Handbook of Asset and Liability Management
For other titles in the Wiley Finance series
please see www.wiley.com/finance
Handbook of Asset and Liability Management

From models to optimal return strategies

Alexandre Adam

John Wiley & Sons, Ltd
To Géraldine and to my family
Contents

Preface xiii
Acknowledgments xvii
About the author xix

PART I INTRODUCTION

1 The History of ALM
1.1 The history of the banking industry from antiquity to the Middle Ages 3
1.2 The modern banking industry and the history of ALM 5
1.3 The history of the insurance industry and ALM 7
1.4 The history of other businesses and ALM 9

2 What is Asset and Liability Management Today? 13
2.1 ALM and the banking industry 13
2.2 Other general ALM questions 14

PART II INTERNAL TRANSFER PRICING, ACCOUNTING

AND AUDITING 17

3 Balance Sheet Presentation 19
3.1 General balance sheet presentation 19
3.2 A/L manager's balance sheet presentation 19
3.3 Banking Book and Insurance Book 23
3.4 Income statement and statement of cash flows 25

4 “Accrued Accounting” for Interest Rate Instruments Versus “Marked-to-Market” Accounting 29
4.1 General principles 29
4.2 Accrued accounting examples 30

5 IFRS and IAS Accounting 33
5.1 IFRS, international organizations and rule presentation 33
5.2 IAS 39 35
5.3 Financial disclosures 48
5.4 IFRS and insurance 53
5.5 Other IFRS specificities 54
5.6 Impact of IFRS on ALM and criticism of IFRS 56

6 “Economic Accounting”: Fair Value and Full Fair Value 59

7 Internal Transfer Pricing or Fund Transfer Pricing (FTP) 61
 7.1 Principles 61
 7.2 Advanced transfer pricings including credit risk and expected return on economic capital 64
 7.3 The inclusion of implicit options inclusion in the “contract by contract” FTP rules and commercial department arbitrage opportunity 66
 7.4 FTP rules based on the “stock” and based on the “flows” 67
 7.5 Examples of FTP rules 72
 7.6 Perequations 77

8 ALM as a Profit Centre 81
 8.1 One profit centre for one financial risk 81

9 Optimal Organization of an ALM Team 83
 9.1 The usual ALM organization 83
 9.2 The objectives of ALM 84
 9.3 ALCO: the ALM committee 87
 9.4 The different ALM teams 93

PART III BALANCE SHEET ITEMS AND PRODUCTS MODELLING 99

10 Behavioural Modelling Principles 101
 10.1 The constitution of databases 101
 10.2 Event driven modelling 103
 10.3 Modelling the strategy of the company 104
 10.4 Expert advice 105
 10.5 Model backtesting 105

11 Deposits and Savings 107
 11.1 Deposits, monetary aggregates, money supply and macroeconomics 107
 11.2 Demand deposit accounts 111
 11.3 Saving accounts: regulated and non-regulated savings versus super-savings 116
 11.4 Demand deposits models in the literature 118
 11.5 Deposit modelling: the solution through an approach based on customer behaviour modelling 124
 11.6 Deposit modelling through a customer behaviour modelling based approach: representation in risk indicators and FTP 132
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Loans</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>12.1 Different types of loan</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>12.2 Different definitions and formulae</td>
<td>141</td>
</tr>
<tr>
<td>13</td>
<td>Prepayments</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>13.1 The origins of the prepayment phenomenon</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>13.2 The constitution of the database for prepayment modelling</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>13.3 Different models: historical database-based approaches and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MBS-based approaches</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>13.4 Prepayment scoring</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>13.5 Prepayment monitoring</td>
<td>178</td>
</tr>
<tr>
<td>14</td>
<td>Other Examples of Products Needing Behavioural Modelling</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>14.1 Pipeline risk</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>14.2 Margin delay effects such as “whistle effects”</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>14.3 Other volume effects options</td>
<td>183</td>
</tr>
<tr>
<td>15</td>
<td>Examples of Products Partially Correlated with Financial Markets</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>15.1 Presence of correlation between the cash flows and financial</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>markets: examples of credit card</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.2 Costs and commissions correlation with financial markets</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>15.3 Examples of embedded options</td>
<td>186</td>
</tr>
<tr>
<td>16</td>
<td>New Production Modelling</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>16.1 New contract production</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>16.2 Commission and cost modelling</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>16.3 Perequation modelling</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>16.4 Future strategies modelling</td>
<td>193</td>
</tr>
<tr>
<td>17</td>
<td>Insurance Products</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>17.1 Unit of account contracts</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>17.2 Mutual funds</td>
<td>195</td>
</tr>
<tr>
<td>18</td>
<td>Hedging Instruments</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>18.1 Derivatives</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>18.2 Bond strategies</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>18.3 Mortgage Backed Securities</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>PART IV RISK MANAGEMENT FOR ASSET AND LIABILITY MANAGERS</td>
<td>201</td>
</tr>
<tr>
<td>19</td>
<td>Financial Risks</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>19.1 Liquidity risk</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>19.2 Credit risk</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>19.3 Interest rate risk</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>19.4 Inflation risk</td>
<td>259</td>
</tr>
</tbody>
</table>
19.5 Currency risk 265
19.6 Corporate stock market risk 273
19.7 Real estate risk/property risk 274
19.8 Other financial risks 277

20 Non-Financial Risks 281
20.1 Operational risks 281
20.2 Model risks 282
20.3 Business risk 282
20.4 Risk correlations 283
20.5 “Accounting risk”: the risk representation depends on the accounting scheme! 283

PART V TOOLS FOR ASSET AND LIABILITY MANAGERS 285

21 Simulation Tools for Interest Rates and Other Financial Indexes 287
21.1 Stochastic calculation 287
21.2 Equity market simulation 292
21.3 Interest rate simulation 296
21.4 Generic models for joint simulation of inflation, stock index, interest rates, real estate, liquidity and credit spreads 306
21.5 Market simulations including risk premiums 309

22 Delta Equivalent Computation 315
22.1 Principles 315
22.2 Delta, penta, correla and courba equivalents or “Adam equivalents” 322
22.3 Delta equivalent associated break-even point 326
22.4 Examples of delta equivalent computation 327
22.5 Hedging error and gamma equivalent 334

23 Technical Tools Useful in ALM 339
23.1 Risk measures 339
23.2 Optimization methods 344
23.3 Common statistical tools in ALM 347
23.4 Other statistical tools and common ALM functions 355

PART VI ECONOMIC VALUE AND NEW RISK INDICATORS ASSOCIATED WITH THE BASEL II AND SOLVENCY II REGULATORY PERSPECTIVE 357

24 Basel II Regulation and Solvency II 359
24.1 Common regulatory risk constraints 359
24.2 Basel II: normalized regulatory constraints 360
24.3 Solvency II 378
25 Links Between ALM and Financial Analysis 381
 25.1 Performance indicators in the company 381
 25.2 Shareholder’s equity value, economic value and risk
 premiums 383
 25.3 Capital allocation/attribution and capital consumption 386
 25.4 Company valuation and cost of capital with positive tax rate 387
 25.5 Merton’s model 391
 25.6 Financial analysis and ALM implications 391

26 Towards Economic Capital Indicators 393
 26.1 Economic capital and its implications 393
 26.2 Economic capital computation main hypotheses 398
 26.3 ALM stress testing 401
 26.4 Credit risk economic capital computation 406
 26.5 Economic capital in ALM 407
 26.6 IFRS and regulation implications for ALM 433
 26.7 New indicators for the economic value approach 435

PART VII OPTIMAL RETURN STRATEGIES 441

27 Risk Perfect Hedging Using the Delta Equivalent Technique 443
 27.1 Micro hedging strategies with structured products 443
 27.2 Delta hedging strategies 444
 27.3 Example of a bank balance sheet with demand deposits 448

28 Limits Policy 453
 28.1 Economic capital limit 453
 28.2 Setting economic capital limits 454
 28.3 Gap limit 454
 28.4 Income sensitivity limit 455

29 Income Smoothing Strategies 457
 29.1 Important preliminary comment about income smoothing
 and fraud 457
 29.2 Examples of income smoothing 458
 29.3 Example of a cumulative AFS bonds income smoothing
 strategy 460
 29.4 ALM and Hawks martingale 461

30 Economic Value Management: The A/L Manager’s Optimization
 Programme Under Economic Capital Constraints and Accounting
 Constraints 463
 30.1 Point of view of “traditional A/L managers” and criticism of
 the models 463
 30.2 Economic value management 466
 30.3 Economic value optimization using grid methodology 470
31 Application to Banking Book Activities 473
 31.1 Deposit accounts: valuation and hedging in an economic capital approach using the grid methodology 473
 31.2 Application to Stock Market Book 482
 31.3 Application to Credit Risk Book 483
 31.4 Prepayment risk optimal hedging strategies 484
 31.5 Application to a global Banking Book including business and model risk 485
 31.6 Direct demand deposit income smoothing through a simple example 487

32 Economic Value Management in Insurance Companies and in Capital Book Management 491
 32.1 Economic value management in insurance companies 491
 32.2 Application to economic Capital Book management 492

PART VIII CONCLUSIONS ON THE ALM OF TOMORROW 495

33 Conclusions on the Future of ALM 497
 33.1 ALM diversity 497
 33.2 ALM benchmarking 500
 33.3 Conclusions on ALM and models 500

PART IX ANNEXES 507

34 Statistical Advanced Tools 509
 34.1 Extreme points 509
 34.2 Copulas 509

35 The Basis of Interest Rate Modelling 513
 35.1 Yield curve reconstitution 513
 35.2 Yield curve stochastic interest rate models 521

Bibliography 533

Index 541
During the past decade, Asset and Liability Management (ALM) departments have become key departments for balance sheet management and for the profitability management in banks, in insurance companies, in asset management teams and even for financial directions of non-financial companies. Due to the complexity of the subject, it has always appeared difficult to develop a unified vision of what an ALM team should do: optimizing the return, hedging the risk, smoothing the margin . . .

Nevertheless, the external pressure for explanations is growing.

In many countries, the International Accounting Standards (IAS or IFRS) have changed managers’ behaviour, obliging them to account their balance sheet in a uniform standard, to better explain their hedging strategies and sometimes to show their residual positions as in the norm IAS 32.

For Banks with Basel II, for insurance companies with Solvency II, the needs for a global understanding of the business is also increasing.

In this context, and in order to prepare the future of ALM, this book tries to give an operational point of view on the business.

This book is written as a handbook for existing or future operational Asset and Liability Managers. It describes all the rules useful for managers to make the activity safe and profitable. It is also meant for all kinds of Asset and Liability managers from banks to financial directors of non-financial companies and on to insurance companies and asset management departments.

The first goal of this book is to explain all the written and unwritten rules of ALM in details, making it easier for everybody to understand the business.

After a presentation of the ALM and of the balance sheet, the new accounting and reporting principles given by IFRS/IAS standards are presented and the FTP (Fund Transfer Price) are introduced. To ensure a better control of results, it is essential to have a basic understanding of the accounting principles.

A large part of the book concentrates on the description of the possible products present in the balance sheet: deposit accounts, prepayments, life insurance contracts . . . The treatment of inflation in balance sheet management is included. Many different up-to-date models are proposed. We propose an operational approach for the management of all these products: from the models to the hedging strategy. The treatment of options in the indicators is described.
Because ALM deals with risk management, the following Parts describe all the inherent risk in a balance sheet. For each risk, we describe:

- the nature of the risk;
- an example;
- the impact on the results;
- the indicator to monitor this risk;
- the better way to simulate this risk;
- the hedging solutions.

We dedicate an entire Part to the useful technical tools used by ALM managers giving a mathematical and statistical background.

The final Parts of the book try to give a global approach for the business using an economic capital approach.

The head of an operational research team (with eight-year’s experience including operational management in ALM in one of the best performing ALM Departments in Europe) wrote this book.

Many parts of this book have never been explained in detail. For example, modern models for the demand deposits, for the prepayments are proposed. Developments in economic capital in an ALM context are included. These subjects are only now arising in scientific journals. When we see how the credit risk and the operational risk became of prime importance, with the regulatory pressure of the Basel II Pillar 1, we understand that it will become the same for ALM with Basel II Pillar 2 and 3.

This book first aims to reach Asset and Liability Managers (in banks, insurance companies, financial direction of non-financial companies and asset managers); quantitative ALM researchers, operators and managers, etc.

This book is also written for ALM consultants and advisors, ALM software providers, students in finance their finance lecturers and for actuaries.

This book also seeks to reach many people working with A/L managers:

- risk managers and risk controllers;
- fixed income strategists and sales;
- financial directors;
- auditors and regulators.

The approach is didactical and allows the book to be used as a reference for ALM lecturers. Many lessons provided in universities are not up to date and do not include the latest improvements in this area developed during the last decades. The book tries to fill this gap and to bring the latest findings made by university researchers and professionals.

Whenever it is possible, a quantitative approach is developed. Nevertheless, an economic explanation is provided for each equation, so that the book is understandable by all the people involved in ALM and not only quantitative researchers. The aim of this book is to give a quantitative approach of the subject. Of course, we wrote this book so that a non-mathematician will be able to read it. However, this book includes technical chapters as the job is becoming more and more quantitative.
We took many examples in this book from the ALM banking industry but the main ideas of this book are available to all the other kinds of ALM teams.

As a conclusion, this book is not made for the ALM of yesterday but for the ALM of today (Basel II, IAS/IFRS, etc.) and for the ALM of tomorrow. It will explain which developments the managers have to make in order to improve their competitiveness.
Acknowledgments

I would like to thank all the persons who helped me in the redaction of this book and especially: Barbara, Babette, Géraldine and Jean-Paul.

I would like also to thank all these persons for their help in the comprehension of the ALM topics: Alain, Jean-Louis, Antoine, Carl, Catherine, Christophe, Clément, Erick, Eric, François, Françoise, Julien, Laurent, Martine, Mohamed, Olivier, Stéphane, Valérie, Vincent, and the others . . .
Alexandre Adam is a French Asset and Liability Manager born in Reims, France. He has a Statistics and Economics Post-graduate Diploma from the École Nationale de la Statistique et de l’Administration Économique, Malakoff; an Advanced Graduate Degree in Engineering from the École Polytechnique, Palaiseau; and a Masters Degree in Mathematics from University Paris-VI.

Since 1997, Alexandre has worked for BNP Paribas, in the ALM and Treasury Department, and is currently Head of the Financial Models Team, contributing to the ALM models and indicators such as Stress Tests, Economic Capital, and Behavioural Models Estimation.

Alexandre is an actuary of the French Institute of Actuaries; a member of the scientific committee of AFGAP, the French Association of Asset and Liability Managers; and since 2005 has been a Master Degree lecturer at University Paris XIII.

Alexandre has published many articles on ALM in specialised journals.
Le rêve est une seconde vie. (Gérard de Nerval)

To introduce Asset and Liability Management (ALM), this part will start with an interesting history of ALM activity. This history is important in order to understand why at the end of the 80s, banks and insurance companies decided to create ALM departments.

The next Part tries to give a brief overview of the existing ALM activity before exposing in detail what the assets and the liabilities of the balance sheet we will discuss throughout the book could be.
The History of ALM

Scribitur historia ad narrandum, non ad probandum. (Quintilien)

It is not possible to present ALM history without presenting Banking industry history even if it is possible to make a parallel with the Insurance industry. This Part is an opportunity to present the links between ALM and the other types of business such as investment management, hedge funds and financial directions of corporate industries, etc.

1.1 THE HISTORY OF THE BANKING INDUSTRY FROM ANTiquity to the Middle Ages

1.1.1 Origins of banking

The origins of banking go back to antiquity. Historians discovered hints of banking activities dating from 3000 B.C. in Mesopotamia. The temples were places of trades and the priests used to take on the role of banker, taking money as deposits and lending money to the King or to the merchants. Temples were considered as the safest places where gold could be stored.

The first records of loans dating from the 18th century B.C. made by temple priests to merchants were discovered in Babylon.

Remember that in the Bible, Christ drives the moneychangers out of the temple...

In Ancient Greece, the temples conducted not only loans and deposits but also currency exchange and validation of coinage. Each Greek city was independent and minted its own money. Moneychangers appeared in order to develop trade between cities.

The letter of credit made its appearance: in return for a payment, a moneylender in one Greek city would write a credit note and the client would cash the note in another port. Thus, travel was less risky for the client.

In Ancient Rome, banking activities developed greatly and financial operations were established on a juridical basis. The idea of an interest rate on loans and on deposits was born.

1.1.2 The Middle Ages and the Renaissance

After the collapse of the Roman Empire in the late 5th century, monetary circulation slowed down drastically. Economic depression and deflation took place.

The influence of Christianity restricted banking activity: charging interest and usury were seen as immoral.

By the dawn of the 12th and 13th centuries, bankers were grouped into three distinct categories: the pawnbrokers, the moneychangers and the merchant bankers. The cathedral squares remained the centre of the money changers’ activity.
At this time, work became a positive virtue: profits were supposed to come from the performance of a duty. The usurer was considered to be a person who earned money without working. The Church condemned usury; in the Third Lateran Council, usurers were excommunicated, usurers’ offerings were forbidden as well as their inhumation in Christian ground. Yet, usurers remained in practice.

In the Middle Ages, each Lord or each independent city had the right to strike its own money. Moneychangers changed the money, charging a fixed fee for the transaction. This profession was respectable since it did not involve credit.

Pawnbrokers were considered to be deliberate public sinners, linked to prostitutes. It is at this period that the word “bank” from the Italian word “banca” appeared. “Banca” meant “bench”: in the Middle Ages moneychangers or pawnbrokers used to practice their activities on wooden benches. The flat surface of the bench was necessary to display the wares of the lender or the borrower. Note that the term bankruptcy comes from the Italian term “banca rota” which means that the “banca” has been broken.

At the beginning of the 11th century, the Lombards in Italy introduced new financial techniques and started a new era for the banking activity. The centres of operation were established in Italy: Florence, Genoa, Lucca, Venice and Rome were some of the city-states that gave birth to these banking activities.

That period saw the invention of the customer account: clients received a moderate interest rate on this account on which they could receive and make payments. The depositor was sometimes allowed to overdraw his account within certain limits.

Italian banks developed the letter of credit again; clients could buy a product in a city abroad and see the cash withdrawn on their principal account in their city of origin.

In these times, the notion of liquidity was introduced. The moneylender’s business model was simple: lend at a high interest rate and borrow at a usury rate. To survive, banks had simply to ensure the appearance of liquidity and dependability to see the stability of the loans and of the deposits.

1.1.3 From the 17th century to the 20th century

Till the beginning of the 17th century and the invention of the paper check, the value of money was determined by its weight in gold, giving stability to the interest rates.

Trade centres moved to international ports such as Amsterdam or London. Banks started to take risk on the shipping industry: the ships associated with their letters of credit might sometimes not return from the place where they were supposed to carry the exotic goods back from (the voyage to India or America was very uncertain).

Central banks such as the Central Bank of England revolutionized the states’ finances before becoming the Bank for the banks in each country.

Napoléon Bonaparte created the French Central Bank, “la Banque de France”, on 18 January 1800.

The 19th century was the banks’ golden age with the growth and stability of the system and the development of paper money and of scriptural money.

With the First World War, the United States with New York as the new world’s leading financial centre became the major lender to the Allied Powers. This resulted in the large growth of the US economy.

After the First World War, the USA started to take a considerable place in the banking system.
1.1.4 The 1929 crisis
In 1929, the crash occurred followed by the “Great Depression”. All over the world, markets collapsed and banks were accused of having caused the crash.
In American banking, the reaction was the creation of the Federal Deposit Insurance system and of the Glass–Steagall provisions to separate commercial banking and securities activities.
In the banking industry, from the crisis to the 60s, activity did not grow as fast as before: deposit and loan growth were weak while government influence on financial activity decisions grew faster.

1.2 THE MODERN BANKING INDUSTRY AND THE HISTORY OF ALM

1.2.1 The role of today’s bank
Since the Renaissance, banks have been credit institutions providing various types of bank operations:

- receiving deposits;
- granting credits to individuals or corporations;
- providing cash management, means of payment (checks, ATM, credit cards . . .), currency money change;
- storing valuables in safe deposit boxes;
- providing fortune management and financial investment consulting . . .

Banks are the service industry for money, a safe place to deposit money at a moderate interest rate. In banks, we can borrow money so we do not have to wait to make an investment project come true.
Banking activity requires a licence commonly issued by the local bank regulatory authority. This licence gives the right to issue loans and collect deposits. Some financial institutions may provide banking services and are called non-banking financial companies.
The Central Banks of the 18th and 19th century have kept the same role as yesterday: they often control interest rates, inflation rates and money supply. In the case of a liquidity crisis, they may act as “lender of last resort”.
An Interbank market has developed to ensure the liquidity of the market: a bank with too many assets may ask other banks for money.
Banking books include reserves and a minimum capital requirement to allow the bank to repay debtors and depositors in case of potential bankruptcy. Basel Committee regulation is the international standard for the calculation of the capital requirements.
Bank profits arise from the fees on financial services and on the difference between the lending rate and the borrowing rate. The overall banking objective is to make profitability on a long-term horizon within the banking system as stable as possible. In fact, the role of regulation is to provide this stability but we will see in this book that his role is also given to ALM.
1.2.2 Types of bank

Nowadays, the banking system recognizes two major types of bank: retail banks and investment banks. It is common to split universal banks between these two different departments: retail and investment banking. In financial service companies, we may find other service types: leasing, factoring, security services and even insurance (in Europe mainly with the “bank-insurance” companies), etc.

Considering retail banking, the customers are individuals or SMEs (small and medium businesses or enterprises).

We may find different types of retail banks: postal saving banks (associated with the national post in the US, in France, etc.), private banks (for wealthy individuals), community development banks (for isolated populations), ethical banks (only investing in socially responsible assets), and mutual bank companies (where shareholders are the customers).

Savings banks are retail banks that took their roots in the 19th century, with the objective of providing saving products to all the categories of savers and usually with a large distribution network.

As for investment banking, the customers are corporations or large businesses willing to act directly with the financial markets. The investment bank may trade for its own accounts but its main activity is to advise corporations on capital markets and to sell financial products to these corporations. Corporations may need advice from investment banks for their mergers and acquisitions, for their financial risk management hedging and for their capital structure refinancing.

The commercial banks are a type of retail bank in the USA that deals with deposits and loans from corporations but not with the capital markets.

1.2.3 The American banking crisis of the 1980s and the necessity of regulation and the implementation of ALM

From 1929 till the mid 60s, the interest rates did not move a lot: bankers used to play according to the 3-6-3 rule: taking deposits at a 3% rate, lend at 6% rate and go to play golf at 3 o’clock.

In fact, however, banks are susceptible to many forms of risk: liquidity risk, credit risk, interest rate risk, etc. When a risky scenario becomes true, a banking crisis may follow. Since 1929, prominent examples include the US Savings and Loan crisis in the 80s and early 90s, the Japanese banking crisis during the 90s, etc.

The following figure shows the number of Bank Failures in the United States from 1934 to 1995.

1.2.3.1 The Savings and Loans (S&L) insolvencies

The historically high interest rates between 1980 and 1982 caused insolvencies in the S&L industry.

In 1980, the total assets of S&Ls insured by FSLIC (Federal Savings and Loans Insurance Company) were $604 billion. The vast majority of these assets were held in traditional S&L mortgage-related investments. Because of an asset/liability mismatch with a steep ascent of interest rates, net S&L income went down from $781 million to negative $4.6 billion and $4.1 billion in 1981 and 1982.

From 1980 to 1982, 118 S&Ls with $43 billion in assets failed, costing the FSLIC an estimated $3.5 billion. There were also 493 voluntary mergers and 259 supervisory mergers of S&L institutions.
The first lesson of the S&L crisis was a regulatory lesson: a need for a qualified, strong, and effective supervision independent from industry with adequate financial resources.

The second lesson of this crisis was the need for indicators to monitor the mismatch risk between assets and liabilities: ALM was born.

1.2.3.2 The real estate crisis

Shortly after, at the end of the 80s, another financial crisis arose with the real estate crisis. Commercial construction activity boomed at the beginning of the 80s due to a large demand for real estate investment. This boom was followed by banks that started to lend within an atmosphere of strong concurrence. Total real estate loans of banks more than tripled. Credit risk taken by banks was very important since the loan-to-values were often close to 100% and the constraints imposed on customers were weak.

The real estate bubble burst in the late 80s and real estate values collapsed. Loan quality deteriorated and this deterioration caused many banks to fail, especially banks involved in commercial real estate lending.

This crisis was caused by weak credit risk modelling in balance sheet. The Basel regulation framework was a result of this crisis experience.

Consequently, risk management teams and especially credit risk teams found their place in banks’ organizations.

1.3 THE HISTORY OF THE INSURANCE INDUSTRY AND ALM

1.3.1 The history of insurance

The will to protect ourselves from the hazards of life is as ancient as human society and leads to the early appearance of the solidarity organization.
The first risk transfer experiences belong to the Chinese and Babylonians (3rd and 2nd Millennia B.C.). At this time, travel was uncertain and the risk of losing wages was important: by paying a premium, insurance on ship wages could be settled easily.

The Greeks and the Romans invented health and life insurance: “benevolent societies” cared for families exposed to a member’s death. Similar “friendly societies” or in the Middle Ages “Guilds” existed in Europe till the late 17th century.

Modern insurance was invented at the same time (14th century) and in the same place (Italy) where modern banking was created. New insurance contracts that are still used for the shipping industry separated insurance from investment.

Marine insurance, as with the banking industry, moved north during the 17th century. London became the world insurance headquarters with companies that still exist today, such as Lloyd’s. Organized forms of insurance based on a mathematical risk approach came into being at this time.

After the Great fire of London, English insurers invented fire insurance and exported it to many countries including the USA.

During the 18th and 19th centuries, with mechanization and industrialization, the number of accidents increased. With new risks and with an urbanized population, insurance found new areas in which to develop.

In the 20th century, it became an obligation to be insured, with new insurance types such as health insurance, work insurance, etc. Contracting for insurance became common practice after World War II.

In the 70s, with inflationist pressures, individuals started to invest in highly remunerated assets, sometimes using their life insurance as a pledge. In life insurance contracts, many options are sold implicitly to the client. However, it is only at the end of the 70s that insurers began to worry about the risk related to these options.

Options may be of different types:

- option of repayment (right to choose between rent and capital);
- pledge optionality (the client may borrow money on the basis of the market value of his life insurance contracts);
- early prepayment of contracts;
- renewal option (option to extend the term of the contract with its initial terms);
- extra-deposit option (right to invest more than the contractual investment at the initial terms) . . .

A poor understanding of the options sold implicitly caused the insolvency of some insurance companies: First Capital Holdings and First Executive Corporation in 1991, Baldwin-United in 1983, insurance companies with at least $10 billions of Assets.

1.3.2 Today’s insurance industry

Nowadays, insurance is the simplest way to protect against the risk of some uncertain financial losses. Providing this protection against a predictable but significant risk, the insurer charges a premium proportional to the risk.

The risk cannot be an extreme risk in order to provide sufficient solvency for the insurer. Even if insurers may use reinsurance to insure themselves against their extreme risks, customers are protected from insurers’ insolvency by systems of Guaranty Funds.