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Preface to the Second Edition

In the first edition, models initially developed to describe wave propagation in porous
media saturated by heavy fluids are used to predict the acoustical performances of air
saturated sound absorbing porous media. In this expanded and revised edition, we have
retained, with slight modifications, most of the basic material of the first edition and
expanded it by revisiting several original topics and adding new topics to integrate recent
developments in the domain of wave propagation in porous media and practical numerical
prediction methods that are widley used by researchers and engineers.

Chapters 1 to 3 dealing with sound propagation in solids and fluid and Chapter 9
dealing with the modelling of perforated facings were slightly modified. Chapters 4 to 6
were greatly revisited. A more detailed description of sound propagation in cylindrical
pores is presented (Chapter 4), related to the more general presentation of new parameters
and new models for sound propagation in rigid-framed porous media (Chapter 5). Also in
Chapter 5 a short presentation of homogenization, with some results concerning double
porosity media, is added. In Chapter 6, different formulations of the Biot theory for
poroelastic media are given, with a simplified version for the case of media with a limp
frame. In Chapter 11 we have revisited the original representation of the modelling of
layered media (Chapter 7 of the first edition) and extended it to cover the systematic
modelling of layered media using the Transfer Matrix Method (TMM). In particular, a
step by step presentation of the numerical implementation of the method is given with
several application examples.

Major additions include five new chapters. Chapter 7 discusses the acoustic field
created by a point source above a rigid framed porous layer, with recent advances con-
cerning the poles of the reflection coefficient and the reflected field at grazing incidence.
Chapter 8 is concerned by the poroelastic layers excited by a point source in air or by a
localized stress source on the free face of the layer, with a description of the Rayleigh
waves and the resonances. Axisymmetrical poroelastic media are studied in Chapter 10.
In Chapter 12, complements to the transfer matrix method are given. They concern mainly
the effect of the finite lateral extend, and the excitation by point loads, of sound pack-
ages. Several examples illustrating the practical importance of these extensions are given
(e.g. size effects on the random incidence absorption and transmission loss of porous
media; airborne vs. structure borne insertion loss of sound packages). In Chapter 13, an
introduction to the finite element modelling of poroelastic media is presented. Emphasis
is put on the use of the mixed displacement-pressure formulation of the Biot theory,



xiv PREFACE TO THE SECOND EDITION

which appears in the Appendix of Chap. 6. Detailed description of coupling conditions
between various domains including a waveguide are presented together with sections on
the breakdown of the power dissipation mechanisms within a porous media and radiation
conditions. Several applications are chosen to illustrate the practical use of the presented
methods including modelling of double porosity materials and smart foams.

As in the first edition, the goal of the book remains to provide in a concrete manner
a physical basis, as simple as possible, and the developments, analytical calculations and
numerical methods, that will be useful in different fields where sound absorption and
transmission and vibration damping by air saturated porous media are concerned.

Acknowledgments
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1

Plane waves in isotropic fluids
and solids

1.1 Introduction

The aim of this chapter is to introduce the stress–strain relations, the basic equations
governing sound propagation which will be useful for the understanding of the Biot the-
ory. The framework of the presentation is the linear theory of elasticity. Total derivatives
with respect to time d/dt are systematically replaced by partial derivatives ∂/∂t . The
presentation is carried out with little explanation. Detailed derivation can be found in
the literature (Ewing et al. 1957, Cagniard 1962, Miklowitz 1966, Brekhovskikh 1960,
Morse and Ingard 1968, Achenbach 1973).

1.2 Notation – vector operators

A system of rectangular cartesian coordinates (x1, x2, x3) will be used in the following,
having unit vectors i1, i2 and i3. The vector operator del (or nabla) denoted by ∇ can be
defined by

∇ = i1
∂

∂x1
+ i2

∂

∂x2
+ i3

∂

∂x3
(1.1)

When operating on a scalar field ϕ(x1, x2, x3) the vector operator ∇ yields the gradient
of ϕ

grad ϕ = ∇ϕ = i1
∂ϕ

∂x1
+ i2

∂ϕ

∂x2
+ i3

∂ϕ

∂x3
(1.2)

Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, Second Edition J. F. Allard and N. Atalla
 2009 John Wiley & Sons, Ltd



2 PLANE WAVES IN ISOTROPIC FLUIDS AND SOLIDS

When operating on a vector field v with components (υ1, υ2, υ3), the vector operator
∇ yields the divergence of v

div v = ∇ · v = ∂υ1

∂x1
+ ∂υ2

∂x2
+ ∂υ3

∂x3
(1.3)

The Laplacian of ϕ is:

∇ · ∇ϕ = ∇2ϕ = div grad ϕ = ∂2ϕ

∂x2
1

+ ∂2ϕ

∂x2
2

+ ∂2ϕ

∂x2
3

(1.4)

When operating on the vector v, the Laplacian operator yields a vector field whose
components are the Laplacians of υ1, υ2 and υ3

(∇2v)i = ∂2υi

∂ϕ2
1

+ ∂2υi

∂ϕ2
2

+ ∂2υi

∂ϕ2
3

(1.5)

The gradient of the divergence of a vector v is a vector of components

(∇∇ · v)i = ∂

∂xi

(
∂υ1

∂x1
+ ∂υ2

∂x2
+ ∂υ3

∂x3

)
(1.6)

The vector curl is denoted by

curl v = ∇ ∧ v (1.7)

and is equal to

curl v = i1

(
∂υ3

∂x2
− ∂υ2

∂x3

)
+ i2

(
∂υ1

∂x3
− ∂υ3

∂x1

)
+ i3

(
∂υ2

∂x1
− ∂υ3

∂x2

)
(1.8)

1.3 Strain in a deformable medium

Let us consider the coordinates of the two points P and Q in a deformable medium
before and after deformation. The two points P and Q are represented in Figure 1.1.

The coordinates of P are (x1, x2, x3) and become (x1 + u1, x2 + u2, x3 + u3) after
deformation. The quantities (u1, u2, u3) are then the components of the displacement
vector u of P . The components of the displacement vector for the neighbouring point Q,
having initial coordinates (x1 +�x1, x2 +�x2, x3 +�x3), are to a first-order approxi-
mation

u′
1 = u1 + ∂u1

∂x1
�x1 + ∂u1

∂x2
�x2 + ∂u1

∂x3
�x3

u′
2 = u2 + ∂u2

∂x1
�x1 + ∂u2

∂x2
�x2 + ∂u3

∂x3
�x3

u′
3 = u3 + ∂u3

∂x1
�x1 + ∂u3

∂x2
�x2 + ∂u3

∂x3
�x3

(1.9)
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x1

x2

x3

P

u

P′
Q′

u′

Q

(x1, x2, x3)
(x1+∆x1, x2+∆x2 ,x3+∆x3)

O

Figure 1.1 The displacement of P and Q to P ′ and Q′ in a deformable medium.

A rotation vector �(�1, �2, �3) and a 3 × 3 strain tensor e can be defined at P by
the following equations:

�1 = 1

2

(
∂u3

∂x2
− ∂u2

∂x3

)
, �2 = 1

2

(
∂u1

∂x3
− ∂u3

∂x1

)

�3 = 1

2

(
∂u2

∂x1
− ∂u1

∂x2

) (1.10)

eij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
(1.11)

The displacement components of Q can be rewritten as

u′
1 = u1 + (�2�x3 −�3�x2)+ (e11�x1 + e12�x2 + e13�x3)

u′
2 = u2 + (�3�x1 −�1�x3)+ (e21�x1 + e22�x2 + e23�x3)

u′
3 = u3 + (�1�x2 −�2�x1)+ (e31�x1 + e32�x2 + e33�x3)

(1.12)

The terms in the first parenthesis of each equation are associated with rotations around
P , while those in the second parenthesis are related to deformations. The three compo-
nents e11, e22 and e33, which are equal to

e11 = ∂u1

∂x1
, e22 = ∂u2

∂x2
, e33 = ∂u3

∂x3
(1.13)

are an estimation of the extensions parallel to the axes.
The cubical dilatation θ is the limit of the ratio of the change in the volume to the

initial volume when the dimensions of the initial volume approach zero. Hence,

θ = lim
(�x1 + e11�x1)(�x2 + e22�x2)(�x3 + e33�x3)−�x1�x2�x3

�x1�x2�x3
(1.14)

and is equal to the divergence of u:

θ = ∇ · u = ∂u1

∂x1
+ ∂u2

∂x2
+ ∂u3

∂x3
= e11 + e22 + e33 (1.15)
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If �x denotes the vector having components �x1, �x2 and �x3, after a rotation
characterized by the rotation vector �, the initial vector becomes �x′ related to �x by

�x′ − �x = � ∧ �x (1.16)

The rotation vector �, in vector notation, is

� = 1

2
curl u (1.17)

1.4 Stress in a deformable medium

Two kinds of forces may act on a body, body forces and surface forces. Surface forces
act across the surface, including its boundary. Consider a volume V in a deformable
medium as represented in Figure 1.2.

Let S be the surface limiting V and �S an element of S around a point P that lies
on S. The side of S which is outside V is called (+) while the other is called (−). The
force exerted on V across �S is denoted by �F. A stress vector at P is defined by

T(P ) = lim
�S→0

�F
�S

(1.18)

The stress vector T(P ) depends on P and on the direction of the positive outward unit
normal n to the surface S at P . The stress vectors can be obtained from T1(σ11, σ12, σ13),
T2(σ21, σ22, σ23), and T3(σ31, σ32, σ33) corresponding to surfaces with normal n parallel
to the x1, x2 and x3 axes, respectively.

The components T1, T2, T3 of T can be expressed in the general case as

T1 = σ11n1 + σ21n2 + σ31n3

T2 = σ12n1 + σ22n2 + σ32n3

T3 = σ13n1 + σ23n2 + σ33n3

(1.19)

In these equations n1, n2 and n3 are the direction cosines of the positive normal n
to S at P . The quantities σij are the nine components of the stress tensor at P . These
components are symmetrical, i.e. σij = σji , like the components eij . An illustration is
given in Figure 1.3 for a cube with faces of unit area parallel to the coordinate planes.

X1

X2

X3

O

S

V
P

∆S
n

Figure 1.2 A volume V in a deformable medium, with an element �S belonging to
the surface S limiting V .
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X1

X2

X3

O

F1

F2

F3

Figure 1.3 A cube with faces of unit area parallel to the coordinate planes. The three
components of the forces acting on the upper and the lower faces are represented.

The variations of the components σij are assumed to be negligible at the surface
of the cube. With the components of the positive unit normal on the upper face being
(0, 0, 1), Equations (1.19) reduce to

T1 = σ31, T2 = σ32, T3 = σ33 (1.20)

The force F(F1, F2, F3) acting on the upper face is equal to T3. The components of
the unit normal on the lower face are (0, 0, −1). The forces on the lower and the upper
face are equal in magnitude and lie in opposite directions. The same property holds for
the two other pairs of opposite faces. The elements σij where i = j correspond to normal
forces while those with i �= j correspond to tangential forces.

1.5 Stress–strain relations for an isotropic elastic medium

The stress–strain relations for an isotropic elastic medium are as follows:

σij = λθδij + 2µeij (1.21)

The quantities λ and µ are the Lamé coefficients and δij is the Kronecker delta:

δij = 1 if i = j
δij = 0 if i �= j (1.22)

In matrix form Equation (1.21) can be rewritten


σ11

σ22

σ33

σ13

σ23

σ12


 =




C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44







e11

e22

e33

e13

e23

e12


 (1.23)
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C11 = λ+ 2µ
C12 = λ
C44 = 2µ = C11 − C12

(1.24)

The strain elements are related to the stress elements by

eij = − λδij

2µ(3λ+ 2µ)
(σ11 + σ22 + σ33)+ 1

2µ
σij (1.25)




e11

e22

e33

e13

e23

e12


 =




1/E −ν/E −ν/E 0 0 0
−ν/E 1/E −ν/E 0 0 0
−ν/E −ν/E 1/E 0 0 0

0 0 0 1/2µ 0 0
0 0 0 0 1/2µ 0
0 0 0 0 0 1/2µ







σ11

σ22

σ33

σ13

σ23

σ12


 (1.26)

where E is the Young’s modulus and ν is the Poisson ratio. They are related to the Lamé
coefficients by

E = µ(3λ+ 2µ)

λ+ µ
ν = λ

2(λ+ µ)
(1.27)

The shear modulus G is related to E and ν via

G = µ = E

2(1 + ν) (1.28)

Examples

Antiplane shear

The displacement field is represented in Figure 1.4. For this case, the two components
eij which differ from zero are

e32 = e23 = 1

2

∂u2

∂x3
(1.29)

The angle α is equal to

α = ∂u2

∂x3
(1.30)

Using Equation (1.21), one obtains two components σij which differ from zero:

σ32 = σ23 = µα (1.31)

The coefficient µ is the shear modulus of the medium, which relates the angle of
deformation and the tangential force per unit area. The three components of the rotation
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X1

X2

X3

O

P

Q

P′

Q′

T(M)α

Figure 1.4 Antiplane shear in an elastic medium. A vector PQ initially parallel to x3

becomes oblique with an angle α to the initial direction.

X1

X2

X3

O

P Q

P′ Q′

Figure 1.5 Longitudinal strain in the x3 direction.

vector � are

�1 = −1

2

∂u2

∂x3
, �2 = �3 = 0 (1.32)

The deformation is equivoluminal, the dilatation θ being equal to zero, and there is a
rotation around x1.

Longitudinal strain

For this case only the component e33 of the strain tensor is different from zero. The
vectors PQ and P′Q′ are represented in Figure 1.5.

The stress tensor components that do not vanish are

σ33 = (λ+ 2µ)e33

σ11 = σ22 = λe33
(1.33)

Unidirectional stress

From Equation (1.26) the stress component σ33 transforms a vector PQ parallel to the
axis x3 into a vector P′Q′ parallel to x3. The ratio P′Q′/PQ is given by

P ′Q′/PQ = σ33/E (1.34)

A vector PQ perpendicular to x3 is transformed in a vector P′Q′ parallel to PQ and
the ratio P′Q′/PQ is now given by

P ′Q′/PQ = −νσ33/E (1.35)
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X1

X2

X3

O

V

V’p

p

p

p

Figure 1.6 Compression of a volume V by a hydrostatic pressure.

Compression by a hydrostatic pressure

For this case, represented in Figure 1.6, the components of the stress tensor that do not
vanish are

σ11 = σ22 = σ33 = −p (1.36)

From Equation (1.21) it follows that the dilatation θ is related to p by

θ = −p
/ (

λ+ 2µ

3

)
(1.37)

The ratio −p/θ is the bulk modulus K of the material, which is equal to

K = λ+ 2µ

3
(1.38)

Contrary to the case of simple shear, � = 0 and θ is nonzero. The deformation is
irrotational, as in the case with a longitudinal strain. Note that since a hydrostatic pressure
leads to a negative volume change, the bulk modulus K is positive for all materials and
in consequence Poisson’s ratio is less than or equal to 0.5 for all materials.

1.6 Equations of motion

The total surface force Fv acting on the volume V represented in Figure 1.2 is

Fv =
∫∫

T dS (1.39)

The projection of the force Fv on to the xi axis is

Fvi =
∫∫
S

(σ1in1 + σ2in2 + σ3in3) dS (1.40)
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By using the divergence theorem, Equation (1.40) becomes

Fvi =
∫∫∫
V

(
∂σ1i

∂x1
+ ∂σ2i

∂x2
+ ∂σ3i

∂x3

)
dV (1.41)

Adding the component Xi of the body force per unit volume, the linearized Newton
equation for V may be written as∫∫∫

V

(
∂σ1i

∂x1
+ ∂σ2i

∂x2
+ ∂σ3i

∂x3
+Xi − ρ ∂

2ui

∂t2

)
dV = 0 (1.42)

where ρ is the mass density of the material. This equation leads to the stress equations
of motion

∂σ1i

∂x1
+ ∂σ2i

∂x2
+ ∂σ3i

∂x3
+Xi − ρ ∂

2ui

∂t2
= 0 i = 1, 2, 3 (1.43)

With the aid of Equation (1.21) the equations of motion become

ρ
∂2ui

∂t2
= λ ∂θ

∂xi
+ 2µ

∂eii

∂xi
+

∑
j �=i

2µ
∂eji

∂xj
+Xi i = 1, 2, 3 (1.44)

Replacing eji by 1/2(∂uj/∂xi + ∂ui/∂xj ), Equations (1.44) can be written in terms
of displacement as

ρ
∂2ui

∂t2
= (λ+ µ)∂∇.u

∂xi
+ µ∇2ui +Xi i = 1, 2, 3 (1.45)

where ∇2 is the Laplacian operator
∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

.

Using vector notation, Equations (1.45) can be written

ρ
∂2u
∂t2

= (λ+ µ)∇∇ · u + µ∇2u + X i = 1, 2, 3 (1.46)

In this equation, ∇∇ · u is the gradient of the divergence ∇ · u of the vector field u,
and its components are

∂

∂xi

[
∂u1

∂x1
+ ∂u2

∂x2
+ ∂u3

∂x3

]
i = 1, 2, 3 (1.47)

and the quantity ∇2u is the Laplacian of the vector field u, having components

∑
j=1,2,3

∂2ui

∂x2
j

i = 1, 2, 3 (1.48)

as indicated in Section 1.2.
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1.7 Wave equation in a fluid

In the case of an inviscid fluid, µ vanishes. The stress coefficients reduce to

σ11 = σ22 = σ33 = λθ
σ12 = σ13 = σ23 = 0

(1.49)

The three nonzero stress elements are equal to −p, where p is the pressure. The bulk
modulus K , given by Equation (1.38), becomes simply λ:

K = λ (1.50)

The stress field (Equation 1.49) generates only irrotational deformations such as
� = 0.

A representation of the displacement vector u in the following form can be used:

u1 = ∂ϕ/∂x1, u2 = ∂ϕ/∂x2, u3 = ∂ϕ/∂x3 (1.51)

where ϕ is a displacement potential.
In vector form, Equations (1.51) can be written as

u = ∇ϕ (1.52)

Using this representation, the rotation vector � can be rewritten

� = 1

2
curl ∇ϕ = 0 (1.53)

and the displacement field is irrotational.
Substitution of this displacement representation into Equation (1.46) with µ = 0 and

X = 0 yields

λ ∇∇ · ∇ϕ = ρ ∂
2

∂t2
∇ϕ (1.54)

Since ∇ · ∇ϕ = ∇2ϕ, Equation (1.54) reduces, with Equation (1.50), to

∇
[
K∇2ϕ − ρ ∂

2

∂t2
ϕ

]
= 0 (1.55)

The displacement potential ϕ satisfies the equation of motion if

∇2ϕ = ρ ∂
2ϕ

K∂t2
(1.56)

If the fluid is a perfectly elastic fluid, with no damping, K is a real number.
This displacement potential is related to pressure in a simple way. From Equations

(1.49), (1.50) and (1.52), p can be written as

p = −Kθ = −K∇2ϕ (1.57)



WAVE EQUATIONS IN AN ELASTIC SOLID 11

By the use of Equations (1.56) and (1.57) one obtains

p = −ρ ∂
2ϕ

∂t2
(1.58)

At an angular frequency ω (ω = 2πf , where f is frequency), p can be rewritten as

p = ρω2ϕ (1.59)

As an example, a simple solution of Equation (1.56) is

ϕ = A

ρω2
exp[j (−kx3 + ωt)+ α] (1.60)

In this equation, A and α are arbitrary constants, and k is the wave number

k = ω(ρ/K)1/2 (1.61)

The phase velocity is given by

c = ω/Re k (1.62)

and Im(k) appears in the amplitude dependence on x3, exp(Im(k)x3). In this example,
u3 is the only nonzero component of u:

u3 = ∂ϕ

∂x3
= −jkA

ρω2
exp[j (−kx3 + ωt + α)] (1.63)

The pressure p is

p = −ρ ∂
2ϕ

∂t2
= A exp[j (−kx3 + ωt + α)] (1.64)

This field of deformation corresponds to the propagation parallel to the x3 axis of a
longitudinal strain, with a phase velocity c.

1.8 Wave equations in an elastic solid

A scalar potential ϕ and a vector potential ψ(ψ1, ψ2, ψ3) can be used to represent dis-
placements in a solid

u1 = ∂ϕ

∂x1
+ ∂ψ3

∂x2
− ∂ψ2

∂x3

u2 = ∂ϕ

∂x2
+ ∂ψ1

∂x3
− ∂ψ3

∂x1
(1.65)

u3 = ∂ϕ

∂x3
+ ∂ψ2

∂x1
− ∂ψ1

∂x2

In vector form, Equations (1.65) reduce to

u = grad ϕ + curl ψ (1.66)
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or, using the notation ∇ for the gradient operator

u = ∇ϕ + ∇ ∧ ψ (1.67)

The rotation vector � in Equation (1.17) is then equal to

� = 1

2
∇ ∧ ∇ ∧ ψ (1.68)

Therefore, the scalar potential involves dilatation while the vector potential describes
infinitesimal rotations.

In the absence of body forces, the displacement equation of motion (1.46) is

ρ
∂2u
∂t2

= (λ+ µ)∇∇ · u + µ∇2u (1.69)

Substitution of the displacement representation given by Equation (1.67) into Equation
(1.69) yields

µ∇2[∇ϕ + ∇ ∧ ψ] + (λ+ µ)∇∇ · [∇ϕ + ∇ ∧ ψ] = ρ ∂
2

∂t2
[∇ϕ + ∇ ∧ ψ] (1.70)

In Equation (1.70), ∇ · ∇ϕ can be replaced by ∇2ϕ, ∇ · ∇ ∧ ψ = 0, allowing this
equation to reduce to

µ∇2∇ϕ + λ∇∇2ϕ + µ∇∇2ϕ − ρ ∂
2

∂t2
∇ϕ +

(
µ∇2 − ρ ∂

2

∂t2

)
∇ ∧ ψ = 0 (1.71)

By using the relations ∇2∇ϕ = ∇∇2ϕ and ∇2∇ ∧ ψ = ∇ ∧ ∇2ψ, Equation (1.71)
can be rewritten

∇
[
(λ+ 2µ)∇2ϕ − ρ ∂

2ϕ

∂t2

]
+ ∇ ∧

[
µ∇2ψ − ρ ∂

2ψ

∂t2

]
= 0 (1.72)

From this, we obtain two equations containing, respectively, the scalar and the vector
potential

∇2ϕ = ρ

λ+ 2µ

∂2ϕ

∂t2
(1.73)

∇2ψ = ρ

µ

∂2ψ

∂t2
(1.74)

Equation (1.73) describes the propagation of irrotational waves travelling with a wave
number vector k equal to

k = ω(ρ/(λ+ 2µ))1/2 (1.75)

The phase velocity c is always related to the wave number k by Equation (1.62). The
quantity Kc defined as

Kc = λ+ 2µ (1.76)



REFERENCES 13

can be substituted in Equation (1.75), resulting in

k = ω(ρc/Kc)1/2 (1.77)

while the stress–strain relations (Equations (1.21) can be rewritten as

σij = (Kc − 2µ)θδij + 2µeij (1.78)

Equation (1.74) describes the propagation of equivoluminal (shear) waves propagating
with a wave number equal to

k′ = ω(ρ/µ)1/2 (1.79)

As an example, a simple vector potential ψ can be used:

ψ2 = ψ3 = 0 ψ1 = B exp[j (−k′x3 + ωt)] (1.80)

In this case, u2 is the only component of the displacement vector which is different
from zero

u2 = −jBk′ exp[j (−k′x3 + ωt)] (1.81)

This field of deformation corresponds to propagation, parallel to the x3 axis, of the
antiplane shear.
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