Clinical Dilemmas in

Inflammatory Bowel Disease
Clinical Dilemmas in Inflammatory Bowel Disease

EDITED BY

Peter Irving
Centre for Gastroenterology
Institute of Cell and Molecular Science
Barts & the London, Queen Mary School of Medicine and Dentistry
London
UK

David Rampton
Centre for Gastroenterology
Institute of Cell and Molecular Science
Barts & the London, Queen Mary School of Medicine and Dentistry
London
UK

Fergus Shanahan
Department of Medicine
National University of Ireland Cork
Clinical Sciences Building
Cork University Hospital
Cork
Eire
Contents

List of Contributors, viii
Preface, xiii

Part 1 Investigating IBD in the 21st Century

1 Capsule endoscopy: do we need it? 1
 Joel E D Mawdsley & Mark Appleyard

2 Pathology reports – pitfalls for the unwary, 5
 Wilfred Weinstein

3 Non-invasive diagnosis and assessment, 8
 Alex J Di Mambro, Ana Terlevich & Chris Probert

4 What is the best way to image perianal Crohn’s disease? 11
 Vikram A Sahni & Alison McLean

5 Surveillance colonoscopy in UC: alternatives and ways to improve outcome, 15
 Mark Lust & William Connell

6 Abnormal liver tests – what should we do about them? 18
 Richard Marley & Abid Suddle

Part 2 Medical Treatment: Making the Most of What We’ve Got

5-ASA drugs

7 Is monitoring necessary? 21
 Rakesh Shah & Alastair Forbes

8 Do they have a role in Crohn’s disease? 25
 Vikrant Sibartie & Brian Feagan

Steroids

9 Steroids in Crohn’s: are they obsolete? 28
 David Rampton

Antibiotics for Crohn’s disease

10 Antibiotics: which, when and for how long? 32
 Alex Kent & Jean-Frédéric Colombel

11 Mycobacterium avium paratuberculosis in Crohn’s disease: player or spectator? 36
 Geoff Smith & Fergus Shanahan

Immunomodulators

12 TPMT testing: is it essential? 40
 Azhar Ansari & Jeremy D Sanderson

13 6-Mercaptopurine or azathioprine? 45
 Dermot McGovern & Simon Travis

14 Thiopurines: how long should we use them for? 48
 Alexandra Daley & Marc Lémann

15 Making the most of methotrexate, 51
 Emma Greig, John Keohane & Brian Feagan

16 Cyclosporine: balancing risk and benefit, 55
 Helena Deeney & Barney Hawthorne

Infliximab

17 Contraindications – absolute or relative? 59
 Rakesh Chaudhary & Subrata Ghosh

18 How can we prevent tuberculosis? 63
 Sasha Beresford & David Rampton

19 Dealing with infusion reactions, 67
 Gert Van Assche, Séverine Vermeire & Paul Rutgeerts

20 Use in ulcerative colitis, 70
 Sreedhar Subramanian & Jonathan Rhodes

21 Infliximab and surgery: health or hazard? 74
 David Rampton

Nutritional therapy for Crohn’s disease

22 Nutritional therapy for Crohn’s disease: is it for adults? 77
 Donald R Duerksen & Charles N Bernstein

Part 3 Medical Treatment: What’s Round the Corner?

23 Trials and tribulations – interpreting clinical trials in IBD, 81
 Elizabeth Carty & David Rampton

24 Genetics – clinical and therapeutic applications, 85
 Mark Tremelling & Miles Parkes
Part 7 The IBD Service: Time for a Rethink?

61 Diverticular colitis, 226
 Linmarie Ludeman & Neil A Shepherd

62 Outpatient services – do doctors still have a role? 229
 Mark Kelly & Andrew Robinson

63 Shared care: tactical team selection, 233
 Reshma C Rakshit & John Mayberry

64 Databases – are they worth the bother? 237
 Stephen L Grainger

Index, 241
List of Contributors

Elspeth Alstead
Consultant Gastroenterologist
Whipps Cross University Hospital
Leytonstone
London
UK

Azhar Ansari
Locum Consultant Gastroenterologist
Guy’s & St Thomas’ NHS Foundation Trust
London
UK

Mark Appleyard
Director of Endoscopic Services
Royal Brisbane and Women’s Hospital
Department of Gastrointestinal Services
Brisbane
Australia

Anne Ballinger
Consultant Gastroenterologist
Homerton University Hospital NHS Foundation Trust
London
UK

Sasha Beresford
IBD Specialist Pharmacist & Principal Pharmacist, High-Risk Medicines Monitoring
Barts and The London NHS Trust
Royal London Hospital
Whitechapel
London
UK

Charles N Bernstein
Professor of Medicine
University of Manitoba Inflammatory Bowel Disease Clinical and Research Center
Winnipeg, Manitoba
Canada

Henry J Binder
Professor of Medicine
Yale University School of Medicine
New Haven, CT
USA

Ingvar Bjarnason
Professor of Digestive Diseases
Guy’s, King’s, St Thomas’ Medical School
London
UK

Stuart Bloom
Clinical Director
Middlesex Hospital
London
UK

Brian Bressler
Gastroenterologist Fellow
Mount Sinai Hospital/University Health Network
University of Toronto
Toronto, Ontario
Canada

Elizabeth Carty
Consultant Gastroenterologist
Department of Gastroenterology
Whipps Cross University Hospital
Leytonstone
London
UK

Roger Chapman
Department of Gastroenterology
John Radcliffe Hospital
Oxford
UK

Rakesh Chaudhary
Clinical Research Fellow
Department of Gastroenterology
Hammersmith Hospital
Imperial College
London
UK

Paul Collins
Clinical Lecturer
Department of Medicine
University of Liverpool
Liverpool
UK

Jean-Frédéric Colombel
Professor of Hepatogastroenterology
Service d’Hépato-Gastroentérologie
Hôpital Huriez
France

Juliet Compston
Professor of Bone Metabolism
University of Cambridge
Department of Medicine
Addenbrooke’s Hospital
Cambridge
UK

William Connell
Director IBD Clinic
St Vincent’s Hospital
Victoria
Australia

Nick Croft
Consultant Paediatric Gastroenterologist
Institute of Cell and Molecular Science
Barts & the London, Queen Mary School of Medicine and Dentistry
London
UK
Garret Cullen
Gastroenterology Specialist Registrar
Department of Gastroenterology
St. Vincent’s University Hospital
Dublin 4
Ireland

Sue Cullen
Consultant Gastroenterologist
Wycombe General Hospital
High Wycombe
UK

Ana Paula Cunha
Department of Dermatovenerology
Hospital S.João
Porto
Portugal

Alexandra Daley
Specialist Registrar in Gastroenterology
King’s College Hospital
London
UK

Helena Deeney
Specialist Registrar in Gastroenterology
Oldchurch Hospital
Romford
Essex
UK

Alex J Di Mambro
Clinical Science at South Bristol
Bristol Royal Infirmary
Bristol
UK

Raymond D’Souza
Gastroenterology Registrar
Royal London Hospital
Whitechapel
London
UK

Donald R Duerksen
Associate Professor of Medicine
University of Manitoba
St. Boniface Hospital
Winnipeg, Manitoba
Canada

Jayne Eaden
Consultant Gastroenterologist
Walsgrave Hospital
Coventry
UK

Michael Escudier
Consultant in Oral Medicine
Guy’s, Kings & St Thomas’ Hospital
London
UK

Brian Feagan
Professor of Medicine
University of Western Ontario
Ontario, Canada

Alastair Forbes
Professor of Gastroenterology and Clinical Nutrition
University College London
London
UK

Paul Fortun
Clinical Lecturer in Gastroenterology
The Wolfson Digestive Diseases Centre
University Hospital
Nottingham
UK

Graham R Foster
Professor of Hepatology
Hepatobiliary Group
Institute of Cell and Molecular Science
Barts & the London, Queen Mary School of Medicine and Dentistry
London
UK

Christoph Gasche
Associate Professor of Medicine
Department of Medicine
Medical University and General Hospital Vienna
Department of Medicine
Vienna
Austria

Subrata Ghosh
Professor of Gastroenterology
Imperial College London
Hammersmith Hospital
London
UK

Peter Gibson
Professor of Gastroenterology
Department of Medicine
Monash University
Box Hill Hospital
Victoria
Australia

Stephen L Grainger
Consultant Physician and Gastroenterologist
King George’s Hospital
Barking
Essex
UK

Emma Greig
Consultant Gastroenterologist
Taunton and Somerset NHS Trust
Taunton
UK

David Grunkemeier
Division of Gastroenterology and Hepatology
Multidisciplinary IBD Center
University of North Carolina
USA

Laura Hancock
Research Fellow
Department of Colorectal Surgery
John Radcliffe Hospital
Oxford
UK

Ailsa Hart
Gastroenterology Specialist Registrar
University College Hospital
London
UK

Christopher Hawkey
Professor of Gastroenterology
The Wolfson Digestive Diseases Centre
University Hospital
Nottingham
UK

Barney Hawthorne
Consultant Gastroenterologist
University Hospital of Wales
Cardiff
UK

Daan Hommes
Department of Gastroenterology and Hepatology
Academic Medical Center
Amsterdam
Holland
Peter Irving
Centre for Gastroenterology
Institute of Cell and Molecular Science
Barts & the London, Queen Mary School of Medicine and Dentistry
London
UK

Mark Kelly
Specialist Registrar in Gastroenterology
Hope Hospital
Salford
UK

Alex Kent
Specialist Registrar in Gastroenterology
St. Mary’s Hospital
London
UK

John Keohane
Department of Medicine and Alimentary Pharmabiotic Centre
University College Cork
National University of Ireland
Ireland

Jutta Köglmieier
Specialist Registrar in Paediatric Gastroenterology
Royal London Hospital
Whitechapel
London
UK

Stefanie Kulnigg
Division of Gastroenterology and Hepatology
Medical University
Vienna
Austria

Louise Langmead
Consultant Gastroenterologist
Department of Gastroenterology
University College London Hospitals
London
UK

Marc Lémann
Professor of Medicine
Department of Gastroenterology
Hôpital Saint-Louis
Paris
France

James Lindsay
Consultant Gastroenterologist
Barts and The London NHS Trust
Royal London Hospital
Whitechapel
London
UK

Linmarie Ludeman
Consultant Histopathologist
Gloucester Royal Hospital
Gloucester
UK

Mark Lust
Gastroenterology Fellow
St. Vincent’s Hospital
Victoria
Australia

Yashwant Mahida
Professor in Medicine
Institute of Infection Immunity & Inflammation
University of Nottingham
Nottingham
UK

Richard Makins
Consultant Gastroenterologist
Department of Gastroenterology
Whipps Cross University Hospital
London
UK

Richard Marley
Consultant Hepatologist
Barts and The London NHS Trust
Royal London Hospital
Whitechapel
London
UK

Joel E D Mawdsley
Clinical Research Fellow
Centre for Gastroenterology
Institute of Cell and Molecular Science
Barts & the London, Queen Mary School of Medicine and Dentistry
London
UK

John Mayberry
Consultant Physician
University Hospitals of Leicester NHS Trust
Leicester
UK

Dermot McGovern
Research Fellow
Wellcome Trust Centre for Human Genetics
University of Oxford
Oxford
UK

Alison McLean
Consultant Radiologist
Barts and The London NHS Trust
Royal London Hospital
Whitechapel
London
UK

Neil Mortensen
Professor of Colorectal Surgery
Department of Colorectal Surgery
John Radcliffe Hospital
Oxford
UK

Debbie Nathan
Inflammatory Bowel Disease Fellow
Box Hill Hospital
Victoria
Australia

Jeremy Nightingale
Consultant Gastroenterologist
Digestive Disease Centre
Leicester Royal Infirmary
Leicester
UK

Alick N S Nkhoma
Beit Clinical Research Fellow
Hepatobiliary Group
Centre for Gastroenterology
Institute of Cell and Molecular Science
Barts & the London, Queen Mary School of Medicine and Dentistry
London
UK

Carlo Nunes
Clinical Research Fellow
Gastroenterology
Guy’s & St Thomas’ NHS Foundation Trust
London
UK

Diarmuid O’Donoghue
Consultant Gastroenterologist
Centre for Colorectal Disease
St. Vincent’s University Hospital
Dublin 4
Ireland
Tim Orchard
Consultant Gastroenterologist
Imperial College London
St Mary's Hospital
London
UK

Miles Parkes
Consultant Gastroenterologist
Department of Gastroenterology
Addenbrooke’s Hospital
Cambridge
UK

Chris Probert
Consultant and Reader in Gastroenterology
Clinical Science at South Bristol
Bristol Royal Infirmary
Bristol
UK

Eamonn Quigley
Professor of Medicine and Human Physiology
Head of the Medical School
National University of Ireland
Cork
Ireland

Graham Radford-Smith
Consultant Gastroenterologist
Department of Gastroenterology and Hepatology
Royal Brisbane and Women’s Hospital
Brisbane
Australia

Reshama C Rakshit
Department of Gastroenterology
Leicester General Hospital
Leicester
UK

David Rampton
Professor of Clinical Gastroenterology
Centre for Gastroenterology
Institute of Cell and Molecular Science
Barts & the London, Queen Mary School of Medicine and Dentistry
London
UK

Andrew Robinson
Consultant Gastroenterologist
Hope Hospital
Salford
UK

Paul Rutgeerts
Head of the IBD Research Unit
Division of Gastroenterology
University Hospital Gasthuisberg
Division of Gastroenterology
Leuven
Belgium

Matt Rutter
Consultant Gastroenterologist
University Hospital of North Tees
Teesside
UK

Vikram A Sahni
Radiology Specialist Registrar
Barts and The London NHS Trust
Royal London Hospital
Whitechapel
London
UK

Sunil Samuel
Institute of Infection, Immunity & Inflammation
University of Nottingham and University Hospital
Nottingham
UK

Jeremy D Sanderson
Consultant Gastroenterologist
Guy’s & St Thomas’ NHS Foundation Trust
London
UK

R Balfour Sartor
Distinguished Professor of Medicine, Microbiology & Immunology
Department of Medicine, Division of Gastroenterology & Hepatology
University of North Carolina
Chapel Hill
USA

David Scott
Departments of Medicine and Rheumatology
Guy’s, King’s, St Thomas’ Medical School
London
UK

Vikrant Sibartie
Specialist Registrar in Gastroenterology
Alimentary Pharmabiotic Centre
Department of Medicine
Cork University Hospital
Cork
Ire

Rakesh Shah
Specialist Registrar in Gastroenterology
St Mark’s Hospital and Academic Institute
Harrow
UK

Fergus Shanahan
Professor of Medicine and Director
Alimentary Pharmabiotic Centre
University College Cork
National University of Ireland
Cork
Ire

Neil A Shepherd
Consultant Histopathologist
Gloucestershire Royal Hospital
Gloucester
UK

Geoff Smith
Consultant Gastroenterologist
Department of Gastroenterology
Charing Cross Hospital
London
UK

A Hillary Steinhart
Head, Combined Division of Gastroenterology
Mount Sinai Hospital/University Health Network
University of Toronto
Toronto, Ontario
Canada

Sreedhar Subramanian
Clinical Research Fellow
School of Clinical Sciences
University of Liverpool
Liverpool
UK

Abid Suddle
Specialist Registrar in Hepatology
Department of Gastroenterology
Barts and The London NHS Trust
London
UK
<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Institution</th>
<th>City</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fernando Tavarela Veloso</td>
<td>Professor of Medicine, Head of Department of Gastroenterology</td>
<td>Hospital S. João</td>
<td>Porto</td>
<td>Portugal</td>
</tr>
<tr>
<td>Ana Terlevich</td>
<td>Clinical Science at South Bristol</td>
<td>Bristol Royal Infirmary</td>
<td>Bristol</td>
<td>UK</td>
</tr>
<tr>
<td>Thea Thomas</td>
<td>Specialist Registrar in Gastroenterology</td>
<td>Whipps Cross University Hospital</td>
<td>Leytonstone</td>
<td>London</td>
</tr>
<tr>
<td>Simon Travis</td>
<td>Consultant Gastroenterologist</td>
<td>John Radcliffe Hospital</td>
<td>Oxford</td>
<td>UK</td>
</tr>
<tr>
<td>Mark Tremelling</td>
<td>Gastroenterology Specialist Registrar</td>
<td>Addenbrooke's Hospital</td>
<td>Cambridge</td>
<td>UK</td>
</tr>
<tr>
<td>Gert Van Assche</td>
<td>Division of Gastroenterology</td>
<td>University of Leuven Hospitals</td>
<td>Leuven</td>
<td>Belgium</td>
</tr>
<tr>
<td>Séverine Vermeire</td>
<td>Division of Gastroenterology</td>
<td>University of Leuven Hospitals</td>
<td>Leuven</td>
<td>Belgium</td>
</tr>
<tr>
<td>Wilfred Weinstein</td>
<td>Professor of Medicine, Digestive Diseases</td>
<td>Department of Medicine</td>
<td>David Geffen School of Medicine a UCLA</td>
<td>UCLA</td>
</tr>
<tr>
<td>Horace Williams</td>
<td>Clinical Research Fellow</td>
<td>Department of Gastroenterology</td>
<td>St Mary's Hospital</td>
<td>Imperial College</td>
</tr>
</tbody>
</table>
In early 2004, we instigated at Barts and The London a weekly lunchtime clinical and academic IBD meeting. This is a multidisciplinary meeting, open not only to adult medical consultants and trainee gastroenterologists, but also to others including colorectal surgeons, pediatric gastroenterologists, nurses, the nutrition team, specialist pharmacists, visitors to the Unit, laboratory researchers and medical students: the average attendance is about twenty. During the meetings, we discuss patients we have encountered during the previous week who have presented difficult management problems, as well as practical day-to-day administrative issues. In addition, we decided at the outset of these meetings to ask, in rotation, attending staff each to give a 15-minute presentation on a discrete, current, controversial, important, practical, and often as yet unresolved topic relating to the care of patients with IBD. The subjects are selected by discussion between the group, and one talk is presented each week. The talks have proved extremely popular, both for the audience and the presenter, and it is out of them that the idea for this book arose.

Accordingly, this book contains a series of pithy, we hope enjoyable, sometimes provocative, but generally evidence-based articles on IBD topics which have been selected with a view to covering many of the areas that cause clinicians difficulties in decision making. As we have deliberately chosen some controversial topics, we should perhaps point out that as editors we do not necessarily agree with all that is written here; if we did the book might prove dull. In line with its origins, some of the chapters of the book have been written in the first instance by younger gastroenterologists, prior to final touches being added by established experts.

We hope that this approach will appeal both to consultant and trainee gastroenterologists, as well as other members of the IBD team. Inevitably, the book will soon become out of date, but we hope that in the interim readers will find that it provides a useful distillation and analysis of a wide range of current management dilemmas. Indeed, we hope that you might read the odd chapter on the bus or in the train, if not in the lavatory or on the beach.

We are very grateful to all our co-authors, almost all of whom delivered their chapters on time and with minimal hassling. We are particularly grateful too to the team at Blackwell’s: Alison Brown for her enthusiasm about the project when we first discussed it with her, Fiona Pattison, Mirjana Misina and Linda Bolton for all their editorial work.

PMI, DSR, FS
March 2006
Introduction

In addition to being the section of the gastrointestinal (GI) tract most commonly affected by Crohn’s disease, the small bowel (SB) is also the most difficult region to visualize endoscopically. Wireless video capsule endoscopy (CE) is a new technology which, at least in part, overcomes this problem, by allowing complete non-invasive endoscopic imaging of the small bowel.

However, for CE to have a role in the diagnosis and management of small bowel Crohn’s disease, it should fulfill several criteria: it should be safe, provide additional diagnostic information and its use should lead to clinically meaningful changes in patient management. In this chapter we discuss the limitations of other small bowel imaging techniques, the potential uses of CE in relation to Crohn’s disease and the evidence to support its use in each scenario.

Limitations of other techniques for imaging small bowel

Imaging of the SB has been previously limited to the radiologic techniques of small bowel follow through (SBFT), enteroclysis (double contrast small bowel examination) and computed tomography (CT) enteroclysis, and the endoscopic techniques of push enteroscopy, double balloon enteroscopy and colonoscopy with ileal intubation.

SBFT is the most common technique used to assess small bowel Crohn’s but it is relatively insensitive for subtle mucosal lesions. Enteroclysis and CT enteroclysis are more invasive than SBFT, requiring the passage of a catheter into the duodenum under sedation, and several investigators have found these techniques to be no more sensitive [1]. All three techniques result in significant radiation exposure, limiting the frequency with which they should be performed.

Push enteroscopy can only view the proximal small bowel 15–160 cm beyond the ligament of Treitz and is more invasive and technically difficult than CE. Double balloon enteroscopy is an exciting new technology which has the potential to biopsy and perform therapeutic endoscopy throughout the small bowel. However, the examination is invasive, time consuming and may not examine the entire small bowel even when the procedures are performed per orally and per anally. Visualization of the terminal ileum at colonoscopy is limited both to the distal 10–15 cm of SB and to those patients in whom the terminal ileum can be successfully intubated.

LEARNING POINTS

Capsule endoscopy

- Capsule endoscopy (CE) has a diagnostic yield of 40–70% in patients with suspected small bowel Crohn’s disease where other investigations have been normal
- It is not yet clear whether CE provides additional information about the small bowel in patients with known Crohn’s disease
- There is an emerging role for CE in differentiating Crohn’s disease from indeterminate colitis
- Small bowel follow through (SBFT) is not reliable in predicting capsule retention and the role of the patency capsule is evolving
- SBFT before CE may in due course prove unnecessary in suspected small bowel Crohn’s disease
Capsule endoscopy

The Pillcam® capsule endoscope from Given Imaging® was first used in clinical trials in 2000 and was granted Food and Drug Administration (FDA) approval in 2001 (Table 1.1). Since then it has been used in over 200,000 individuals.

Capsule endoscopy images are different from standard endoscopic images. The images are seen through intestinal content without air insufflation. Minimum standard terminology is being developed to allow consistent image description, but more validation with histology is required [2]. In a recent large randomized placebo-controlled trial looking at intestinal inflammation in patients on non-steroidal anti-inflammatory drugs, 7% of those on placebo had small bowel abnormalities [3]; these data raises the question of what constitutes a normal small bowel appearance.

The appearance of Crohn’s disease at CE ranges from gross mucosal ulceration and stricturing to subtle mucosal breaks and denuded villi. A CE scoring index has been proposed along the lines of the endoscopic ones, but has not been fully validated [4].

Diagnosis of suspected small bowel Crohn’s disease

The majority of trials examining the role of CE in the management of Crohn’s disease have studied the diagnostic yield of CE in patients with symptoms and features suggestive of Crohn’s who have undergone normal SBFT, esophagogastroduodenoscopy (EGD) and colonoscopy (with attempted ileal intubation in some).

In prospective analyses of this nature, CE appears to provide significant additional information, with a diagnostic

Table 1.1 Trials assessing the role of capsule endoscopy in the diagnosis and assessment of Crohn’s disease.

<table>
<thead>
<tr>
<th>Reference</th>
<th>N</th>
<th>Preceding investigation</th>
<th>Yield (%)</th>
<th>Comparator</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis of small bowel Crohn’s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fireman [5]</td>
<td>17</td>
<td>SBFT, EGD, colonoscopy (ileoscopy 6/17)</td>
<td>71</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Ge [6]</td>
<td>20</td>
<td>SBFT, EGD, colonoscopy</td>
<td>65</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Herrerias [7]</td>
<td>21</td>
<td>SBFT, EGD, colonoscopy (ileoscopy 17/21)</td>
<td>43</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Arguelles-Arias [8]</td>
<td>12</td>
<td>SBFT, EGD, colonoscopy</td>
<td>75</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Liangpunsakul [9]</td>
<td>40</td>
<td>SBFT, EGD, colonoscopy</td>
<td>7.5</td>
<td>CT enteroclysis</td>
<td>0</td>
</tr>
<tr>
<td>Eliakim [10]</td>
<td>35</td>
<td>N/A</td>
<td>73</td>
<td>SBFT</td>
<td>23</td>
</tr>
<tr>
<td>Voderholzer [11]</td>
<td>5</td>
<td>SBFT, EGD, colonoscopy</td>
<td>40</td>
<td>CT enteroclysis</td>
<td>40</td>
</tr>
<tr>
<td>Assessing disease activity/recurrence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buchman [12]</td>
<td>30</td>
<td>N/A</td>
<td>70</td>
<td>SBFT</td>
<td>67</td>
</tr>
<tr>
<td>Voderholzer [11]</td>
<td>8</td>
<td>N/A</td>
<td>75</td>
<td>CT enteroclysis</td>
<td>75</td>
</tr>
<tr>
<td>De Palma [15]</td>
<td>8</td>
<td>SBFT, OGD, colonoscopy, push enteroscopy</td>
<td>75</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Debinski [14]</td>
<td>10</td>
<td>N/A</td>
<td>N/A</td>
<td>CDAI, IBDQ, CRP</td>
<td>N/A</td>
</tr>
<tr>
<td>Differentiating SB Crohn’s from indeterminate colitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mow [13]</td>
<td>22</td>
<td>N/A</td>
<td>59</td>
<td>Ileoscopy</td>
<td>23</td>
</tr>
<tr>
<td>Whitaker [16]</td>
<td>7</td>
<td>Colonoscopy and ileoscopy</td>
<td>29</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

CDAI, Crohn’s Disease Activity Index; CRP, C-reactive protein; CT, computed tomography; IBDQ, Inflammatory Bowel Disease Questionnaire; N/A, not available; EGD, esophagogastroduodenoscopy; SBFT, small bowel follow through.
yield ranging between 43% and 71% [5–8]. Furthermore, in all of these studies the positive findings at CE led to a change in management with a resulting improvement in most patients (83–100%), although treatment outcomes are not well reported.

In a retrospective analysis, the diagnostic yield was lower at 7.5% [9]. However, CE compared favorably to enteroclysis and CT enteroclysis, which were reported as normal in all the patients with positive findings at CE. In addition, all the patients responded to instigation of medical therapy.

Other studies have compared the sensitivities of CE with other techniques for diagnosing SB Crohn’s disease, by performing the tests in a sequential, blinded manner. In a study comparing sequential SBFT, CT enteroclysis and CE, Eliakim et al. [10] found the sensitivities for Crohn’s to be 23%, 20%, and 73%, respectively. Vorderholzer et al. [11] found CE made a new diagnosis of SB Crohn’s in two of five patients with unexplained diarrhea, both of whom had normal prior CT enteroclysis.

In summary, current evidence suggests that CE has a diagnostic yield of 40–70% in patients with symptoms suggestive of Crohn’s disease where SBFT, OGD and colonoscopy with attempted ileal intubation have been normal. Direct comparison of diagnostic yield with enteroclysis and CT enteroclysis favors CE. The new diagnosis of Crohn’s by CE has led to the institution of a beneficial new treatment regimen in most patients.

Assessment of disease activity and recurrence
Few trials have examined whether CE is useful in assessing the SB in patients with known Crohn’s. Buchman et al. [12] found SBFT and CE to have similar diagnostic yields at 66% and 70% in patients with suspected disease recurrence while Vorderholzer et al. [11] found CE and CT enteroclysis each to have a diagnostic yield of 75%. Mow et al. [13] suggested three or more ulcers were diagnostic of Crohn’s; they found CE was diagnostic in 40% and suspicious for Crohn’s in 30% of patients, but did not make additional diagnoses compared with ileoscopy.

In a study to assess its potential for detection of early postoperative recurrence of Crohn’s, the diagnostic yield of CE was 75% in patients with previous SB resection and suspected recurrence who had had normal SBFT, OGD, colonoscopy, and push enteroscopy [14].

Only one study has examined the role of CE in assessing response to therapy. In this, improvements in mucosal appearance at CE were seen in 8/10 patients given infliximab [15]; these correlated with changes in Crohn’s Disease Activity Index (CDAI), Inflammatory Bowel Disease Questionnaire (IBDQ) scores and C-reactive protein (CRP).

In summary, CE appears to detect recurrent small bowel Crohn’s disease with a diagnostic yield of approximately 70%. However, it is not clear whether CE adds usefully to the information provided by conventional imaging techniques in this setting, nor do we yet know whether findings at CE lead to beneficial changes in management. It is therefore too early to define the role for CE in the assessment of response to therapy and of postoperative disease recurrence.

Differentiating Crohn’s disease from indeterminate colitis
In a retrospective study, CE detected SB lesions suspicious of Crohn’s in 13/22 patients with a previous diagnosis of indeterminate colitis and in five led to a change in management [13]. There was, however, no comparison made to other conventional imaging techniques or to the use of antibodies to *Saccharomyces cerevisiae*/antineutrophil cytoplasmic antibody (ASCA/ANCA) serology. In a second study, CE identified lesions characteristic of CD in 2/7 patients with a diagnosis of indeterminate colitis and ongoing pain and/or diarrhea, all of whom had already undergone non-diagnostic ileoscopy [16].

Is capsule endoscopy safe in Crohn’s disease?
In all of the studies discussed above, SBFT was performed prior to CE and patients with significant stricturing were excluded from CE. CE retention occurred in 1/71 (1.4%) patients with suspected Crohn’s, and in 4/80 (5%) patients with known Crohn’s disease. In the trials of suspected SB Crohn’s, very few patients were excluded because of abnormal radiology and radiology did not reliably prevent retention; SBFT may not therefore be required prior to CE in this setting.

Concerns regarding capsule endoscopy retention have lead to the development of the Patency capsule. This has the same dimensions as the Pillcam® capsule but contains only a simple tracer and is designed to disintegrate in the GI tract 40–100 hours after ingestion. In a multicenter study, the Patency capsule was passed intact in 41/80 patients with
known small bowel strictures of whom 33 then underwent conventional CE. There were no cases of capsule retention although some patients did report abdominal pain [17].

Tolerability and capsule failure

In all the studies discussed, with the exception of patients in whom it was retained, the capsule was easily swallowed and well tolerated. Although there are no comparative preference data in these studies, in a different analysis 49/50 patients preferred CE to push enteroscopy [18].

In those studies where the data were given, the capsule failed to reach the colon before the end of its 8 hour battery life in 25/132 cases (failure rate 19%). However, in most cases, an incomplete examination did not affect diagnostic efficacy.

Conclusions

Although the number of studies is small, current evidence suggests that there is a role for CE in the diagnosis of suspected SB Crohn’s disease. However, more work is required to determine the clinical significance of the more subtle mucosal lesions and whether CE can safely be performed without prior radiology. A role for CE in assessing patients with indeterminate colitis is slowly emerging but its role in assessing disease recurrence is less clear. The Patency capsule is likely to prove useful in patients with known or suspected small bowel strictures.

References

Introduction

Pitfalls in pathology reports are a product of misunderstanding or miscommunication in regards to the role of biopsy in the differential diagnosis of UC and Crohn’s disease. Colonic biopsy has a limited role by itself in the initial evaluation, differential diagnosis, and subsequent management of inflammatory bowel disorders. However, when taken together with the history, endoscopic findings, and clinical course it may significantly help to make the case for one type of IBD rather than another [1,2].

Pitfalls occur with the too-oft practice of not providing the pathologist with an adequate history and endoscopic description, or with unrealistic expectations of what biopsy can do in management. The pathologist may not have sufficient information about the clinical manifestations and therapy of the disorders. This results in failure to be descriptive alone, when the endoscopist pressures naively or prematurely for a single diagnosis. Compounding the pitfalls is the “silence of the pathologists” who put up with no historical or endoscopic information, inadequate biopsies, and unrealistic expectations. They rarely communicate these deficiencies to the clinician [3].

Special problems and how to minimize the risk of errors

Ulcerative proctitis

A biopsy is taken within a 10-cm segment of apparent diffuse inflammation in the rectum and the endoscopist asks the pathologist to “rule out ulcerative proctitis.” The pathologist should never make this diagnosis unless a biopsy taken approximately 10 cm upstream is normal; that

rules out proctosigmoiditis. If the proximal biopsy is normal then one can have the “ulcerative proctitis talk” with the patient, indicating that 90% of the time the disorder does not migrate proximally [4]. If the endoscopist does not consider other possible relevant causes of ulcerative proctitis when biopsies are taken, an erroneous report is inevitable; as in mucosal prolapse due to solitary rectal ulcer syndrome (SRUS), mucosal trauma from digital removal of stool, anal intercourse, sexually transmitted disease [5], and ischemic proctitis, especially after aortoiliac bypass surgery.

Questions for the pathologist and avoiding unrealistic expectations

(Table 2.1)

“Rule out Crohn’s disease”
This guarantees that the pathologic diagnosis will be compatible with Crohn’s disease because almost any histologic findings are compatible with Crohn’s disease. The solution is for the clinician to ask the pathologist if there are findings of focal inflammation in diffusely abnormal mucosa and if there are non-crypt cell granulomas (because granulomas next to partially degraded crypts are a feature of UC). Neither finding clinches the diagnosis of Crohn’s but the question alerts the pathologist that you are looking for more solid evidence than any small collection of inflammatory cells.

“Rule out UC in a patient with diffusely abnormal mucosa”
My favorite question in apparent UC endoscopically is in two parts:
1 “It looks like UC but are there features to suggest something else?” This alerts the pathologist to look for disorders that can mimic UC, such as infectious colitis (acute self-limited) or multifocal non-crypt associated granulomas that would suggest Crohn’s disease or ischemic bowel. In endoscopically classic UC, biopsies help most when the findings do not fit.
2 “Are there classic signs of underlying UC?” This refers to crypt branching and subcryptal inflammatory infiltrates.

“Is it UC or Crohn’s disease?”
Settings where that distinction is difficult to impossible in a single series of biopsies at any point in time include [2]: fulminant colitis, treated IBD, mild IBD, and new onset UC in children. A meeting of the two solitudes (clinician and pathologist) will: (i) inform the clinician about these special situations; and (ii) empower the pathologist to avoid being a collaborator in providing a definitive diagnosis when that is not possible. Fulminant or highly severe UC can be transmural and resemble Crohn’s disease. In treated UC, mild UC, and in childhood UC at presentation (even with moderate to severe symptoms), the rectum may be spared and the inflammation more severe in proximal than distal parts of the colon [2,6]. Thus, Crohn’s might be the erroneous diagnosis based upon patchiness and rectal sparing. Overall, the best time to make the distinction between UC and Crohn’s disease in adults is in the untreated state when there are active but not fulminant symptoms.

The rush to judgment
The endoscopist should not rush to judgment, and furthermore not press the pathologist to collaborate in a rush to judgment. In patients with shorter term histories of diarrhea it may be most prudent to simply call it colitis, leave open the possibility of a self-limited disease, and treat with the usual drugs. The most common error we make is the knee
jerk label of Crohn’s for any focal endoscopic involvement. Drug-induced colitis (non-steroidal anti-inflammatory drugs [NSAIDs], cocaine, methamphetamines) might be responsible for a Crohn-like or an ischemic picture [7]. Aphthous lesions from PhosphoSoda preparations occur commonly in the left colon. Ischemic colitis appearances on biopsy may be produced by infections, not just the classic Escherichia coli O157, but also others such as Salmonella, Shigella, Clostridium difficile, and Campylobacter jejuni.

Biopsies taken near diverticula to look for IBD

But the endoscopist does not tell the pathologist about the diverticulosis. A bona fide segmental colitis, only in an area of diverticula, may represent diverticulitis and not some other focal disease such as Crohn’s disease [8] (see Chapter 61).

Colitis in the immunocompromised patient

In patients with common variable immunodeficiency, undergoing chemotherapy or radiotherapy, or with human immunodeficiency virus (HIV) with low CD4 counts, and after transplantation, the main role of the endoscopist is to rule out infectious causes or endogenous changes such as chemotherapy or radiation change. UC or Crohn’s disease are difficult if not impossible diagnoses to make with assurance in these settings.

The pathologist’s vague, meaningless, or non-actionable terminology

Mild chronic inflammation is the greatest pandemic affecting the gastrointestinal tract. Usually these are cases with normal mucosa. Mild inflammation is present in the right colon in health, accompanied by scattered eosinophils and crypt mucus depletion, but not cryptitis. If the pathologist is not aware of this regional difference or if the endoscopist mixes right and left sided colonic biopsies into one fixative bottle, then irrelevant diagnoses may result for the unwary clinician.

Non-actionable terms unfortunately still abound. Moderate dysplasia in the colon is not a standard dysplasia grade, and there is no published action plan for it. Unqualified atypia may lead to panic and the term should not be used unless accompanied by the adjective of regenerative-type atypia.

Clinical correlation recommended. What does this mean? Many pathologists use this as a covert term for “I’m concerned” or “I don’t know what’s going on histologically” to fit the clinical and/or endoscopic picture. Either sentiment is permissible. The solution is to remove the phrase and phone the clinician, or transmit any special concern in the pathology report.

Indeterminate colitis. This term should not be used in biopsy reports, ever. An elegant review is available for those of us who are perplexed by the diagnosis of indeterminate colitis [2].

Conclusion

Histology taken at ileocolonoscopy plays a central part in the diagnosis and management of IBD. Frequent and specific communication between clinician and pathologist is the best way to minimize the risk of erroneous conclusions being reached.

References

Introduction

Non-invasive assessment of IBD is desirable from the patient’s point of view, as it is relatively painless and has few complications. However, it is also desirable from the clinical perspective: patients with chronic disease should not be exposed repeatedly to ionizing radiation, nor to endoscopic investigations, because of the potential risks from such procedures. In addition, in some parts of the world, endoscopy services are becoming over-stretched due, for example, to demands for colorectal cancer screening. In this synopsis, we discuss non-invasive methods for diagnosing and assessing IBD.

C-reactive protein

C-reactive protein (CRP), principally produced by hepatocytes, is part of the acute phase response. It has a short half-life and is therefore a useful marker to detect and monitor disease activity in Crohn’s disease [1]. A raised CRP is, of course, non-specific, but, like a raised platelet count, can point to the possibility of IBD in patients presenting to the clinic with diarrhea and/or abdominal pain. In UC the acute phase response of CRP is, for unknown reasons, only modest, and CRP is not as good a marker of disease activity except in severe relapses, when a CRP >45 mg/L during treatment indicates a high risk of colectomy (see Chapter 42) [2]. Interestingly, recent trials of biologic agents in patients with Crohn’s disease have found that those patients with raised CRP tend to respond better than those without (see Chapters 23, 31).

Plasma viscosity

Plasma viscosity is sometimes used alone, or in conjunction with CRP, to assess disease activity in IBD but is also non-specific. It has been shown to correlate well with CRP in both UC and Crohn’s disease; however, it has a low sensitivity for detecting active Crohn’s disease, being within the normal laboratory range in 48% of those with active disease [3].

Calprotectin

Calprotectin is a calcium-binding protein secreted predominantly by neutrophils. Elevated fecal calprotectin levels
are found in many inflammatory diseases of the intestine [4] and have been proposed as a way of deciding which patients with diarrhea and abdominal pain need further investigation for IBD. Fecal calprotectin levels correlate strongly with IBD activity and may be used to predict relapse [5].

Serology – pANCA and ASCA

Recent papers have shown a strong association between certain antibodies and IBD.

Perinuclear antineutrophil cytoplasmic antibody (pANCA) is found in patients with rheumatoid arthritis, systemic lupus erythematosus, microscopic polyangiitis, and also in IBD. The prevalence of pANCA is increased in patients with UC (30–80%) compared with healthy controls. In comparison, pANCA is found less commonly in patients with Crohn’s disease (0–20%). In UC, pANCA appears independent of disease extent and activity; however, in Crohn’s disease its presence has been associated with UC-like features [6]. pANCA can be subdivided according to which perinuclear antigen antibodies are directed against. In patients with UC, the antigen may be histone 1, but antibodies are not directed against proteinase 3, myeloperoxidase, elastase, lysozyme, or cathepsin G [7].

The prevalences of IgG and IgA antibodies to *Saccharomyces cerevisiae* (ASCAs) are increased in patients with Crohn’s disease compared with controls and range from 35–76% [8]. Patients who are ASCA-positive are more likely to have disease of the ileum, or ileum and colon, than patients who are ASCA-negative. Furthermore, ASCA-positive patients have also been shown to be more likely to require ileocecal resection [9].

Combining pANCA with ASCA increases specificity. For example, in UC, pANCA alone has a sensitivity and specificity of 65% and 85%, respectively; however, when combined with a negative ASCA, the sensitivity is 57% and the specificity 97% [10]. The positive predictive value (PPV) is therefore increased from 74% to 92% when the antibodies are combined.

Combined pANCA and ASCA has also been used to increase diagnostic accuracy in categorizing indeterminate colitis. One recent study showed that pANCA-positive and ASCA-negative patients with indeterminate colitis often progressed to a diagnosis of UC (PPV 64%), whereas those who were pANCA-negative and ASCA-positive were more likely to have CD (PPV 80%) [11].

Although pANCA alone is unlikely to provide the basis for a non-invasive screening test for IBD, it appears that in combination with ASCA it may have some adjuvant uses in differentiating Crohn’s disease from UC, in categorizing indeterminate colitis, and possibly in determining disease pattern in Crohn’s disease.

Recently, two new potential marker antibodies have been described: OmpC and I2. The low sensitivity of the antibodies to detect either Crohn’s disease or ulcerative colitis means they are unlikely to have a diagnostic role [12], but they may be useful in screening for a fistulizing/stenotic phenotype with Crohn’s disease as they are strongly associated with this pattern in children (p < 0.006 and < 0.003 for OmpC and I2, respectively [13]).

Abdominal ultrasound

Abdominal ultrasound offers a simple, accessible, and non-invasive method of detecting and monitoring IBD (in particular Crohn’s disease) and yet, at least in the UK, it is under-utilized. It has an overall accuracy of 89% in identifying active terminal ileal and colonic Crohn’s disease (see Chapter 4) [14]. Doppler sonography, with or without contrast, is a newer, non-invasive method of assessing the hyperdynamic splanchnic and mesenteric blood flow that occurs in active inflammation. It can detect early mucosal and transmural inflammatory lesions. Furthermore, repeated quantification of mesenteric blood flow is claimed to enable the prediction of relapse at 6 months after steroid-induced remission [15]. (The role of magnetic resonance imaging [MRI] is discussed in Chapter 4.)

Analysis of fecal volatiles

Some patients with IBD have observed that the gas they emit per rectum during periods of disease activity smells different to that emitted when their disease is quiescent. Recently, we have investigated the composition of gas emitted from stool samples to explore this observation further and have found that the volatile compounds of such gas are different from those found in healthy volunteers. Furthermore, the gas produced by such stool samples can be used to distinguish between UC and Crohn’s disease. This observation may lead to a novel diagnostic test.

However, the technique is still under evaluation and these results need to be reproduced in larger series before its usefulness for non-invasive diagnosis or monitoring of IBD can be determined.
Genetic mutations and IBD

The first gene to be identified as a risk factor for Crohn’s disease is the NOD2/CARD15 gene on chromosome 16 (see Chapter 24). Mutations of the gene are significantly more common in patients with Crohn’s disease than in healthy controls. However, although the odds ratio is impressive, the genetic mutations are present in fewer than half of the patients studied [16,17]. At present, screening for these genes or other mutations plays no part in the diagnosis or monitoring of IBD [18].

Conclusions

At present, CRP and plasma viscosity remain the only widely available means of non-invasive monitoring of IBD. Fecal calprotectin looks promising as a diagnostic pointer towards IBD; it has the advantage of being a test of luminal disease and is therefore unlikely to be influenced by extra-intestinal disease processes. pANCA and ASCA may have a role in distinguishing Crohn’s disease from UC and, potentially, IBD from other gastrointestinal disorders. Ultrasound warrants further investigation as a non-invasive technique for both diagnosing and monitoring Crohn’s disease. Analysis of fecal volatiles is still at an early stage of development but also appears promising. Genetic screening is unlikely, in the foreseeable future, to be used to make a diagnosis of IBD.

References

Introduction

Pelvic Crohn’s disease encompasses a spectrum of conditions including perianal skin tags, fissures, ulcers, and perianal abscesses and fistulae. Six to 34% of patients develop anal fistulae [1] and the diagnosis and treatment of these fistulae can be particularly challenging.

Although simple perianal fistulae can be identified at examination under anesthesia (EUA) and then treated successfully without the need for diagnostic imaging [2], fistulae associated with Crohn’s disease are frequently complex with secondary extensions and ramifications. Failure to appreciate the complexity of such fistulae at EUA could result in incomplete treatment and may be responsible for the high rate of recurrence [3].

Several imaging modalities have been employed to delineate fistulous tracks, each with advantages and limitations. Fistulae should be classified as described by Parks et al. [4] to provide the surgeon with a roadmap which should minimize both operative trauma to the anal sphincters and subsequent recurrence.

Imaging

Contrast fistulography has historically been used to delineate fistula anatomy. This involves cannulating the external opening and injecting water-soluble contrast material under X-ray control. However, the technique has been shown to be unreliable, with an accuracy of only 16% [5]. It gives little information about the immediate anatomic relations especially to the sphincter mechanism and levator plate. The complete extent of complex fistulae and deep abscesses may not be identified if they fail to fill with contrast.

Although valuable in the overall assessment of complex transmural Crohn’s disease, computed tomography (CT) has major limitations in the evaluation of perianal disease. The density of the anal sphincter, levator muscle, active fistulae, and fibrotic tracks on CT images are very similar, so that it is difficult to differentiate between them unless the fistula has been outlined by air or contrast [6].

CT has a role in the guidance of drainage of deep pelvic abscesses. It is widely available and allows a safe approach for drainage in an area where multiple intervening structures must be avoided. A transabdominal or transgluteal approach may be used [7].

Anal endosonography uses a high-frequency endoanal probe (typically 10 MHz) to evaluate sphincter anatomy...