Propagation of Sound in Porous Media:
Modelling Sound Absorbing Materials, Second Edition

Jean F. Allard
Université le Mans, France

Noureddine Atalla
Université de Sherbrooke, Qc, Canada
Propagation of Sound in Porous Media
Propagation of Sound in Porous Media:
Modelling Sound Absorbing Materials, Second Edition

Jean F. Allard
Université le Mans, France

Noureddine Atalla
Université de Sherbrooke, Qc, Canada
Contents

Preface to the second edition xiii

1 Plane waves in isotropic fluids and solids 1
 1.1 Introduction 1
 1.2 Notation – vector operators 1
 1.3 Strain in a deformable medium 2
 1.4 Stress in a deformable medium 4
 1.5 Stress–strain relations for an isotropic elastic medium 5
 1.6 Equations of motion 8
 1.7 Wave equation in a fluid 10
 1.8 Wave equations in an elastic solid 11
 References 13

2 Acoustic impedance at normal incidence of fluids. Substitution of a fluid layer for a porous layer 15
 2.1 Introduction 15
 2.2 Plane waves in unbounded fluids 15
 2.2.1 Travelling waves 15
 2.2.2 Example 16
 2.2.3 Attenuation 16
 2.2.4 Superposition of two waves propagating in opposite directions 17
 2.3 Main properties of impedance at normal incidence 17
 2.3.1 Impedance variation along a direction of propagation 17
 2.3.2 Impedance at normal incidence of a layer of fluid backed by an impervious rigid wall 18
 2.3.3 Impedance at normal incidence of a multilayered fluid 19
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td>Reflection coefficient and absorption coefficient at normal incidence</td>
<td>19</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Reflection coefficient</td>
<td>19</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Absorption coefficient</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>Fluids equivalent to porous materials: the laws of Delany and Bazley</td>
<td>20</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Porosity and flow resistivity in porous materials</td>
<td>20</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Microscopic and macroscopic description of sound propagation in porous media</td>
<td>22</td>
</tr>
<tr>
<td>2.5.3</td>
<td>The Laws of Delany and Bazley and flow resistivity</td>
<td>22</td>
</tr>
<tr>
<td>2.6</td>
<td>Examples</td>
<td>23</td>
</tr>
<tr>
<td>2.7</td>
<td>The complex exponential representation</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>Acoustic impedance at oblique incidence in fluids. Substitution of a fluid layer for a porous layer</td>
<td>29</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>29</td>
</tr>
<tr>
<td>3.2</td>
<td>Inhomogeneous plane waves in isotropic fluids</td>
<td>29</td>
</tr>
<tr>
<td>3.3</td>
<td>Reflection and refraction at oblique incidence</td>
<td>31</td>
</tr>
<tr>
<td>3.4</td>
<td>Impedance at oblique incidence in isotropic fluids</td>
<td>33</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Impedance variation along a direction perpendicular to an impedance plane</td>
<td>33</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Impedance at oblique incidence for a layer of finite thickness backed by an impervious rigid wall</td>
<td>34</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Impedance at oblique incidence in a multilayered fluid</td>
<td>35</td>
</tr>
<tr>
<td>3.5</td>
<td>Reflection coefficient and absorption coefficient at oblique incidence</td>
<td>36</td>
</tr>
<tr>
<td>3.6</td>
<td>Examples</td>
<td>37</td>
</tr>
<tr>
<td>3.7</td>
<td>Plane waves in fluids equivalent to transversely isotropic porous media</td>
<td>39</td>
</tr>
<tr>
<td>3.8</td>
<td>Impedance at oblique incidence at the surface of a fluid equivalent to an anisotropic porous material</td>
<td>41</td>
</tr>
<tr>
<td>3.9</td>
<td>Example</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>Sound propagation in cylindrical tubes and porous materials having cylindrical pores</td>
<td>45</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>45</td>
</tr>
<tr>
<td>4.2</td>
<td>Viscosity effects</td>
<td>45</td>
</tr>
<tr>
<td>4.3</td>
<td>Thermal effects</td>
<td>50</td>
</tr>
<tr>
<td>4.4</td>
<td>Effective density and bulk modulus for cylindrical tubes having triangular, rectangular and hexagonal cross-sections</td>
<td>54</td>
</tr>
<tr>
<td>4.5</td>
<td>High- and low-frequency approximation</td>
<td>55</td>
</tr>
<tr>
<td>4.6</td>
<td>Evaluation of the effective density and the bulk modulus of the air in layers of porous materials with identical pores perpendicular to the surface</td>
<td>57</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Effective density and bulk modulus in cylindrical pores having a circular cross-section</td>
<td>57</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Effective density and bulk modulus in slits</td>
<td>59</td>
</tr>
</tbody>
</table>
4.6.3 High- and low-frequency limits of the effective density and the bulk modulus for pores of arbitrary cross-sectional shape 60

4.7 The Biot model for rigid framed materials 61
4.7.1 Similarity between G_c and G_s 61
4.7.2 Bulk modulus of the air in slits 62
4.7.3 Effective density and bulk modulus of air in cylindrical pores of arbitrary cross-sectional shape 64

4.8 Impedance of a layer with identical pores perpendicular to the surface 65
4.8.1 Normal incidence 65
4.8.2 Oblique incidence – locally reacting materials 67

4.9 Tortuosity and flow resistivity in a simple anisotropic material 67

4.10 Impedance at normal incidence and sound propagation in oblique pores
4.10.1 Effective density 69
4.10.2 Impedance 71

Appendix 4.A Important expressions
Description on the microscopic scale 71
Effective density and bulk modulus 71

References 72

5 Sound propagation in porous materials having a rigid frame 73

5.1 Introduction 73
5.2 Viscous and thermal dynamic and static permeability 74
5.2.1 Definitions 74
5.2.2 Direct measurement of the static permeabilities 76

5.3 Classical tortuosity, characteristic dimensions, quasi-static tortuosity 78
5.3.1 Classical tortuosity 78
5.3.2 Viscous characteristic length 79
5.3.3 Thermal characteristic length 80
5.3.4 Characteristic lengths for fibrous materials 80
5.3.5 Direct measurement of the high-frequency parameters, classical tortuosity and characteristic lengths 81
5.3.6 Static tortuosity 82

5.4 Models for the effective density and the bulk modulus of the saturating fluid
5.4.1 Pride et al. model for the effective density 83
5.4.2 Simplified Lafarge model for the bulk modulus 83

5.5 Simpler models 84
5.5.1 The Johnson et al. model 84
5.5.2 The Champoux–Allard model 84
5.5.3 The Wilson model 85
5.5.4 Prediction of the effective density with the Pride et al. model and the model by Johnson et al. 85
5.5.5 Prediction of the bulk modulus with the simplified Lafarge model and the Champoux-Allard model 85
5.5.6 Prediction of the surface impedance 87
5.6 Prediction of the effective density and the bulk modulus of open cell foams and fibrous materials with the different models 88
 5.6.1 Comparison of the performance of different models 88
 5.6.2 Practical considerations 88
5.7 Fluid layer equivalent to a porous layer 89
5.8 Summary of the semi-phenomenological models 90
5.9 Homogenization 91
5.10 Double porosity media 95
 5.10.1 Definitions 95
 5.10.2 Orders of magnitude for realistic double porosity media 96
 5.10.3 Asymptotic development method for double porosity media 97
 5.10.4 Low permeability contrast 98
 5.10.5 High permeability contrast 99
 5.10.6 Practical considerations 102
Appendix 5.A: Simplified calculation of the tortuosity for a porous material having pores made up of an alternating sequence of cylinders 103
Appendix 5.B: Calculation of the characteristic length Λ' 104
Appendix 5.C: Calculation of the characteristic length Λ for a cylinder perpendicular to the direction of propagation 106
References 107

6 Biot theory of sound propagation in porous materials having an elastic frame 111
 6.1 Introduction 111
 6.2 Stress and strain in porous materials 111
 6.2.1 Stress 111
 6.2.2 Stress–strain relations in the Biot theory: The potential coupling term 112
 6.2.3 A simple example 115
 6.2.4 Determination of P, Q and R 116
 6.2.5 Comparison with previous models of sound propagation in porous sound-absorbing materials 117
 6.3 Inertial forces in the Biot theory 117
 6.4 Wave equations 119
 6.5 The two compressional waves and the shear wave 120
 6.5.1 The two compressional waves 120
 6.5.2 The shear wave 122
 6.5.3 The three Biot waves in ordinary air-saturated porous materials 123
 6.5.4 Example 123
 6.6 Prediction of surface impedance at normal incidence for a layer of porous material backed by an impervious rigid wall 126
 6.6.1 Introduction 126
 6.6.2 Prediction of the surface impedance at normal incidence 126
 6.6.3 Example: Fibrous material 129
Appendix 6.A: Other representations of the Biot theory 131
References 134

7 Point source above rigid framed porous layers 137
7.1 Introduction 137
7.2 Sommerfeld representation of the monopole field over a plane reflecting surface 137
7.3 The complex sinθ plane 139
7.4 The method of steepest descent (passage path method) 140
7.5 Poles of the reflection coefficient 145
 7.5.1 Definitions 145
 7.5.2 Planes waves associated with the poles 146
 7.5.3 Contribution of a pole to the reflected monopole pressure field 150
7.6 The pole subtraction method 151
7.7 Pole localization 153
 7.7.1 Localization from the r dependence of the reflected field 153
 7.7.2 Localization from the vertical dependence of the total pressure 155
7.8 The modified version of the Chien and Soroka model 156
Appendix 7.A Evaluation of N 160
Appendix 7.B Evaluation of pr by the pole subtraction method 161
Appendix 7.C From the pole subtraction to the passage path: locally reacting surface 164
References 165

8 Porous frame excitation by point sources in air and by stress circular and line sources – modes of air saturated porous frames 167
8.1 Introduction 167
8.2 Prediction of the frame displacement 168
 8.2.1 Excitation with a given wave number component parallel to the faces 168
 8.2.2 Circular and line sources 172
8.3 Semi-infinite layer – Rayleigh wave 173
8.4 Layer of finite thickness – modified Rayleigh wave 176
8.5 Layer of finite thickness – modes and resonances 177
 8.5.1 Modes and resonances for an elastic solid layer and a poroelastic layer 177
 8.5.2 Excitation of the resonances by a point source in air 179
Appendix 8.A Coefficients rij and Mi,j 182
Appendix 8.B Double Fourier transform and Hankel transform 183
Appendix 8.C Rayleigh pole contribution 185
References 185

9 Porous materials with perforated facings 187
9.1 Introduction 187
9.2 Inertial effect and flow resistance 187
 9.2.1 Inertial effect 187
9.2.2 Calculation of the added mass and the added length 188
9.2.3 Flow resistance 191
9.2.4 Apertures having a square cross-section 192

9.3 Impedance at normal incidence of a layered porous material covered by a perforated facing – Helmholtz resonator 194
9.3.1 Evaluation of the impedance for the case of circular holes 194
9.3.2 Evaluation at normal incidence of the impedance for the case of square holes 198
9.3.3 Examples 199
9.3.4 Design of stratified porous materials covered by perforated facings 202
9.3.5 Helmholtz resonators 203

9.4 Impedance at oblique incidence of a layered porous material covered by a facing having circular perforations 205
9.4.1 Evaluation of the impedance in a hole at the boundary surface between the facing and the material 205
9.4.2 Evaluation of the external added length at oblique incidence 208
9.4.3 Evaluation of the impedance of a faced porous layer at oblique incidence 209
9.4.4 Evaluation of the surface impedance at oblique incidence for the case of square perforations 210

References 211

10 Transversally isotropic poroelastic media 213
10.1 Introduction 213
10.2 Frame in vacuum 214
10.3 Transversally isotropic poroelastic layer
 10.3.1 Stress–strain equations 215
 10.3.2 Wave equations 216
10.4 Waves with a given slowness component in the symmetry plane
 10.4.1 General equations 217
 10.4.2 Waves polarized in a meridian plane 219
 10.4.3 Waves with polarization perpendicular to the meridian plane 219
 10.4.4 Nature of the different waves 219
 10.4.5 Illustration 220
10.5 Sound source in air above a layer of finite thickness 222
 10.5.1 Description of the problems 222
 10.5.2 Plane field in air 223
 10.5.3 Decoupling of the air wave 226
10.6 Mechanical excitation at the surface of the porous layer 227
10.7 Symmetry axis different from the normal to the surface
 10.7.1 Prediction of the slowness vector components of the different waves 228
 10.7.2 Slowness vectors when the symmetry axis is parallel to the surface 230
 10.7.3 Description of the different waves 230
11 Modelling multilayered systems with porous materials using the transfer matrix method

11.1 Introduction

11.2 Transfer matrix method

11.2.1 Principle of the method

11.3 Matrix representation of classical media

11.3.1 Fluid layer

11.3.2 Solid layer

11.3.3 Poroelastic layer

11.3.4 Rigid and limp frame limits

11.3.5 Thin elastic plate

11.3.6 Impervious screens

11.3.7 Porous screens and perforated plates

11.3.8 Other media

11.4 Coupling transfer matrices

11.4.1 Two layers of the same nature

11.4.2 Interface between layers of different nature

11.5 Assembling the global transfer matrix

11.5.1 Hard wall termination condition

11.5.2 Semi-infinite fluid termination condition

11.6 Calculation of the acoustic indicators

11.6.1 Surface impedance, reflection and absorption coefficients

11.6.2 Transmission coefficient and transmission loss

11.6.3 Piston excitation

11.7 Applications

11.7.1 Materials with porous screens

11.7.2 Materials with impervious screens

11.7.3 Normal incidence sound transmission through a plate–porous system

11.7.4 Diffuse field transmission of a plate–foam system

11.8 References

Appendix 11.A The elements T_{ij} of the Transfer Matrix T
12.3.1 Surface pressure 288
12.3.2 Absorption coefficient 289
12.3.3 Examples 291
12.4 Point load excitation 295
12.4.1 Formulation 295
12.4.2 The TMM, SEA and modal methods 297
12.4.3 Examples 298
12.5 Point source excitation 303
12.6 Other applications 304
Appendix 12.A: An algorithm to evaluate the geometrical radiation impedance 305
References 306

13 Finite element modelling of poroelastic materials 309
13.1 Introduction 309
13.2 Displacement based formulations 310
13.3 The mixed displacement–pressure formulation 311
13.4 Coupling conditions 313
13.4.1 Poroelastic–elastic coupling condition 313
13.4.2 Poroelastic–acoustic coupling condition 314
13.4.3 Poroelastic–poroelastic coupling condition 315
13.4.4 Poroelastic–impervious screen coupling condition 315
13.4.5 Case of an imposed pressure field 316
13.4.6 Case of an imposed displacement field 317
13.4.7 Coupling with a semi-infinite waveguide 317
13.5 Other formulations in terms of mixed variables 320
13.6 Numerical implementation 320
13.7 Dissipated power within a porous medium 323
13.8 Radiation conditions 324
13.9 Examples 327
13.9.1 Normal incidence absorption and transmission loss of a foam: finite size effects 327
13.9.2 Radiation effects of a plate–foam system 329
13.9.3 Damping effects of a plate–foam system 331
13.9.4 Diffuse transmission loss of a plate–foam system 333
13.9.5 Application to the modelling of double porosity materials 335
13.9.6 Modelling of smart foams 339
13.9.7 An industrial application 343
References 347

Index 351
Preface to the Second Edition

In the first edition, models initially developed to describe wave propagation in porous media saturated by heavy fluids are used to predict the acoustical performances of air saturated sound absorbing porous media. In this expanded and revised edition, we have retained, with slight modifications, most of the basic material of the first edition and expanded it by revisiting several original topics and adding new topics to integrate recent developments in the domain of wave propagation in porous media and practical numerical prediction methods that are widely used by researchers and engineers.

Chapters 1 to 3 dealing with sound propagation in solids and fluid and Chapter 9 dealing with the modelling of perforated facings were slightly modified. Chapters 4 to 6 were greatly revisited. A more detailed description of sound propagation in cylindrical pores is presented (Chapter 4), related to the more general presentation of new parameters and new models for sound propagation in rigid-framed porous media (Chapter 5). Also in Chapter 5 a short presentation of homogenization, with some results concerning double porosity media, is added. In Chapter 6, different formulations of the Biot theory for poroelastic media are given, with a simplified version for the case of media with a limp frame. In Chapter 11 we have revisited the original representation of the modelling of layered media (Chapter 7 of the first edition) and extended it to cover the systematic modelling of layered media using the Transfer Matrix Method (TMM). In particular, a step by step presentation of the numerical implementation of the method is given with several application examples.

Major additions include five new chapters. Chapter 7 discusses the acoustic field created by a point source above a rigid framed porous layer, with recent advances concerning the poles of the reflection coefficient and the reflected field at grazing incidence. Chapter 8 is concerned by the poroelastic layers excited by a point source in air or by a localized stress source on the free face of the layer, with a description of the Rayleigh waves and the resonances. Axisymmetrical poroelastic media are studied in Chapter 10. In Chapter 12, complements to the transfer matrix method are given. They concern mainly the effect of the finite lateral extend, and the excitation by point loads, of sound packages. Several examples illustrating the practical importance of these extensions are given (e.g. size effects on the random incidence absorption and transmission loss of porous media; airborne vs. structure borne insertion loss of sound packages). In Chapter 13, an introduction to the finite element modelling of poroelastic media is presented. Emphasis is put on the use of the mixed displacement-pressure formulation of the Biot theory,
which appears in the Appendix of Chap. 6. Detailed description of coupling conditions between various domains including a waveguide are presented together with sections on the breakdown of the power dissipation mechanisms within a porous media and radiation conditions. Several applications are chosen to illustrate the practical use of the presented methods including modelling of double porosity materials and smart foams.

As in the first edition, the goal of the book remains to provide in a concrete manner a physical basis, as simple as possible, and the developments, analytical calculations and numerical methods, that will be useful in different fields where sound absorption and transmission and vibration damping by air saturated porous media are concerned.

Acknowledgments

The first authors (Prof. Allard) is grateful to Professor Walter Lauriks (Katholieke Universiteit Leuven) for his collaboration for more than twenty years which has brought a significant contribution to the book. The second author (Prof. Atalla) would like to single out for special thanks Dr Franck Sgard (Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail), Dr Raymond Panneton (Université de Sherbrooke), Dr Mohamed Ali Hamdi (Université de Technologie de Compiègne) and Arnaud Duval (Faurecia) for their various collaborations and discussions that resulted in many beneficial improvements to the book.

Jean-Francois Allard, Le Mans, France
Noureddine Atalla, Sherbrooke, Canada

August 2009
1

Plane waves in isotropic fluids and solids

1.1 Introduction

The aim of this chapter is to introduce the stress–strain relations, the basic equations governing sound propagation which will be useful for the understanding of the Biot theory. The framework of the presentation is the linear theory of elasticity. Total derivatives with respect to time d/dt are systematically replaced by partial derivatives $\partial/\partial t$. The presentation is carried out with little explanation. Detailed derivation can be found in the literature (Ewing et al. 1957, Cagniard 1962, Miklowitz 1966, Brekhovskikh 1960, Morse and Ingard 1968, Achenbach 1973).

1.2 Notation – vector operators

A system of rectangular cartesian coordinates (x_1, x_2, x_3) will be used in the following, having unit vectors $\mathbf{i}_1, \mathbf{i}_2$ and \mathbf{i}_3. The vector operator del (or nabla) denoted by ∇ can be defined by

$$\nabla = \mathbf{i}_1 \frac{\partial}{\partial x_1} + \mathbf{i}_2 \frac{\partial}{\partial x_2} + \mathbf{i}_3 \frac{\partial}{\partial x_3} \quad (1.1)$$

When operating on a scalar field $\varphi(x_1, x_2, x_3)$ the vector operator ∇ yields the gradient of φ

$$\text{grad } \varphi = \nabla \varphi = \mathbf{i}_1 \frac{\partial \varphi}{\partial x_1} + \mathbf{i}_2 \frac{\partial \varphi}{\partial x_2} + \mathbf{i}_3 \frac{\partial \varphi}{\partial x_3} \quad (1.2)$$
When operating on a vector field \(\mathbf{v} \) with components \((v_1, v_2, v_3) \), the vector operator \(\nabla \) yields the divergence of \(\mathbf{v} \)

\[
\text{div} \, \mathbf{v} = \nabla \cdot \mathbf{v} = \frac{\partial v_1}{\partial x_1} + \frac{\partial v_2}{\partial x_2} + \frac{\partial v_3}{\partial x_3}
\]

(1.3)

The Laplacian of \(\phi \) is:

\[
\nabla \cdot \nabla \phi = \nabla^2 \phi = \text{div} \, \text{grad} \, \phi = \frac{\partial^2 \phi}{\partial x_1^2} + \frac{\partial^2 \phi}{\partial x_2^2} + \frac{\partial^2 \phi}{\partial x_3^2}
\]

(1.4)

When operating on the vector \(\mathbf{v} \), the Laplacian operator yields a vector field whose components are the Laplacians of \(v_1, v_2 \) and \(v_3 \)

\[
(\nabla^2 \mathbf{v})_i = \frac{\partial^2 v_i}{\partial x_1^2} + \frac{\partial^2 v_i}{\partial x_2^2} + \frac{\partial^2 v_i}{\partial x_3^2}
\]

(1.5)

The gradient of the divergence of a vector \(\mathbf{v} \) is a vector of components

\[
(\nabla \nabla \cdot \mathbf{v})_i = \frac{\partial}{\partial x_i} \left(\frac{\partial v_1}{\partial x_1} + \frac{\partial v_2}{\partial x_2} + \frac{\partial v_3}{\partial x_3} \right)
\]

(1.6)

The vector \text{curl} \ is denoted by

\[
\text{curl} \, \mathbf{v} = \nabla \wedge \mathbf{v}
\]

(1.7)

and is equal to

\[
\text{curl} \, \mathbf{v} = \mathbf{i}_1 \left(\frac{\partial v_3}{\partial x_2} - \frac{\partial v_2}{\partial x_3} \right) + \mathbf{i}_2 \left(\frac{\partial v_1}{\partial x_3} - \frac{\partial v_3}{\partial x_1} \right) + \mathbf{i}_3 \left(\frac{\partial v_2}{\partial x_1} - \frac{\partial v_1}{\partial x_2} \right)
\]

(1.8)

1.3 Strain in a deformable medium

Let us consider the coordinates of the two points \(P \) and \(Q \) in a deformable medium before and after deformation. The two points \(P \) and \(Q \) are represented in Figure 1.1.

The coordinates of \(P \) are \((x_1, x_2, x_3)\) and become \((x_1 + u_1, x_2 + u_2, x_3 + u_3)\) after deformation. The quantities \((u_1, u_2, u_3)\) are then the components of the displacement vector \(\mathbf{u} \) of \(P \). The components of the displacement vector for the neighbouring point \(Q \), having initial coordinates \((x_1 + \Delta x_1, x_2 + \Delta x_2, x_3 + \Delta x_3)\), are to a first-order approximation

\[
\begin{align*}
 u'_1 &= u_1 + \frac{\partial u_1}{\partial x_1} \Delta x_1 + \frac{\partial u_1}{\partial x_2} \Delta x_2 + \frac{\partial u_1}{\partial x_3} \Delta x_3 \\
 u'_2 &= u_2 + \frac{\partial u_2}{\partial x_1} \Delta x_1 + \frac{\partial u_2}{\partial x_2} \Delta x_2 + \frac{\partial u_2}{\partial x_3} \Delta x_3 \\
 u'_3 &= u_3 + \frac{\partial u_3}{\partial x_1} \Delta x_1 + \frac{\partial u_3}{\partial x_2} \Delta x_2 + \frac{\partial u_3}{\partial x_3} \Delta x_3
\end{align*}
\]

(1.9)
A rotation vector $\Omega(\Omega_1, \Omega_2, \Omega_3)$ and a 3×3 strain tensor e can be defined at P by the following equations:

$$
\Omega_1 = \frac{1}{2} \left(\frac{\partial u_3}{\partial x_2} - \frac{\partial u_2}{\partial x_3} \right), \quad \Omega_2 = \frac{1}{2} \left(\frac{\partial u_1}{\partial x_3} - \frac{\partial u_3}{\partial x_1} \right)
$$

(1.10)

$$
e_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)
$$

(1.11)

The displacement components of Q can be rewritten as

$$
u_1' = u_1 + (\Omega_2 \Delta x_3 - \Omega_3 \Delta x_2) + (e_{11} \Delta x_1 + e_{12} \Delta x_2 + e_{13} \Delta x_3)
$$

$$
u_2' = u_2 + (\Omega_3 \Delta x_1 - \Omega_1 \Delta x_3) + (e_{21} \Delta x_1 + e_{22} \Delta x_2 + e_{23} \Delta x_3)
$$

$$
u_3' = u_3 + (\Omega_1 \Delta x_2 - \Omega_2 \Delta x_1) + (e_{31} \Delta x_1 + e_{32} \Delta x_2 + e_{33} \Delta x_3)
$$

(1.12)

The terms in the first parenthesis of each equation are associated with rotations around P, while those in the second parenthesis are related to deformations. The three components e_{11}, e_{22} and e_{33}, which are equal to

$$
e_{11} = \frac{\partial u_1}{\partial x_1}, \quad e_{22} = \frac{\partial u_2}{\partial x_2}, \quad e_{33} = \frac{\partial u_3}{\partial x_3}
$$

(1.13)

are an estimation of the extensions parallel to the axes.

The cubical dilatation θ is the limit of the ratio of the change in the volume to the initial volume when the dimensions of the initial volume approach zero. Hence,

$$
\theta = \lim \frac{(\Delta x_1 + e_{11} \Delta x_1)(\Delta x_2 + e_{12} \Delta x_2)(\Delta x_3 + e_{13} \Delta x_3) - \Delta x_1 \Delta x_2 \Delta x_3}{\Delta x_1 \Delta x_2 \Delta x_3}
$$

(1.14)

and is equal to the divergence of u:

$$
\theta = \nabla \cdot \mathbf{u} = \frac{\partial u_1}{\partial x_1} + \frac{\partial u_2}{\partial x_2} + \frac{\partial u_3}{\partial x_3} = e_{11} + e_{22} + e_{33}
$$

(1.15)
If Δx denotes the vector having components Δx_1, Δx_2 and Δx_3, after a rotation characterized by the rotation vector Ω, the initial vector becomes $\Delta x'$ related to Δx by

$$\Delta x' - \Delta x = \Omega \wedge \Delta x$$ \hspace{1cm} (1.16)

The rotation vector Ω, in vector notation, is

$$\Omega = \frac{1}{2} \text{curl } u$$ \hspace{1cm} (1.17)

1.4 Stress in a deformable medium

Two kinds of forces may act on a body, body forces and surface forces. Surface forces act across the surface, including its boundary. Consider a volume V in a deformable medium as represented in Figure 1.2.

Let S be the surface limiting V and ΔS an element of S around a point P that lies on S. The side of S which is outside V is called (+) while the other is called (−). The force exerted on V across ΔS is denoted by ΔF. A stress vector at P is defined by

$$T(P) = \lim_{\Delta S \to 0} \frac{\Delta F}{\Delta S}$$ \hspace{1cm} (1.18)

The stress vector $T(P)$ depends on P and on the direction of the positive outward unit normal n to the surface S at P. The stress vectors can be obtained from $T^1(\sigma_{11}, \sigma_{12}, \sigma_{13})$, $T^2(\sigma_{21}, \sigma_{22}, \sigma_{23})$, and $T^3(\sigma_{31}, \sigma_{32}, \sigma_{33})$ corresponding to surfaces with normal n parallel to the x_1, x_2 and x_3 axes, respectively.

The components T_1, T_2, T_3 of T can be expressed in the general case as

$$T_1 = \sigma_{11}n_1 + \sigma_{21}n_2 + \sigma_{31}n_3$$

$$T_2 = \sigma_{12}n_1 + \sigma_{22}n_2 + \sigma_{32}n_3$$

$$T_3 = \sigma_{13}n_1 + \sigma_{23}n_2 + \sigma_{33}n_3$$ \hspace{1cm} (1.19)

In these equations n_1, n_2 and n_3 are the direction cosines of the positive normal n to S at P. The quantities σ_{ij} are the nine components of the stress tensor at P. These components are symmetrical, i.e. $\sigma_{ij} = \sigma_{ji}$, like the components e_{ij}. An illustration is given in Figure 1.3 for a cube with faces of unit area parallel to the coordinate planes.

![Figure 1.2](image-url) A volume V in a deformable medium, with an element ΔS belonging to the surface S limiting V.
The variations of the components σ_{ij} are assumed to be negligible at the surface of the cube. With the components of the positive unit normal on the upper face being $(0, 0, 1)$, Equations (1.19) reduce to

$$T_1 = \sigma_{31}, \quad T_2 = \sigma_{32}, \quad T_3 = \sigma_{33} \quad (1.20)$$

The force $\mathbf{F}(F_1, F_2, F_3)$ acting on the upper face is equal to T^3. The components of the unit normal on the lower face are $(0, 0, -1)$. The forces on the lower and the upper face are equal in magnitude and lie in opposite directions. The same property holds for the two other pairs of opposite faces. The elements σ_{ij} where $i = j$ correspond to normal forces while those with $i \neq j$ correspond to tangential forces.

1.5 Stress–strain relations for an isotropic elastic medium

The stress–strain relations for an isotropic elastic medium are as follows:

$$\sigma_{ij} = \lambda \delta_{ij} \theta + 2\mu e_{ij} \quad (1.21)$$

The quantities λ and μ are the Lamé coefficients and δ_{ij} is the Kronecker delta:

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases} \quad (1.22)$$

In matrix form Equation (1.21) can be rewritten

$$\begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{13} \\ \sigma_{23} \\ \sigma_{12} \end{pmatrix} = \begin{pmatrix} C_{11} & C_{12} & C_{12} & 0 & 0 & 0 \\ C_{12} & C_{11} & C_{12} & 0 & 0 & 0 \\ C_{12} & C_{12} & C_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{44} \end{pmatrix} \begin{pmatrix} e_{11} \\ e_{22} \\ e_{33} \\ e_{13} \\ e_{23} \\ e_{12} \end{pmatrix} \quad (1.23)$$
The strain elements are related to the stress elements by

\[
e_{ij} = -\frac{\lambda \delta_{ij}}{2\mu (3\lambda + 2\mu)} (\sigma_{11} + \sigma_{22} + \sigma_{33}) + \frac{1}{2\mu} \sigma_{ij}
\]

(1.25)

\[
\begin{bmatrix}
e_{11} \\
e_{22} \\
e_{33} \\
e_{12} \\
e_{23} \\
e_{32}
\end{bmatrix} =
\begin{bmatrix}
1/E & -\nu/E & -\nu/E & 0 & 0 & 0 \\
-\nu/E & 1/E & -\nu/E & 0 & 0 & 0 \\
-\nu/E & -\nu/E & 1/E & 0 & 0 & 0 \\
0 & 0 & 0 & 1/2\mu & 0 & 0 \\
0 & 0 & 0 & 0 & 1/2\mu & 0 \\
0 & 0 & 0 & 0 & 0 & 1/2\mu
\end{bmatrix}
\begin{bmatrix}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{33} \\
\sigma_{12} \\
\sigma_{23} \\
\sigma_{32}
\end{bmatrix}
\]

(1.26)

where \(E \) is the Young’s modulus and \(\nu \) is the Poisson ratio. They are related to the Lamé coefficients by

\[
E = \frac{\mu (3\lambda + 2\mu)}{\lambda + \mu}
\]

(1.27)

\[
\nu = \frac{\lambda}{2(\lambda + \mu)}
\]

The shear modulus \(G \) is related to \(E \) and \(\nu \) via

\[
G = \mu = \frac{E}{2(1 + \nu)}
\]

(1.28)

Examples

Antiplane shear

The displacement field is represented in Figure 1.4. For this case, the two components \(e_{ij} \) which differ from zero are

\[
e_{32} = e_{23} = \frac{1}{2} \frac{\partial u_2}{\partial x_3}
\]

(1.29)

The angle \(\alpha \) is equal to

\[
\alpha = \frac{\partial u_2}{\partial x_3}
\]

(1.30)

Using Equation (1.21), one obtains two components \(\sigma_{ij} \) which differ from zero:

\[
\sigma_{32} = \sigma_{23} = \mu \alpha
\]

(1.31)

The coefficient \(\mu \) is the shear modulus of the medium, which relates the angle of deformation and the tangential force per unit area. The three components of the rotation
Figure 1.4 Antiplane shear in an elastic medium. A vector \(\mathbf{PQ} \) initially parallel to \(x_3 \) becomes oblique with an angle \(\alpha \) to the initial direction.

Figure 1.5 Longitudinal strain in the \(x_3 \) direction.

The deformation is equivoluminal, the dilatation \(\theta \) being equal to zero, and there is a rotation around \(x_1 \).

Longitudinal strain

For this case only the component \(e_{33} \) of the strain tensor is different from zero. The vectors \(\mathbf{PQ} \) and \(\mathbf{P}'\mathbf{Q}' \) are represented in Figure 1.5.

The stress tensor components that do not vanish are

\[
\sigma_{33} = (\lambda + 2\mu)e_{33} \\
\sigma_{11} = \sigma_{22} = \lambda e_{33}
\]

(1.33)

Unidirectional stress

From Equation (1.26) the stress component \(\sigma_{33} \) transforms a vector \(\mathbf{PQ} \) parallel to the axis \(x_3 \) into a vector \(\mathbf{P}'\mathbf{Q}' \) parallel to \(x_3 \). The ratio \(P'\mathbf{Q}'/\mathbf{PQ} \) is given by

\[
P'\mathbf{Q}'/\mathbf{PQ} = \sigma_{33}/E
\]

(1.34)

A vector \(\mathbf{PQ} \) perpendicular to \(x_3 \) is transformed in a vector \(\mathbf{P}'\mathbf{Q}' \) parallel to \(\mathbf{PQ} \) and the ratio \(P'\mathbf{Q}'/\mathbf{PQ} \) is now given by

\[
P'\mathbf{Q}'/\mathbf{PQ} = -\nu\sigma_{33}/E
\]

(1.35)
Compression by a hydrostatic pressure

For this case, represented in Figure 1.6, the components of the stress tensor that do not vanish are

\[\sigma_{11} = \sigma_{22} = \sigma_{33} = -p \] (1.36)

From Equation (1.21) it follows that the dilatation \(\theta \) is related to \(p \) by

\[\theta = -p / \left(\lambda + \frac{2\mu}{3} \right) \] (1.37)

The ratio \(-p/\theta\) is the bulk modulus \(K \) of the material, which is equal to

\[K = \lambda + \frac{2\mu}{3} \] (1.38)

Contrary to the case of simple shear, \(\Omega = 0 \) and \(\theta \) is nonzero. The deformation is irrotational, as in the case with a longitudinal strain. Note that since a hydrostatic pressure leads to a negative volume change, the bulk modulus \(K \) is positive for all materials and in consequence Poisson’s ratio is less than or equal to 0.5 for all materials.

1.6 Equations of motion

The total surface force \(\mathbf{F}_V \) acting on the volume \(V \) represented in Figure 1.2 is

\[\mathbf{F}_V = \iiint \mathbf{T} \, dS \] (1.39)

The projection of the force \(\mathbf{F}_V \) on to the \(x_i \) axis is

\[F_{V_i} = \iiint_S (\sigma_{1i}n_1 + \sigma_{2i}n_2 + \sigma_{3i}n_3) \, dS \] (1.40)
By using the divergence theorem, Equation (1.40) becomes

\[F_{vi} = \iiint_V \left(\frac{\partial \sigma_{1i}}{\partial x_1} + \frac{\partial \sigma_{2i}}{\partial x_2} + \frac{\partial \sigma_{3i}}{\partial x_3} \right) dV \] \hspace{1cm} (1.41)

Adding the component \(X_i \) of the body force per unit volume, the linearized Newton equation for \(V \) may be written as

\[\iiint_V \left(\frac{\partial \sigma_{1i}}{\partial x_1} + \frac{\partial \sigma_{2i}}{\partial x_2} + \frac{\partial \sigma_{3i}}{\partial x_3} + X_i - \rho \frac{\partial^2 u_i}{\partial t^2} \right) dV = 0 \] \hspace{1cm} (1.42)

where \(\rho \) is the mass density of the material. This equation leads to the stress equations of motion

\[\frac{\partial \sigma_{1i}}{\partial x_1} + \frac{\partial \sigma_{2i}}{\partial x_2} + \frac{\partial \sigma_{3i}}{\partial x_3} + X_i - \rho \frac{\partial^2 u_i}{\partial t^2} = 0 \hspace{1cm} i = 1, 2, 3 \] \hspace{1cm} (1.43)

With the aid of Equation (1.21) the equations of motion become

\[\rho \frac{\partial^2 u_i}{\partial t^2} = \lambda \frac{\partial^2}{\partial x_i} + 2\mu \frac{\partial^2 e_{ii}}{\partial x_i} + \mu \sum_{j \neq i} \frac{\partial^2 e_{ji}}{\partial x_j} + X_i \hspace{1cm} i = 1, 2, 3 \] \hspace{1cm} (1.44)

Replacing \(e_{ji} \) by \(1/2(\partial u_j/\partial x_i + \partial u_i/\partial x_j) \), Equations (1.44) can be written in terms of displacement as

\[\rho \frac{\partial^2 u_i}{\partial t^2} = (\lambda + \mu) \frac{\partial}{\partial x_i} \nabla \cdot u + \mu \nabla^2 u + X_i \hspace{1cm} i = 1, 2, 3 \] \hspace{1cm} (1.45)

where \(\nabla^2 \) is the Laplacian operator \(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2} \).

Using vector notation, Equations (1.45) can be written

\[\rho \frac{\partial^2 \mathbf{u}}{\partial t^2} = (\lambda + \mu) \nabla \nabla \cdot \mathbf{u} + \mu \nabla^2 \mathbf{u} + \mathbf{X} \hspace{1cm} i = 1, 2, 3 \] \hspace{1cm} (1.46)

In this equation, \(\nabla \nabla \cdot \mathbf{u} \) is the gradient of the divergence \(\nabla \cdot \mathbf{u} \) of the vector field \(\mathbf{u} \), and its components are

\[\frac{\partial}{\partial x_i} \left[\frac{\partial u_1}{\partial x_1} + \frac{\partial u_2}{\partial x_2} + \frac{\partial u_3}{\partial x_3} \right] \hspace{1cm} i = 1, 2, 3 \] \hspace{1cm} (1.47)

and the quantity \(\nabla^2 \mathbf{u} \) is the Laplacian of the vector field \(\mathbf{u} \), having components

\[\sum_{j=1,2,3} \frac{\partial^2 u_i}{\partial x_j^2} \hspace{1cm} i = 1, 2, 3 \] \hspace{1cm} (1.48)

as indicated in Section 1.2.
1.7 Wave equation in a fluid

In the case of an inviscid fluid, μ vanishes. The stress coefficients reduce to

\[
\sigma_{11} = \sigma_{22} = \sigma_{33} = \lambda \theta \\
\sigma_{12} = \sigma_{13} = \sigma_{23} = 0
\]

(1.49)

The three nonzero stress elements are equal to $-p$, where p is the pressure. The bulk modulus K, given by Equation (1.38), becomes simply λ:

\[
K = \lambda
\]

(1.50)

The stress field (Equation 1.49) generates only irrotational deformations such as $\Omega = 0$.

A representation of the displacement vector \mathbf{u} in the following form can be used:

\[
\begin{align*}
 u_1 &= \partial \varphi / \partial x_1, \\
 u_2 &= \partial \varphi / \partial x_2, \\
 u_3 &= \partial \varphi / \partial x_3
\end{align*}
\]

(1.51)

where φ is a displacement potential.

In vector form, Equations (1.51) can be written as

\[
\mathbf{u} = \nabla \varphi
\]

(1.52)

Using this representation, the rotation vector Ω can be rewritten

\[
\Omega = \frac{1}{2} \text{curl} \nabla \varphi = 0
\]

(1.53)

and the displacement field is irrotational.

Substitution of this displacement representation into Equation (1.46) with $\mu = 0$ and $\mathbf{X} = 0$ yields

\[
\lambda \nabla \nabla \cdot \nabla \varphi = \rho \frac{\partial^2}{\partial t^2} \nabla \varphi
\]

(1.54)

Since $\nabla \cdot \nabla \varphi = \nabla^2 \varphi$, Equation (1.54) reduces, with Equation (1.50), to

\[
\nabla \left[K \nabla^2 \varphi - \rho \frac{\partial^2 \varphi}{\partial t^2} \right] = 0
\]

(1.55)

The displacement potential φ satisfies the equation of motion if

\[
\nabla^2 \varphi = \rho \frac{\partial^2 \varphi}{K \partial t^2}
\]

(1.56)

If the fluid is a perfectly elastic fluid, with no damping, K is a real number.

This displacement potential is related to pressure in a simple way. From Equations (1.49), (1.50) and (1.52), p can be written as

\[
p = -K \theta = -K \nabla^2 \varphi
\]

(1.57)
By the use of Equations (1.56) and (1.57) one obtains

\[p = -\rho \frac{\partial^2 \varphi}{\partial t^2} \quad (1.58) \]

At an angular frequency \(\omega \) (\(\omega = 2\pi f \), where \(f \) is frequency), \(p \) can be rewritten as

\[p = \rho \omega^2 \varphi \quad (1.59) \]

As an example, a simple solution of Equation (1.56) is

\[\varphi = \frac{A}{\rho \omega^2} \exp[j(-kx_3 + \omega t + \alpha)] \quad (1.60) \]

In this equation, \(A \) and \(\alpha \) are arbitrary constants, and \(k \) is the wave number

\[k = \omega (\rho / K)^{1/2} \quad (1.61) \]

The phase velocity is given by

\[c = \omega / \text{Re} \, k \quad (1.62) \]

and \(\text{Im}(k) \) appears in the amplitude dependence on \(x_3, \exp(\text{Im}(k)x_3) \). In this example, \(u_3 \) is the only nonzero component of \(u \):

\[u_3 = \frac{\partial \varphi}{\partial x_3} = \frac{-jkA}{\rho \omega^2} \exp[j(-kx_3 + \omega t + \alpha)] \quad (1.63) \]

The pressure \(p \) is

\[p = -\rho \frac{\partial^2 \varphi}{\partial t^2} = A \exp[j(-kx_3 + \omega t + \alpha)] \quad (1.64) \]

This field of deformation corresponds to the propagation parallel to the \(x_3 \) axis of a longitudinal strain, with a phase velocity \(c \).

1.8 Wave equations in an elastic solid

A scalar potential \(\varphi \) and a vector potential \(\Psi(\psi_1, \psi_2, \psi_3) \) can be used to represent displacements in a solid

\[
\begin{align*}
 u_1 &= \frac{\partial \varphi}{\partial x_1} + \frac{\partial \psi_3}{\partial x_2} - \frac{\partial \psi_2}{\partial x_3} \\
 u_2 &= \frac{\partial \varphi}{\partial x_2} + \frac{\partial \psi_1}{\partial x_3} - \frac{\partial \psi_3}{\partial x_1} \\
 u_3 &= \frac{\partial \varphi}{\partial x_3} + \frac{\partial \psi_2}{\partial x_1} - \frac{\partial \psi_1}{\partial x_2}
\end{align*}
\quad (1.65)
\]

In vector form, Equations (1.65) reduce to

\[\mathbf{u} = \nabla \varphi + \text{curl} \, \Psi \quad (1.66) \]
or, using the notation ∇ for the gradient operator

$$\mathbf{u} = \nabla \phi + \nabla \wedge \psi \quad (1.67)$$

The rotation vector $\mathbf{\Omega}$ in Equation (1.17) is then equal to

$$\mathbf{\Omega} = \frac{1}{2} \nabla \wedge \nabla \wedge \psi \quad (1.68)$$

Therefore, the scalar potential involves dilatation while the vector potential describes infinitesimal rotations.

In the absence of body forces, the displacement equation of motion (1.46) is

$$\rho \frac{\partial^2 \mathbf{u}}{\partial t^2} = (\lambda + \mu) \nabla \nabla \cdot \mathbf{u} + \mu \nabla^2 \mathbf{u} \quad (1.69)$$

Substitution of the displacement representation given by Equation (1.67) into Equation (1.69) yields

$$\mu \nabla^2 [\nabla \phi + \nabla \wedge \psi] + (\lambda + \mu) \nabla \nabla \cdot [\nabla \phi + \nabla \wedge \psi] = \rho \frac{\partial^2 [\nabla \phi + \nabla \wedge \psi]}{\partial t^2} \quad (1.70)$$

In Equation (1.70), $\nabla \cdot \nabla \phi$ can be replaced by $\nabla^2 \phi$, $\nabla \cdot \nabla \wedge \psi = 0$, allowing this equation to reduce to

$$\mu \nabla^2 \nabla \phi + \lambda \nabla \nabla^2 \phi + \mu \nabla \nabla^2 \phi - \rho \frac{\partial^2 \nabla \phi}{\partial t^2} + \left(\mu \nabla^2 - \rho \frac{\partial^2}{\partial t^2} \right) \nabla \wedge \psi = 0 \quad (1.71)$$

By using the relations $\nabla^2 \nabla \phi = \nabla \nabla^2 \phi$ and $\nabla^2 \nabla \wedge \psi = \nabla \wedge \nabla^2 \psi$, Equation (1.71) can be rewritten

$$\nabla \left[(\lambda + 2\mu) \nabla^2 \phi - \rho \frac{\partial^2 \phi}{\partial t^2} \right] + \nabla \wedge \left[\mu \nabla^2 \psi - \rho \frac{\partial^2 \psi}{\partial t^2} \right] = 0 \quad (1.72)$$

From this, we obtain two equations containing, respectively, the scalar and the vector potential

$$\nabla^2 \phi = \frac{\rho}{\lambda + 2\mu} \frac{\partial^2 \phi}{\partial t^2} \quad (1.73)$$

$$\nabla^2 \psi = \frac{\rho}{\mu} \frac{\partial^2 \psi}{\partial t^2} \quad (1.74)$$

Equation (1.73) describes the propagation of irrotational waves travelling with a wave number vector k equal to

$$k = \omega (\rho / (\lambda + 2\mu))^{1/2} \quad (1.75)$$

The phase velocity c is always related to the wave number k by Equation (1.62). The quantity K_c defined as

$$K_c = \lambda + 2\mu \quad (1.76)$$
can be substituted in Equation (1.75), resulting in

\[k = \omega \left(\frac{\rho_c}{K_c} \right)^{1/2} \]

(1.77)

while the stress–strain relations (Equations (1.21)) can be rewritten as

\[\sigma_{ij} = (K_c - 2\mu)\theta \delta_{ij} + 2\mu e_{ij} \]

(1.78)

Equation (1.74) describes the propagation of equivoluminal (shear) waves propagating with a wave number equal to

\[k' = \omega \left(\frac{\rho}{\mu} \right)^{1/2} \]

(1.79)

As an example, a simple vector potential \(\psi \) can be used:

\[\psi_2 = \psi_3 = 0 \quad \psi_1 = B \exp\left[j\left(-k'x_3 + \omega t\right)\right] \]

(1.80)

In this case, \(u_2 \) is the only component of the displacement vector which is different from zero

\[u_2 = -jBk' \exp\left[j\left(-k'x_3 + \omega t\right)\right] \]

(1.81)

This field of deformation corresponds to propagation, parallel to the \(x_3 \) axis, of the antiplane shear.

References

