space-time geometry associated with relativistic motion we will be forced to drop
this deep-rooted assumption about the nature of space.

So far, we have been considering only vectors that are associated with displace-
ments from one point to another. Their utility is far more wide ranging than that
though: vectors are used to represent other interesting quantities in physics. For
example the electric field strength in the vicinity of an electric charge is correctly
represented by specifying both its magnitude and direction, i.e. it is a vector. Since
it is important to maintain the distinction between vectors and ordinary numbers

3 For example lines of longitude meet at the poles.
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(called scalars) we identify vector quantities in this book by the use of bold font.
When writing vectors by hand it is usual to either underline the vector, or to put
an arrow over the top. Thus

a ≡ −→a ≡ a.

Use the notation that you find most convenient, but always maintain the distinction
between vector and scalar quantities. In this book both upper case (A) and lower
case (a) notion will be used for vectors where A is in general a different vector
from a. When a vector has zero magnitude it is impossible to define its direction;
we call such a vector the null vector 0.

1.1.2 Unit vectors

The length of a vector a is known as its magnitude, often denoted |a|. To simplify
the notation we shall adopt the convention that vectors are printed in bold and their
magnitudes are indicated by dropping the bold font, thus a ≡ |a|. Often we will
separate the magnitude and direction of a vector, writing

a = aâ,

where â is the vector of unit magnitude with the same direction as a. Unit vectors,
of which â is an example, are often used to specify directions such as the directions
of the axes of a co-ordinate system (see below).

1.1.3 Addition and subtraction of vectors

The geometrical rules for adding and subtracting vectors are illustrated in
Figure 1.2. Addition of the vectors A and B involves sliding the vectors until
they are “head-to-tail”, so that the resultant vector connects the tail of A to the
head of B. The vector −A is defined as a vector with the same magnitude, but
opposite direction to A. The difference B − A is constructed by adding B and −A
as shown. Subtraction of a vector from itself gives the null vector:

A − A = 0.

B

A

B − A

B

A + B − A

Figure 1.2 Adding and subtracting vectors.
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1.1.4 Multiplication of vectors

There are two types of vector multiplication that are useful in classical physics.
The scalar (or dot) product of two vectors A and B is defined to be

A · B = AB cos θ, (1.1)

This scalar quantity (a pure number) has a simple geometrical interpretation.
It is the projection of B on A, i.e. B cos θ , multiplied by the length of A (see
Figure 1.3). Equally, it may be thought of as the projection of A on B, i.e. A cos θ ,
multiplied by the length of B. Clearly the scalar product is insensitive to the order
of the vectors and hence A · B = B · A. The scalar product takes its maximum
value of AB when the two vectors are parallel, and it is zero when the vectors
are mutually perpendicular.

B cos q

q

A cos q

A

B

Figure 1.3 Geometry of the scalar product. A · B is the product of the length of A, and the
projection of B onto A or alternatively the product of the length of B, and the projection of
A onto B.

The vector (or cross) product is another method of multiplying vectors that is
frequently used in physics. The cross product of vectors A and B is defined to be

A × B = AB sin θ n̂, (1.2)

where θ is the angle between A and B and n̂ is a unit vector normal to the
plane containing both A and B. Whether n̂ is ‘up’ or ‘down’ is determined by
convention and in our case we choose to use the right-hand screw rule; turning
the fingers of the right hand from A to B causes the thumb to point in the sense
of n̂ as is shown in Figure 1.4. Interchanging the order of the vectors in the
product means that the fingers of the right hand curl in the opposite sense and the
direction of the thumb is reversed. So we have

B × A = −A × B. (1.3)

The magnitude of the vector product AB sin θ also has a simple geometrical
interpretation. It is the area of the parallelogram formed by the vectors A and B.
Alternatively it can be viewed as the magnitude of one vector times the projection



8 Space, Time and Motion

B

A

A × B

q

Thumb

Fingers

Figure 1.4 Vector product of A and B.

of the second on an axis which is perpendicular to the first and which lies in the
plane of the two vectors. It is this second geometric interpretation that has most
relevance in dynamics. As we shall see later, moments of force and momentum
involve this type of perpendicular projection. In this book the vector product will
find its principal application in the study of rotational dynamics.

The scalar and vector products are interesting to us precisely because they have
a geometrical interpretation. That means they represent real things is space. In a
sense, we can think of the scalar product as a machine that takes two vectors as
input and returns a scalar as output. Similarly the vector product also takes two
vectors as its input but instead returns a vector as its output. There are in fact
no other significantly different4 machines that are able to convert two vectors into
scalar or vector quantities and as a result you will rarely see anything other than
the scalar and vector products in undergraduate/college level physics. There is in
fact a machine that is able to take two vectors as its input and return a new type of
geometrical object that is neither scalar nor vector. We will even meet such a thing
later in this book when we encounter tensors in our studies of advanced dynamics
and advanced relativity.

1.1.5 Time

We are constantly exposed to natural phenomena that recur: the beat of a pulse;
the setting of the Sun; the chirp of a cricket; the drip of a tap; the longest day of
the year. Periodic phenomena such as these give us a profound sense of time and
we measure time by counting periodic events. On the other hand, many aspects of
the natural world do not appear to be periodic: living things die and decay without
rising phoenix-like from their ashes to repeat their life-cycle; an egg dropped on
the floor breaks and never spontaneously re-forms into its original state; a candle
burns down but never up. There is a sense that disorder follows easily from order,
that unstructured things are easily made from structured things but that the reverse
is much more difficult to achieve. That is not to say that it is impossible to create
order from disorder – you can do that by tidying your room – just that on average

4 i.e. other than trivial changes such as would occur if we choose instead to define the scalar product to
be A · B = λ AB cos θ where λ is a constant. We choose λ = 1 because it is most convenient but any
other choice is allowed provided we take care to revise the geometrical interpretation accordingly.
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things go the other way with the passing of time. This idea is central to the study
of thermodynamics where the disorder in a system is a measurable quantity called
entropy. The total entropy of the Universe appears always to increase with time. It
is possible to decrease the entropy (increase the order) of a part of the Universe,
but only at the expense of increasing the entropy of the rest of the Universe by a
larger amount. This net disordering of the Universe is in accord with our perception
that time has a direction. We cannot use natural processes to “wind the clock back”
and put the Universe into the state it was in yesterday – yesterday is truly gone
forever. That is not to say that the laws of physics forbid the possibility that a
cup smashed on the floor will spontaneously re-assemble itself out of the pieces
and leap onto the table from which it fell. They do not; it is simply that the
likelihood of order forming spontaneously out of disorder like this is incredibly
small. In fact, the laws of physics are, to a very good approximation, said to be
“time-reversal invariant”. The exception occurs in the field of particle physics where
“CP-violation” experiments indicate that time-reversal symmetry is not respected
in all fundamental interactions. This is evidence for a genuine direction to time
that is independent of entropy. Entropy increase is a purely statistical effect, which
occurs even when fundamental interactions obey time-reversal symmetry.

Thermodynamics gives us a direction to time and periodic events allow us to
measure time intervals. A clock is a device that is constructed to count the number
of times some recurring event occurs. A priori there is no guarantee that two clocks
will measure the same time, but it is an experimental fact that two clocks that are
engineered to be the same and which are placed next to each other, will measure,
at least approximately, the same time intervals. This approximate equivalence of
clocks leads us to conjecture the existence of absolute time, which is the same
everywhere. A real clock is thus an imperfect means of measuring absolute time
and a good clock is one that measures absolute time accurately. One problem with
this idea is that absolute time is an abstraction, a theoretical idea that comes from
an extrapolation of the experimental observation of the similar nature of different
clocks. We can only measure absolute time with real clocks and without some
notion of which clocks are better than others we have no handle on absolute time.
One way to identify a reliable clock is to build lots of copies of it and treat all the
copies exactly the same, i.e. put them in the same place, keep them at the same
temperature and atmospheric conditions etc. If it is a reliable clock the copies
will deviate little from each other over long time intervals. However, a reliable
clock is not necessarily a good clock; similarly constructed clocks may run down
in similar ways so that, for example, the time intervals between ticks might get
longer the longer a clock runs, but in such a way that the similar clocks still read the
same time. We can get around this by comparing equally reliable clocks based on
different mechanisms. If enough equally-reliable clocks, based on enough different
physical processes, all record the same time then we can start to feel confident
that there is such a thing as absolute time. It is worth pointing out that in the 17th
century reliable clocks were hard to come by and Newton certainly did not come to
the idea of absolute time as a result of the observation of the constancy of clocks.
Newton had an innate faith in the idea of absolute time and constructed his system
of mechanics on that basis.
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There is no doubt that absolute time is a useful concept; in this book we shall
at first examine the motion of things under the influence of forces, treating time as
though it is the same for every observer, and we will get answers accurate to a high
degree. However, absolute time is a flawed concept, but flawed in such a way that
the cracks only begin to appear under extreme conditions. We shall see later how
clocks that are moving at very high relative velocities do not record the same time
and that time depends on the state of motion of the observer. Einstein’s Special
Theory of Relativity tells us how to relate the time measured by different observers
although the deviations from absolute time are only important when things start to
move around at speeds approaching the speed of light. In describing the motion of
things that do not approach the speed of light we can ignore relativistic effects with
impunity, avoiding the conceptual and computational complications that arise from
a full relativistic treatment. This will allow us to focus on concepts such as force,
linear and angular momentum and energy. Once the basic concepts of classical
mechanics have been established we will move on to study Special Relativity
in Part II. Even then we will not completely throw out the concepts that are so
successful in classical mechanics. Rather, these shall be adapted into the more
general ideas of energy, momentum, space and time that are valid for all speeds.

1.1.6 Absolute space and space-time

At a fundamental level, the natural philosophy of Aristotle and the physics of
Newton differ from the physics of Galileo5 and Einstein in the way that space and
time are thought to be connected. One very basic question involves whether space
can be thought of as absolute. Consider the corner of the room you might be sitting
in. The intersection of the two walls and the ceiling of a room certainly defines a
point, but will this point be at the same place a microsecond later? We might be
tempted to think so, that is, until the motion of the Earth is considered; the room is
hurtling through space and so is our chosen point. Clearly the corner of the room
defines a ‘different’ point at each instant. So would it be better to define a ‘fixed’
point with reference to some features of the Milky Way? This might satisfy us, at
least until we discover that the Milky Way is moving relative to the other galaxies,
so such a point cannot really be regarded as fixed. We find it difficult to escape com-
pletely from the idea that there is some sort of fixed background framework with
respect to which we can measure all motion, but there is, crucially, no experimental
evidence for this structure. Such a fixed framework is known as absolute space.

The concept of absolute space, which originates with Aristotle and his contem-
poraries, can be represented geometrically as shown in Figure 1.5(a). Here we have
time as another Cartesian axis, tacked onto the spatial axes to produce a composite
space that we call space-time. Consider two things that happen at times and posi-
tions that are measured using clocks and co-ordinate axes. We call these happenings
‘events’ and mark them on our space-time diagram as A and B. In the picture of
absolute space, if the spatial co-ordinates of events A and B are identical we say that
they represent the same point in space at different times. We can construct a path
shown by the dotted line that connects the same point in space for all times. Galilean

5 Galileo Galilei (1564–1642).
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Figure 1.5 Different structures of space and time: (a) absolute space where points A and
B are the same point in space; (b) a fibre-bundle structure where each moment in time has
its own space.

relativity challenges this picture by rejecting the notion of absolute space and
replacing it with the idea that space is defined relative to some chosen set of axes
at a given instant in time. This is more like the picture in Figure 1.5(b), a structure
that mathematicians call a fibre bundle. The same events A and B now lie in differ-
ent spaces and the connection between them is no longer obvious. The fibre bundle
is a more abstract structure to deal with than the space × time structure of (a). Imag-
ine, for example, trying to calculate the displacement from A to B. To do this we
have to assume some additional structure of space-time that allows us to compare
points A and B. It is as if space is erased and redefined at each successive instant
and we have no automatic rule for saying how the ‘new’ space relates to the ‘old’
one. Notice that this view still treats time as absolute; observers at different points
in the x − y plane agree on the common time t . In later chapters we will recon-
sider the geometry of space and time when we come to study the theory of Special
Relativity, where universal time will be rejected in favour of a new space-time
geometry in which observers at different positions each have their own local time.

1.2 VECTORS AND CO-ORDINATE SYSTEMS

As far as we can tell, space is three-dimensional, which means that three numbers
are required to define a unique position. How we specify the three position-giving
numbers defines what is known as the co-ordinate system. The co-ordinate system
therefore introduces a sort of invisible grid or mesh that maps every point in
space onto a unique ordered set of three real numbers. Figure 1.6 shows two
commonly-used 3-dimensional co-ordinate systems. The Cartesian system is named
after the French philosopher and mathematician René Descartes (1596–1650), who
is reputed to have invented it from his bed while considering how he might specify
the position of a fly that was buzzing around his room. This co-ordinate system
consists of three mutually perpendicular axes, labelled x, y and z, that intersect at
the point O , called the origin. The position of a particle at P may be specified
by giving the set of three distances (x, y, z). Another frequently used co-ordinate
system, the spherical-polar system, is obtained when the position of the particle is
given instead by the distance from the origin r and two angles: the polar angle
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Figure 1.6 Two 3-dimensional co-ordinate systems covering the same space. The Cartesian
co-ordinates consist of the set (x, y, z). The spherical polar co-ordinates consist of the set
(r, θ, φ).

θ and the azimuthal angle φ. The Cartesian and the spherical polar systems are
just two possible ways of mapping the same space, and it should be clear that
for any given physical problem there will be an infinite number of equally-valid
co-ordinate systems. The decision as to which one to use is based on the nature
of the problem, and the ease or difficulty of the calculation that results from the
choice.

Choosing a co-ordinate system immediately gives us a way to represent vectors.
Associated with any co-ordinate system are a set of unit vectors known as basis
vectors. Each co-ordinate has an associated basis vector that points in the direction
in which that co-ordinate is increasing. For example, in the 3D Cartesian system
i points in the direction of increasing x, i.e. along the x-axis, while j and k point
along the y− and z−axes, respectively. Suppose that the position of a particle
relative to the origin is given by the vector r, known as the ‘position vector’ of the
particle. Then r can be written in terms of the Cartesian basis vectors as

r = xi + yj + zk, (1.4)

where the numbers (x, y, z) are the Cartesian co-ordinates of the particle. The
magnitude of the position vector, which is the distance between the particle and
the origin, can be calculated by Pythagoras’ Theorem and is

r = √
r · r =

√
x2 + y2 + z2. (1.5)

We have focussed upon a position vector in the Cartesian basis but we could
have talked about a force, or an acceleration or a magnetic field etc. Any vector A
can be expressed in terms of its components (Ax, Ay, Az) according to

A = Ax i + Ayj + Azk. (1.6)

It is not our aim here to present a full discussion of the algebraic properties of
vectors. Some key results, which will prove useful later are listed in Table 1.1.

Very often, the motion of an object may be constrained to a known plane, such
as in the case of a ball on a pool table, or a planet in orbit around the Sun. In such
situations the full 3D co-ordinate system is not required and a two-dimensional
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TABLE 1.1 Vector operations in the Cartesian basis. A and B are vectors, λ is a scalar.

Operation Notation Resultant

Negation −A (−Ax)i + (−Ay)j + (−Az)k
Addition A + B (Ax + Bx)i + (Ay + By)j + (Az + Bz)k
Subtraction A − B (Ax − Bx)i + (Ay − By)j + (Az − Bz)k
Scalar (Dot) Product A · B AxBx + AyBy + AzBz

Vector (Cross) Product A × B (AyBz − AzBy)i + (AzBx − AxBz)j + (AxBy − AyBx)k
Scalar Multiplication λA λAx i + λAyj + λAzk

P

x axis
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r

0 x

y

q

j

Figure 1.7 2D co-ordinate systems. The Cartesian co-ordinates consist of the set (x, y).
The plane polar co-ordinates consist of the set (r, θ).

system may be used. Two of these are shown in Figure 1.7. The Cartesian 2D
co-ordinate system has basis vectors i and j and co-ordinates (x, y). The plane-polar
co-ordinates are (r, θ)6 where

r =
√

x2 + y2 and θ = tan−1 y

x
. (1.7)

The plane-polar system has basis vectors r̂ and θ̂ . These may be expressed in
terms of i and j as

r̂ = i cos θ + j sin θ,

θ̂ = −i sin θ + j cos θ. (1.8)

The general position vector in the plane may therefore be written as

r = r r̂ = r(i cos θ + j sin θ) = xi + yj. (1.9)

Some care is required when using polar co-ordinates to describe the motion of a
particle since the basis vectors depend on the co-ordinate θ , which may itself depend
on time. This means that as the particle moves, the basis vectors change direction.

6 Note the conventional use of θ for the angle to the x axis rather than φ, which is used for the
corresponding angle in the spherical (3D) polar system.
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This will lead to more complicated expressions for velocity and acceleration in
polar co-ordinates than are obtained for Cartesian co-ordinates, as will be seen in
the next section.

1.3 VELOCITY AND ACCELERATION

A particle is in motion when its position vector depends on time. The Ancient
Greek philosophers had problems accepting the idea of a body being both in motion,
and being ‘at a point in space’ at the same time. Zeno, in presenting his ‘runner’s
paradox’, divided up the interval between the start and finish of a race to produce
an infinite sum for the total distance covered. He argued that before the runner
completes the full distance (l) he must get half-way, and before he gets to the end
of the second half he must get to half of that length and so on. The total distance
covered can therefore be written as the infinite series

l

[
1

2
+ 1

4
+ 1

8
+ · · ·

]
.

Zeno argued that it would be impossible for the runner to cover all of the
sub-stretches in a finite time, and would therefore never get to the finish line. This
contradiction forced him to decide that motion is impossible and that what we
perceive as motion must be an illusion. We now know that the resolution of this
paradox lies in an understanding of calculus. As the series continues, the steps get
shorter and shorter, as do the time intervals taken for the runner to cover each
step and we tend to a situation in which a vanishingly short distance is covered in
a vanishingly small time.

Assuming that the position is a smooth function of time, we define the velocity as

v(t) = dr(t)
dt

= limit
�t→0

(
r(t + �t) − r(t)

�t

)
. (1.10)

Notice that it involves a difference in the position vector at time t + �t and at
time t . This difference, divided by the time interval �t , only becomes the velocity
in the limit that �t goes to zero. Thus the velocity is defined in terms of an
infinitesimally small displacement divided by an infinitesimally small time interval.
Notice that the vector nature of v follows directly from the vector nature of
r(t + �t) − r(t), which differs from v only by division by the scalar �t . Often it
is useful to refer to the magnitude of the velocity; this is known as the speed v, i.e.

v = |v| .

With the notion that the ratio of two infinitesimally small quantities can be a
finite number, we return to the Runner’s Paradox. Zeno’s argument does not rely
on the particular choice of infinite series stated above. So we can simplify things
by instead using a series made of equal-length steps. First we divide l up into


