
P1: JYS
FM JWBK378-Fletcher May 23, 2009 6:10 Printer: Yet to come

Financial Modelling in Python

S. Fletcher & C. Gardner

A John Wiley and Sons, Ltd., Publication

iii

P1: JYS
FM JWBK378-Fletcher May 23, 2009 6:10 Printer: Yet to come

Financial Modelling in Python

i

P1: JYS
FM JWBK378-Fletcher May 23, 2009 6:10 Printer: Yet to come

For other titles in the Wiley Finance Series
please see www.wiley.com/finance

ii

P1: JYS
FM JWBK378-Fletcher May 23, 2009 6:10 Printer: Yet to come

Financial Modelling in Python

S. Fletcher & C. Gardner

A John Wiley and Sons, Ltd., Publication

iii

P1: JYS
FM JWBK378-Fletcher May 23, 2009 6:10 Printer: Yet to come

This edition first published 2009
C© 2009 John Wiley & Sons Ltd

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for
permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the
Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the
UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and
product names used in this book are trade names, service marks, trademarks or registered trademarks of their
respective owners. The publisher is not associated with any product or vendor mentioned in this book. This
publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It
is sold on the understanding that the publisher is not engaged in rendering professional services. If professional
advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data
Fletcher, Shayne.

Financial modeling in Python / Shayne Fletcher and Christopher Gardner.
p. cm. — (Wiley finance series)

Includes bibliographical references and index.
ISBN 978-0-470-98784-1 (cloth : alk. paper) 1. Finance—Mathematical models—Computer programs.

2. Python (Computer program language) I. Gardner, Christopher. II. Title.
HG106.F59 2009
332.0285′5133—dc22

2009019336

ISBN 978-0-470-98784-1

A catalogue record for this book is available from the British Library.

Typeset in 10/12pt Times by Aptara Inc., New Delhi, India
Printed in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire

iv

http://www.wiley.com

P1: JYS
FM JWBK378-Fletcher May 23, 2009 6:10 Printer: Yet to come

Contents

1 Welcome to Python 1
1.1 Why Python? 1

1.1.1 Python is a general-purpose high-level programming language 1
1.1.2 Python integrates well with data analysis, visualisation and

GUI toolkits 2
1.1.3 Python ‘plays well with others’ 2

1.2 Common misconceptions about Python 2
1.3 Roadmap for this book 3

2 The PPF Package 5
2.1 PPF topology 5
2.2 Unit testing 6

2.2.1 doctest 6
2.2.2 PyUnit 7

2.3 Building and installing PPF 7
2.3.1 Prerequisites and dependencies 7
2.3.2 Building the C++ extension modules 8
2.3.3 Installing the PPF package 9
2.3.4 Testing a PPF installation 9

3 Extending Python from C++ 11
3.1 Boost.Date Time types 11

3.1.1 Examples 12
3.2 Boost.MultiArray and special functions 17
3.3 NumPy arrays 19

3.3.1 Accessing array data in C++ 19
3.3.2 Examples 23

4 Basic Mathematical Tools 27
4.1 Random number generation 27
4.2 N (.) 28
4.3 Interpolation 29

4.3.1 Linear interpolation 31

v

P1: JYS
FM JWBK378-Fletcher May 23, 2009 6:10 Printer: Yet to come

vi Contents

4.3.2 Loglinear interpolation 32
4.3.3 Linear on zero interpolation 32
4.3.4 Cubic spline interpolation 33

4.4 Root finding 35
4.4.1 Bisection method 35
4.4.2 Newton–Raphson method 36

4.5 Linear algebra 38
4.5.1 Matrix multiplication 38
4.5.2 Matrix inversion 38
4.5.3 Matrix pseudo-inverse 39
4.5.4 Solving linear systems 39
4.5.5 Solving tridiagonal systems 39
4.5.6 Solving upper diagonal systems 40
4.5.7 Singular value decomposition 42

4.6 Generalised linear least squares 44
4.7 Quadratic and cubic roots 46
4.8 Integration 49

4.8.1 Piecewise constant polynomial fitting 49
4.8.2 Piecewise polynomial integration 51
4.8.3 Semi-analytic conditional expectations 57

5 Market: Curves and Surfaces 63
5.1 Curves 63
5.2 Surfaces 64
5.3 Environment 65

6 Data Model 69
6.1 Observables 69

6.1.1 LIBOR 70
6.1.2 Swap rate 74

6.2 Flows 79
6.3 Adjuvants 82
6.4 Legs 84
6.5 Exercises 85
6.6 Trades 87
6.7 Trade utilities 88

7 Timeline: Events and Controller 93
7.1 Events 93
7.2 Timeline 94
7.3 Controller 97

8 The Hull–White Model 99
8.1 A component-based design 99

8.1.1 Requestor 100
8.1.2 State 101
8.1.3 Filler 104

P1: JYS
FM JWBK378-Fletcher May 23, 2009 6:10 Printer: Yet to come

Contents vii

8.1.4 Rollback 108
8.1.5 Evolve 112
8.1.6 Exercise 115

8.2 The model and model factories 118
8.3 Concluding remarks 121

9 Pricing using Numerical Methods 123
9.1 A lattice pricing framework 123
9.2 A Monte-Carlo pricing framework 128

9.2.1 Pricing non-callable trades 129
9.2.2 Pricing callable trades 131

9.3 Concluding remarks 142

10 Pricing Financial Structures in Hull–White 145
10.1 Pricing a Bermudan 145
10.2 Pricing a TARN 152
10.3 Concluding remarks 157

11 Hybrid Python/C++ Pricing Systems 159
11.1 nth imm of year revisited 159
11.2 Exercising nth imm of year from C++ 161

12 Python Excel Integration 165
12.1 Black–scholes COM server 165

12.1.1 VBS client 167
12.1.2 VBA client 167

12.2 Numerical pricing with PPF in Excel 168
12.2.1 Common utilities 168
12.2.2 Market server 169
12.2.3 Trade server 176
12.2.4 Pricer server 187

Appendices 191

A Python 193
A.1 Python interpreter modes 193

A.1.1 Interactive mode 193
A.1.2 Batch mode 193

A.2 Basic Python 194
A.2.1 Simple expressions 194
A.2.2 Built-in data types 195
A.2.3 Control flow statements 197
A.2.4 Functions 200
A.2.5 Classes 201
A.2.6 Modules and packages 203

A.3 Conclusion 205

P1: JYS
FM JWBK378-Fletcher May 23, 2009 6:10 Printer: Yet to come

viii Contents

B Boost.Python 207
B.1 Hello world 207
B.2 Classes, constructors and methods 207
B.3 Inheritance 209
B.4 Python operators 212
B.5 Functions 212
B.6 Enums 214
B.7 Embedding 214
B.8 Conclusion 216

C Hull–White Model Mathematics 217

D Pickup Value Regression 219

Bibliography 221

Index 223

P1: JYS
c01 JWBK378-Fletcher April 24, 2009 8:7 Printer: Yet to come

1

Welcome to Python

In this introductory chapter, we welcome the reader to Python and make some arguments that
we hope will serve to motivate Python programming in finance.

1.1 WHY PYTHON?

We contend that the Python programming language is particularly suited to quantitative
analysts/programmers working in the field of financial engineering. This assertion centres
on two axes: the first, Python’s expressiveness and high-level nature; the second, Python’s
extensibility and interoperability with other programming languages. Other (arguably not so,)
minor arguments to be made for Python programming in general, are the benefits to be had
from the use of Python’s wealth of standard libraries (‘Python comes with batteries included’)
and Python’s support for functional programming idioms.

We certainly do not wish to assert that Python is ‘better’ in any way than other program-
ming languages (we rejoice in the diversity of programming languages!), but instead wish to
emphasise how Python can interoperate with and complement other languages to be found in
financial institutions.

1.1.1 Python is a General-Purpose High-Level Programming Language

Python’s high-level nature and its rich collection of built-in data types serve to allow the
analyst/programmer to focus more on the problems they are solving and less on low-level
mechanical constructs relating to such things as memory management in contrast to other
programming languages in common use in this domain. Taken together with the simplicity
and renowned expressiveness of the Python programming language syntax, this goes some way
to explaining the often reported large productivity pickups that result from choosing Python
over other languages. As another consequence of these features, programs in Python can be
expected to be much shorter and more concise than their representations in other programming
languages.

For quantitative analysts, and indeed computational scientists in general, very useful Python
packages exist to make the task of numerical analysis programs much easier (SciPy).1 In
addition, quantitative analysts ‘in the field’ well know that writing programs for finance will
often typically involve much more than numerical code alone, as many of these programs are
concerned with acquiring and organising data on which the numerical aspects of the program
are applied. We have often found that these tasks can be achieved in less lines of code and
with significantly less effort in Python than other programming languages.

1 SciPy is open-source (Python) software for mathematics, science and engineering. See http://www.scipy.org for
details for example.

1

P1: JYS
c01 JWBK378-Fletcher April 24, 2009 8:7 Printer: Yet to come

2 Financial Modelling in Python

1.1.2 Python Integrates Well with Data Analysis, Visualisation and GUI Toolkits

Another compelling argument for the use of Python by quantitative analysts is the ease with
which Python integrates with visualisation software such as GNUPlot2 making it possible
for the analyst to construct personalised ‘Matlab-like’3 enivronments. Furthermore, quantita-
tive analysts generally have neither the interest or time to invest in producing graphical user
interfaces (GUIs). They can be nonetheless important. Python provides Tk-based4 GUI tools
making it straightforward to wrap programs into GUIs. Readers interested in learning more
about how Python can be integrated with GUI building, data analysis and visualisation soft-
ware are particularly recommended to consult Hans Peter Langtangen’s Python Scripting for
Computational Science [14].

1.1.3 Python ‘Plays Well with Others’

A variety of techniques exist to extend Python from the C and C++ programming languages.
Conversely, a Python interpreter is easily embedded in C and C++ programs. In the world
of financial engineering, C/C++ prevails and large bodies of this code exist in most financial
institutions. The ability for new programs to be written in Python that can interoperate with
these code investments is a huge victory for the analyst and the institutions considering its use.

1.2 COMMON MISCONCEPTIONS ABOUT PYTHON

There are a number of ill-informed arguments oft encountered that, when made, impede the
propogation or acceptance of Python programming in finance. The most common include ‘it is
not fast enough’, ‘it does not engender a clear structure to your code’ and (the most incorrect
proposition) ‘it has no type checking’. In fact, for most applications Python is ‘fast enough’
and those parts of the application that are computationally intensive can be implemented in
fast ‘traditional’ programming languages like C or C++, bringing the best of both worlds.
As for the argument that Python does not engender a clear structure to code, this is hard
to understand. Python supports encapsulation at the function, class and namespace levels as
well as any of the modern object-oriented or multiparadigm programming languages. Now,
what about Python having no type checking? This is simply wrong. Python is dynamically
typed, that is to say, type checking is performed at run-time but type checking does happen!
Furthermore, the absence of explicit type declarations in the code is one of the keys to why
a Python program can be so much more succinct and faster to produce than languages with
static type checking. Staying with the topic of Python’s type system, it is interesting to note
that Python’s dynamic type system implicitly supports generic programming. Consider an
example taken from the ppf.math5 module

def solve tridiagonal system(N, a, b, c, r):
...
return result

2 GNUPlot is a cross platform function plotting utility. See http://www.gnuplot.info for details.
3 Matlab is a numerical computing environment and programming language popular in both industry and academia.

See http://www.mathworks.com/ for details.
4 Tk is an open-source, cross-platform graphical user interface toolkit. See http://www.tcl.tk for details.
5 Look ahead to the section ‘Roadmap for this book’ for an explanation of PPF.

P1: JYS
c01 JWBK378-Fletcher April 24, 2009 8:7 Printer: Yet to come

Welcome to Python 3

Here N is the dimension of an N × N linear system, a, b, c are the subdiagonal, diagonal,
and superdiagonal of the system respectively, and r the right hand side. The point to be made
is that the function will work with any types that are consistent with being Indexable (i.e.
satisfy an Indexable concept in the C++0x6 sense of the word). This admits the use of the
function with Python lists, NumPy7 arrays or some other user-defined array type . . . generic
programming!

1.3 ROADMAP FOR THIS BOOK

Chapter-by-chapter this book gradually presents a practical body of working code referred to
as PPF or the ppf package, that implements a minimal but extensible Python-based financial
engineering system.

Chapter 2 looks at the overall topology of the ppf package, its dependencies and how to
build, install and test it (newcomers to Python may be served by looking ahead to Appendix
A where a quick tutorial on Python basics is offered).

Chapter 3 considers the topic of implementing Python extension modules in C++ with an
emphasis on fostering interoperability with existing C++ financial engineering systems and, in
particular, how certain functionality present in ppf in fact is underlied by C++ in this fashion.

Chapter 4 lays the groundwork for later chapters (concerned with pricing using techniques
from numerical analysis) in that it presents those mathematical algorithms and tools that arise
over and over again in computational quantitative analysis, including:

(1) (pseudo) random number generation;
(2) estimation of the standard normal cumulative distribution function;
(3) a variety of interpolation schemes;
(4) root-finding algorithms;
(5) various operations for linear algebra;
(6) generalised linear least-squares data fitting;
(7) stable calculation techniques for computing quadratic and cubic roots; and
(8) calculation of the expectation of a function of a random variable.

Chapter 5 looks at how the ppf represents common market information such as discount-
factor functions and volatility surfaces.

Chapter 6 is entirely concerned with looking at the data structures used in the ppf for
representing financial structures: ‘flows’, ‘legs’, ‘exercise opportunities’, ‘trades’ and the like.

Chapter 7 details the concepts and classes that govern the interactions between the trade
representations and pricing models in the ppf package.

Chapter 8 offers an implementation of a fully functional Hull–White model in Python,
where the characteristic features of the model are assembled from (in as much as is possible)
functionally orthogonal components.

Chapter 9 present two general numerical pricing frameworks invariant over pricing models:
one lattice based, the other Monte-Carlo based.

6 The next version of the C++ standard, expected to be completed in 2009.
7 The fundamental package for scientific computing with Python. SciPy (as indeed PPF) depends on NumPy. See

http://numpy.scipy.org for details.

P1: JYS
c01 JWBK378-Fletcher April 24, 2009 8:7 Printer: Yet to come

4 Financial Modelling in Python

Chapter 10 applies the pricing frameworks and the Hull–White model developed in the
preceding chapters to pricing financial structures, specifically, Bermudan swaptions and target
redemption notes.

Chapter 11, while keeping things tractable, introduces the idea of and practical techniques
for C++/Python ‘Hybrid Systems’ against the backdrop of existing derivative security pricing
and risk management systems in C++.

Chapter 12 gives concrete examples of implementing COM servers in Python and utilising
the functionality so exposed in the context of Microsoft Excel.

In the appendices section, Appendix A offers newcomers to Python a brief tutorial. Appendix
B provides a primer for the use of the C++ Boost.Python library for fostering interoperability
between C++ and Python. Appendix C covers the mathematics of the Hull–White model and
Appendix D the mathematics of a simple regression scheme for determining the early exercise
premium of a callable structure when pricing using Monte-Carlo techniques.

P1: JYS
c02 JWBK378-Fletcher May 1, 2009 19:51 Printer: Yet to come

2

The PPF Package

The source code accompanying this book implements a minimal library, ppf, for exploring
financial modelling in Python. The sections ahead outline the structure and ideas of the
package.

The following is a first example of a financial program expressed in Python – the ‘Hello
World’ of Quantitative Analysis programs, that is, the Black–Scholes formula for a European
option on a single asset:

from math import log, sqrt, exp
from ppf.math import N

def black scholes(S, K, r, sig, T, CP, *arguments, **keywords):
"""The classic Black and Scholes formula.

>>> print black scholes(S=42., K=40., r=0.1, sig= 0.2, T=0.5,
CP=CALL) 4.75942193531

>>> print black scholes(S=42., K=40., r=0.1, sig= 0.2, T=0.5,
CP=PUT) 0.808598915338

"""
d1 = (log(S/K) + (r + 0.5*(sig*sig))*T)/(sig*sqrt(T))
d2 = d1 - sig*sqrt(T)

return CP*S*N(CP*d1) - CP*K*exp(-r*T)*N(CP*d2)

CALL, PUT = (1, -1)

def test():
import doctest
doctest.testmod()

if name == ’ main ’: test()

2.1 PPF TOPOLOGY

The ppf library is a Python package containing a family of sub-packages. The
black scholes function listed above is housed in the ppf.core subpackage. The topol-
ogy of ppf is as follows:

ppf/
com/
core/
date time/

5

P1: JYS
c02 JWBK378-Fletcher May 1, 2009 19:51 Printer: Yet to come

6 Financial Modelling in Python

market/
math/
model/
hull white/

lattice/
monte carlo/

pricer/
payoffs/

test/
utility/

Here is a brief summary of the nature and main roles of each of the ppf sub-packages:

com COM servers wrapping ppf market, trade and pricing functionality (see
Chapter 12).

core Types and functions relating to the representation of financial quantities such
as flows and LIBOR rates.

date time Date and time manipulation and computations.
market Types and functions for the representation of common curves and surfaces

that arise in financial programming such as discount factor curves and
volatility surfaces.

math General mathematical algorithms.
model Code specific to implementing numerical pricing models.
pricer Types and functions for the purpose of valuing financial structures.
text The ppf unit test suite.
utility Utilities of a less numerical, general nature such as algorithms for searching

and sorting.

2.2 UNIT TESTING

Code in the ppf library employs two approaches to testing: interactive Python session testing
using the doctest module and formalised unit testing using the PyUnit module. Both of
these testing frameworks are part of the Python standard libraries.

2.2.1 doctest

The way that the doctest module works is to search a module for pieces of text that
look like interactive Python sessions, and then to execute those sessions to verify that they
work as expected. In this way ppf modules come with a form of tutorial-like executable
documentation:

C:\Python25\lib\site-packages\ppf\core>python black scholes.py -v
python black scholes.py -v
Trying:

print black scholes(S=42., K=40., r=0.1, sig= 0.2, T=0.5, CP=CALL)
Expecting:

4.75942193531
ok

P1: JYS
c02 JWBK378-Fletcher May 1, 2009 19:51 Printer: Yet to come

The PPF Package 7

Trying:
print black scholes(S=42., K=40., r=0.1, sig= 0.2, T=0.5, CP=PUT)

Expecting:
0.808598915338

ok
2 items had no tests:

main
main . test

1 items passed all tests:
2 tests in main .black scholes

2 tests in 3 items.
2 passed and 0 failed.
Test passed.

2.2.2 PyUnit

A full suite of unit tests for all modules in the ppf package is provided in the ppf.test
sub-package. The tests can be run module-by-module or, to execute all tests in one go, a driver
‘test all.py’ is provided:

C:\Python25\Lib\site-packages\ppf\test>python test all.py --verbose
python test all.py --verbose
test call (test core.black scholes tests) ... ok
test put (test core.black scholes tests) ... ok
test (test core.libor rate tests) ... ok

.

.

.
test upper bound (test utility.bound tests) ... ok
test equal range (test utility.bound tests) ... ok
test bound (test utility.bound tests) ... ok
test bound ci (test utility.bound tests) ... ok

--
Ran 51 tests in 25.375s

OK

2.3 BUILDING AND INSTALLING PPF

In this section we look at what it takes to build and install the ppf package.

2.3.1 Prerequisites and Dependencies

ppf is composed of a mixture of pure Python modules underlied by some supporting extension
modules implemented in standard C++. Accordingly, to build and installppf requires a modern
C++ compiler. The C++ extension modules have some library dependencies of their own,
notably the Boost C++ libraries and the Blitz++ C++ library. Instructions for downloading

P1: JYS
c02 JWBK378-Fletcher May 1, 2009 19:51 Printer: Yet to come

8 Financial Modelling in Python

and installing the Boost C++ libraries can be found at http://www.boost.org and
instructions for Blitz++ can be found at http://www.oonumerics.org. Naturally, an
installation of Python is also required. On Windows, the authors favour the freely available
ActiveState Python distribution, see http://www.activestate.com for download and
installation details. Also required on the Python side for ppf is an installation of the NumPy
package, see http://www.scipy.org for download and installation details.

2.3.2 Building the C++ Extension Modules

The ppf C++ extension modules are most conveniently built using the Boost.Build system1 a
copy of which is included with the ppf sources. Also provided with the ppf sources for the
convenience of Windows users is a pre-built executable ‘bjam.exe’. Although these notes will
become a little Windows-centric at this point, the basic principles will hold for *NIX users also.
On Windows, theppf package has been successfully built and tested with the Microsoft Visual
Studio C++ compiler versions 7.1, 8.0 (express edition), 9.0 (express edition), mingw/gcc-
3.4.5,2 mingw/gcc-4.3.0 with Python versions 2.4 and 2.5, Boost versions 1.33.1, 1.34.0,
1.35, 1.36, 1.37 and Blitz++ version 0.9. The ppf package has also been built and tested on
the popular Linux-based operating system, Ubuntu-8.04.1 with Boost version 1.36.0, Blitz++
version 0.9 and gcc-4.2.3.

In the remainder of this section, without loss of generality, we will assume a Windows
operating system, Blitz++ version 0.9, the ActiveState distribution of Python version 2.5 and
Boost version 1.36.

Build Instructions

• Prerequisites

- Copy c:/path/to/ppf/ext/bjam.exe to somewhere in your %PATH%
- Install

o Blitz++-0.9
o Boost-1.36
o ActiveState Python 2.5
o NumPy for Python 2.5 (version 1.0.4 or 1.1.0)

- Edit as appropriate for your site
o c:/path/to/ppf/ext/build/user-config.jam
o c:/path/to/ppf/ext/build/site-config.jam

• Build

- c:/path/to/ppf>cd ext&&bjam [debug|release]
This will create:
o c:/path/to/ppf/ppf/math/ppf math.pyd and
o c:/path/to/ppf/ppf/date time/ppf date time.pyd

1 See http://www.boost.org/doc/tools/build/index.html.
2 Minimalist GNU for Windows – see http://www.mingw.org.

P1: JYS
c02 JWBK378-Fletcher May 1, 2009 19:51 Printer: Yet to come

The PPF Package 9

2.3.3 Installing the PPF Package

Assuming the steps of the previous section have been performed, installation of the ppf
package which relies on the standard Python Distutils package is very simple.

• Install

- c:/path/to/ppf>python setup.py install

which will copy the ppf package to the standard Python installation location
(c:/python25/lib/site-packages/ppf).

2.3.4 Testing a PPF Installation

The easiest way to verify a ppf installation is to run the ppf unit test suite.

• Test

- c:/python25/lib/site-packages/ppf/test>python test all.py --
verbose

P1: JYS
c02 JWBK378-Fletcher May 1, 2009 19:51 Printer: Yet to come

10

P1: JYS
c03 JWBK378-Fletcher May 1, 2009 19:52 Printer: Yet to come

3

Extending Python from C++

It is usual in financial institutions that make use of quantitative analysis programs to have a
considerable investment in C++. Thus it can be important to foster interoperability between
C++ and Python. This chapter studies how Python modules can be implemented in C++ by
means of the Boost.Python1 library (see also Appendix B for a primer on the Boost.Python
library).

3.1 BOOST.DATE TIME TYPES

It is common in quantitative analysis programming to require manipulation of and computa-
tions involving dates. The ‘Python Library’ contains excellent functionality for such activities.
Pricing systems written in C++, however, will be implemented using C++ datatypes for the
representation of dates and times. For pricing frameworks implemented in a hybrid of Python
and C++, it would be convenient to settle on a common representation of these fundamental
types. Accordingly, in this section we demonstrate the ‘reflection’ of functionality from the
C++ Boost.Date Time library to Python.

Our reflection of the C++ date types into Python will be housed in the Python module
‘ppf date time.pyd’, implemented in C++. We declare this intention in the entry point to our
Python module in the file ‘module.cpp’:

#include <boost/python/module.hpp>

namespace ppf
{

namespace date time
{
void register date();
void register date more();

} // namespace date time

} // namespace ppf

BOOST PYTHON MODULE(ppf date time)
{

using namespace ppf::date time;

register date();
register date more();

}

1 Boost provides free peer-reviewed portable C++ source libraries. See http://www.boost.org for details.

11

P1: JYS
c03 JWBK378-Fletcher May 1, 2009 19:52 Printer: Yet to come

12 Financial Modelling in Python

In ‘register date.cpp’ we instantiate Boost.Python class objects describing the C++ types
and functions we intend to use from Python:

void register date()
{
using namespace boost::python;
namespace bg = boost::gregorian;
namespace bd = boost::date time;

// types and functions ...

class <bg::date>(
"date"
,"A date type based on the gregorian calendar"
, init<>("Default construct not a date time"))

.def(init<bg::date const&>())

.def(init
<

bg::greg year
, bg::greg month
, bg::greg day
>((arg("y"), arg("m"), arg("d"))

, "Main constructor with year, month, day "))
.def("year", &bg::date::year)
.def("month", &bg::date::month)
.def("day", &bg::date::day)

// ...

;

class <std::vector<bg::date> >(
"date vec"

, "vector (C++ std::vector<date>) of date")
.def(vector indexing suite<std::vector<bg::date> >())
;

// more types and functions ...
}

Once exposed in this fashion, the types so defined in the ppf date time module are
imported into the ppf subpackage ppf.date time by means of import statements in the
module’s ‘ init .py’:

from ppf date time import *

3.1.1 Examples

IMM Dates

As an example of what we have achieved, let’s see how, in Python, we can compute so-called
IMM (international money market) dates for a given year, i.e. the 3rd Wednesday of March,
June, September, and December in the year. The ppf.date time package provides the

P1: JYS
c03 JWBK378-Fletcher May 1, 2009 19:52 Printer: Yet to come

Extending Python from C++ 13

module nth imm of year in which is defined class nth imm of year. The work-
horse of the class implementation is the Boost.Date Time function nth kday of month:

from ppf date time import \
weekdays \

, months of year \
, nth kday of month \
, year based generator

class nth imm of year(year based generator):
’’’Calculate the nth IMM date for a given year

’’’
first = months of year.Mar
second = months of year.Jun
third = months of year.Sep
fourth = months of year.Dec

def init (self, which):
year based generator. init (self)
self. month = which

def get date(self, year):
return nth kday of month(

nth kday of month.third
, weekdays.Wednesday
, self. month).get date(year)

def to string(self):
pass

Exercising the class nth imm of year functionality in an interactive Python session
goes like this:

>>> from ppf.date time import *
>>> imm = nth imm of year
>>> imm dates = []
>>> imm dates.append(imm(imm.first).get date(2005))
>>> imm dates.append(imm(imm.second).get date(2005))
>>> imm dates.append(imm(imm.third).get date(2005))
>>> imm dates.append(imm(imm.fourth).get date(2005))
>>> for t in imm dates:
... print t
2005-Mar-16
2005-Jun-15
2005-Sep-21
2005-Dec-21

With class nth imm of year some useful questions regarding IMM dates can now
be answered elegantly and easily. For example, what is the IMM date immediately preceding
a given date? This is answered in the ppf.date time.first imm before module:

from ppf date time import \
weekdays \

P1: JYS
c03 JWBK378-Fletcher May 1, 2009 19:52 Printer: Yet to come

14 Financial Modelling in Python

, months of year \
, nth kday of month \
, year based generator

from nth imm of year import *

def first imm before(start):
’’’Find the IMM date immediately preceding the given date.
’’’
imm = nth imm of year
first imm of year = imm(imm.first).get date(start.year())
imm date = None
if start <= first imm of year:

imm date = imm(imm.fourth).get date(start.year() - 1)
else:

for imm no in reversed([imm.first, imm.second, imm.third,
imm.fourth]):

imm date = imm(imm no).get date(start.year())
if imm date < start:

break

return imm date

In an interactive Python session:

>>> from ppf.date time import *
>>> print first imm before(date(2007, Jun, 27))
2007-Jun-20

The ppf.date time package also contains the symmetric first imm after function.

Holidays, Rolls and Year Fractions

Other common activities in financial modelling include determining if a date is a business
day, ‘rolling’ a date to a business day and the computation of elapsed time between two dates
according to common market conventions.

The ppf.date time.shift convention module shows an easy way to emulate
C++ enum types:

class shift convention:
none \

, following \
, modified following \
, preceding \
, modified preceding = range(5)

This idiom is employed again in the ppf.date time.day count basis module:

class day count basis:
basis 30360 \

, basis act 360 \
, basis act 365 \
, basis act act = range(4)

P1: JYS
c03 JWBK378-Fletcher May 1, 2009 19:52 Printer: Yet to come

Extending Python from C++ 15

The ppf.date time.is business daymodule provides the means to answer the ques-
tion of whether or not a given date is a business day:

from ppf date time import weekdays

def is business day(t, financial centres=None):
’’’ Test whether the given date is a business day.

In this version, only weekends are considered
holidays.

’’’
Saturday, Sunday = weekdays.Saturday, weekdays.Sunday
return t.day of week().as number() != Saturday \

and t.day of week().as number() != Sunday

The ppf.date time.shift module provides functionality to ‘shift’ a date according to
the common market shift conventions:

from ppf date time import *
from is business day import *
from shift convention import *

def shift(t, method, holiday centres=None):
d = date(t)
if not is business day(d):
if method == shift convention.following:

while not is business day(d, holiday centres):
d = d + days(1)

elif method == shift convention.modified following:
while not is business day(d, holiday centres):
d = d + days(1)

if d.month().as number() != t.month().as number():
d = date(t)
while not is business day(d, holiday centres):
d = d - days(1)

elif method == shift convention.preceding:
while not is business day(d, holiday centres):
d = d - days(1)

elif method == shift convention.modified preceding:
while not is business day(d, holiday centres):
d = d - days(1)

if d.month().as number() != t.month().as number():
while not is business day(d, holiday centres):

d = d + days(1)
else: raise RuntimeError, "Unsupported method"

return d

The ppf.date time.year fraction module provides functionality to compute year
fractions:

from ppf date time \
import date, gregorian calendar base

from day count basis import *

