Optimality Theory in Phonology
A ReaderEdited by John J. McCarthy
Optimality Theory in Phonology
Contents

Preface viii
Contributors’ Addresses x
Acknowledgments xiii

Part I | The Basics

1 Optimality Theory: Constraint Interaction in Generative Grammar
 Alan Prince and Paul Smolensky
 3
2 Generalized Alignment: Introduction and Theory
 John J. McCarthy and Alan Prince
 72
3 Faithfulness and Identity in Prosodic Morphology
 John J. McCarthy and Alan Prince
 77

Part II | Formal Analysis

4 Computing Optimal Forms in Optimality Theory: Basic Syllabification
 Bruce Tesar
 101
5 Learnability in Optimality Theory
 Bruce Tesar and Paul Smolensky
 118
6 Non-computable Functions in Optimality Theory
 Elliott Moreton
 141

Part III | Prosody

7 Generalized Alignment: Prosody
 John J. McCarthy and Alan Prince
 167
8 Ternary Rhythm and the *LAPSE Constraint
 Nine Elenbaas and René Kager
 178
9 Quality-Sensitive Stress
Michael Kenstowicz

10 Unbounded Stress and Factorial Typology
Eric Baković

11 Head Dependence in Stress–Epenthesis Interaction
John Alderete

12 Feet and Tonal Reduction at the Word and Phrase Level in Chinese
Moira Yip

13 OCP Effects in Optimality Theory
Scott Myers

Part IV Segmental Phonology

14 Austronesian Nasal Substitution and Other NÇ Effects
Joe Pater

15 Phonetically Driven Phonology: The Role of Optimality Theory and Inductive Grounding
Bruce Hayes

16 Positional Faithfulness
Jill Beckman

17 Positional Faithfulness and Voicing Assimilation in Optimality Theory
Linda Lombardi

18 Positional Asymmetries and Licensing
Cheryl Zoll

19 Partial Class Behavior and Nasal Place Assimilation
Jaye Padgett

20 Dissimilation as Local Conjunction
John Alderete

21 Synchronic Chain Shifts in Optimality Theory
Robert Kirchner

Part V Interfaces

22 Transderivational Identity: Phonological Relations Between Words
Laura Benua

23 Backness Switch in Russian
Jerzy Rubach
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Generalized Alignment: The Prosody–Morphology Interface</td>
<td>451</td>
</tr>
<tr>
<td></td>
<td>John J. McCarthy and Alan Prince</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>The Prosodic Structure of Function Words</td>
<td>464</td>
</tr>
<tr>
<td></td>
<td>Elisabeth Selkirk</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>The Emergence of the Unmarked</td>
<td>483</td>
</tr>
<tr>
<td></td>
<td>John J. McCarthy and Alan Prince</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Maximal Words and the Maori Passive</td>
<td>495</td>
</tr>
<tr>
<td></td>
<td>Paul de Lacy</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>External Allomorphy as Emergence of the Unmarked</td>
<td>513</td>
</tr>
<tr>
<td></td>
<td>Joan Mascaró</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Derived Environment Effects in Optimality Theory</td>
<td>523</td>
</tr>
<tr>
<td></td>
<td>Anna Łubowicz</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Licensing and Underspecification in Optimality Theory</td>
<td>533</td>
</tr>
<tr>
<td></td>
<td>Junko Itô, Armin Mester, and Jaye Padgett</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>The Implications of Lexical Exceptions for the Nature of Grammar</td>
<td>542</td>
</tr>
<tr>
<td></td>
<td>Sharon Inkelas, Orhan Orgun, and Cheryl Zoll</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>The Phonological Lexicon</td>
<td>552</td>
</tr>
<tr>
<td></td>
<td>Junko Itô and Armin Mester</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Variation and Change in Optimality Theory</td>
<td>569</td>
</tr>
<tr>
<td></td>
<td>Arto Anttila and Young-mee Yu Cho</td>
<td></td>
</tr>
</tbody>
</table>

References 581

Index of Languages and Language Families 591

Index of Constraints 594

Index of Topics 598
Optimality Theory (OT) has applications throughout the field of linguistics. But its first and greatest influence has been in phonology. This book is a compilation of readings on OT in phonology, starting with the original and most important one, Prince and Smolensky’s *Optimality Theory: Constraint Interaction in Generative Grammar*. The readings cover a broad range of topics in phonology and related disciplines. Both previously published and never before published works are included.

The readings have been selected with a second-semester phonology course in mind, though they would also be suitable for a seminar or for independent reading. To enhance this work’s usefulness as a textbook, I have included brief introductory notes at the beginning of each chapter to set the stage and point out connections with other chapters. Each chapter also concludes with a list of study and research questions. The questions appear in approximate order of difficulty: some are relatively easy reviews of the material; some are more challenging, requiring further thought and research; others are open-ended research topics and even notoriously unsolved problems, included here in the hope that they will elicit an answer. There is ample material for homework exercises, term papers, and dissertations in this book and in these study questions.

The decisions about what to include were extremely difficult, and many excellent works had to be omitted. When I was in doubt, considerations of length were decisive: articles that were already short or that could easily be made short were given priority. It is safe to say that no one else would make exactly these decisions, nor would I, I am sure, if I started all over again.

Almost without exception, the chapters of this book are excerpts from the original works. To cover a wide range of topics within limited space, I had to be severe in making cuts. If the original article had three sections, each describing a different example, two were cut. If there was interesting discussion that strayed from the main point, it was removed. Acknowledgments, digressive footnotes, appendices, and the like were excised automatically. Such minor omissions are not indicated in the text, though major ones are marked with “[…]”, and the original numbering of sections, examples, and notes is retained, as are most of the cross-references. The excisions were all negotiated with the contributors, who gave their (sometimes
reluctant) approval to the result. In some cases, authors went further, revising their chapters to smooth out the seams.

Each chapter includes the bibliography from the original work (minus any references that were cited only in the excised material). To these original bibliographies, two sigla have been added. The symbol \(/H17011 \) marks references to works that are included in this reader. (The \(/H17011 \) is mnemonic for “look at the table of contents in the front of the book.”) The symbol \(/H17012 \) marks references that are incomplete; it points to the bibliography at the back of the book, which includes better versions of those references plus all works cited in the Editor’s Notes and Study and Research Questions. The notes and exercises also supplement the individual chapter bibliographies by pointing to more recent literature.

I would not have embarked on this project without instigation from Tami Kaplan and continuing support from her and from Sarah Coleman, both with Blackwell. I could not have completed it without the assistance of Maria Gouskova, whose care, common sense, and wisdom have been indispensable as the book came together. The index was largely the work of Michael Becker, Kathryn Flack, and Shigeto Kawahara, who did the job with remarkable care and swiftness. You readers and I owe a large debt to Margaret Aherne, copy-editor without peer, who not only turned a huge, messy manuscript into a handsome book, but also detected more than a few errors of substance in constraints, tableaux, and arguments. To all of these and to the authors, who have been generous with their time and help, I am very grateful.

John J. McCarthy
Amherst, Massachusetts
2003
Contributors’ Addresses

John Alderete
Linguistics Program
406 Welsh Humanities Building
University of South Carolina
Columbia, SC 29208, USA

Arto Anttila
Department of Linguistics
New York University
719 Broadway, 5/F
New York, NY 10003, USA
arlo.anttila@nyu.edu

Eric Baković
Linguistics Department
University of California, San Diego
9500 Gilman Drive, #0108
La Jolla, CA 92093, USA
bakovic@ling.ucsd.edu

Jill Beckman
Linguistics Department
570 English Philosophy Building
The University of Iowa
Iowa City, IA 52242, USA
jill-beckman@uiowa.edu

Laura Benua
40 Third Avenue
Nyack, NY 10960, USA
lbenua@hotmail.com

Paul de Lacy
Department of Linguistics
Faculty of Modern and Medieval Languages
University of Cambridge

Sidgwick Avenue
Cambridge CB3 9DA, England
pvd22@cam.ac.uk

Nine Elenbaas
Albert van Dalsumlaan 187
3584 HD Utrecht
The Netherlands
nine_elenbaas@hotmail.com

Bruce Hayes
Department of Linguistics
University of California
Los Angeles, CA 90095, USA
bhayes@humnet.ucla.edu

Sharon Inkelas
Department of Linguistics
1203 Dwinelle Hall
University of California
Berkeley, CA 94720, USA
inkelas@socrates.berkeley.edu

Junko Itô
Department of Linguistics
University of California, Santa Cruz
1156 High Street
Santa Cruz, CA 95064, USA
ito@ling.ucsc.edu

René Kager
Utrecht Institute of Linguistics OTS
Universiteit Utrecht
Trans 10
3503 JK Utrecht
The Netherlands
renee.kager@let.uu.nl
Michael Kenstowicz
Department of Linguistics & Philosophy, E39-245
MIT
Cambridge, MA 02139, USA
kenstow@mit.edu

Robert Kirchner
Department of Linguistics
4-32 Assiniboia Hall
University of Alberta
Edmonton, Alberta T6G 2E7, Canada
kirchner@ualberta.ca

Linda Lombardi
Linguistics Department
Marie Mount Hall 1401
University of Maryland
College Park, MD 20742, USA
linda_lombardi@umail.umd.edu

Anna Lubowicz
Department of Linguistics
3601 Watt Way
Grace Ford Salvatori Hall 301
University of Southern California
Los Angeles, CA 90089, USA

Joan Mascaro
Departament de Filologia Catalana
Universitat Autònoma de Barcelona
08193 Bellaterra, Spain
joan.mascaro@uab.es

John J. McCarthy
Department of Linguistics
University of Massachusetts
Amherst, MA 01003, USA
jmccarthy@linguist.umass.edu

Armin Mester
Department of Linguistics
University of California, Santa Cruz
1156 High Street
Santa Cruz, CA 95064, USA
mester@ling.ucsc.edu

Elliott Moreton
Department of Linguistics
CB #3155
Dey Hall 320
University of North Carolina
Chapel Hill, NC 27599, USA

Scott Myers
Department of Linguistics
University of Texas at Austin
Austin, TX 78712, USA
s.myers@mail.utexas.edu

Orhan Orgun
Linguistics Department
University of California, Davis
Davis, CA 95616, USA
ocorgun@ucdavis.edu

Jaye Padgett
Department of Linguistics
University of California, Santa Cruz
1156 High Street
Santa Cruz, CA 95064, USA
padgett@cats.ucsc.edu

Joe Pater
Department of Linguistics
University of Massachusetts
Amherst, MA 01003, USA
pater@linguist.umass.edu

Alan Prince
Department of Linguistics
18 Seminary Place
Rutgers University
New Brunswick, NJ 08903, USA
prince@ruccs.rutgers.edu

Jerzy Rubach
Fall
Linguistics Department
570 English Philosophy Building
The University of Iowa
Iowa City, IA 52242, USA
jerzy_rubach@uiowa.edu

Spring
Instytut Anglistyki
Uniwersytet Warszawski
ul. Nowy Swiat 4
00-497 Warszawa, Poland
rubach@mail.uw.edu.pl

Elisabeth Selkirk
Department of Linguistics
University of Massachusetts
Amherst, MA 01003, USA
selkirk@linguist.umass.edu
Paul Smolensky
Department of Cognitive Science
239A Krieger Hall
Johns Hopkins University
Baltimore, MD 21218, USA
smolensky@jhu.edu

Bruce Tesar
Department of Linguistics
18 Seminary Place
Rutgers University
New Brunswick, NJ 08903, USA
tesar@ruccs.rutgers.edu

Moira Yip
University College London
Department of Phonetics and Linguistics

Gower Street
London WC1E 6BT, England
moira@linguistics.ucl.ac.uk

Young-mee Yu Cho
Department of Asian Languages and Cultures
330 Scott Hall, College Avenue Campus
Rutgers University
New Brunswick, NJ 08901, USA
yucho@rci.rutgers.edu

Cheryl Zoll
Department of Linguistics & Philosophy,
E-39-245
MIT
Cambridge, MA 02139, USA
czoll@mit.edu
The editor and publisher wish to thank the following for permission to use copyright material in this book:

Every effort has been made to trace copyright holders and to obtain their permission for the use of copyright material. The editor and publisher apologize for any errors or omissions in the above list and would be grateful if notified of any corrections that should be incorporated in future reprints or subsequent editions of this book.
Part I

The Basics
Chapter 1 | Alan Prince and Paul Smolensky

Optimality Theory: Constraint Interaction in Generative Grammar

Editor's Note

Optimality Theory first gained wide exposure from a course taught by Prince and Smolensky at the 1991 Summer Institute of the Linguistic Society of America. The earliest and still the most detailed exposition of the theory is their 1993 manuscript, an excerpt from which is here published for the first time. There has been much interest in this emerging theory; it has been the subject of a large and growing professional literature, an extensive electronic archive (http://roa.rutgers.edu), many courses and conference papers, and several textbooks. Although it was originally applied to phonology, the relevance of OT to topics in phonetics, morphology, syntax, sociolinguistics, psycholinguistics, and semantics has become increasingly apparent.

This chapter includes these excerpts: introductory material and motivation for the theory, including an analysis of Berber syllabification, drawn from sections 1 and 2 of Prince and Smolensky (P&S) (1993); an explanation of how constraints and constraint hierarchies evaluate candidates (section 5 of P&S 1993); the basic CV syllable theory with elaborations (section 6 and part of section 8 in P&S 1993); the theory of inventories and the lexicon (most of section 9 in P&S 1993). Readers may encounter sporadic references to other parts of P&S (1993): sections 3 and 4 on blocking and triggering (exemplified with Tongan stress, Tagalog infixation, Hindi stress, and Latin foot and word structure); section 7 on Lardil phonology; and section 10 on OT’s relationships with functionalism, computation, Connectionism, Harmony Theory, and constraint-and-repair theories.

Readers approaching OT for the first time should begin with sections 1.2 and 2 of this chapter, followed by section 6, and then section 5. Readers can then go on to read the other parts of this chapter or other chapters in this book. Some natural pairings: the constraint H_{NUC} in section 2 of this chapter re-emerges in stress theory in chapter 9; the CV syllable theory in section 6 of this chapter is studied from the perspectives of parsing and learning in chapters 4 and 5, respectively; the idea of faithfulness constraints (section 6.2.1) is generalized in chapter 3; emergence of

Excerpt (with minor revisions by the authors) from:
the unmarked is discussed briefly at the end of section 6.1 in this chapter and is the subject of chapter 26; lexicon optimization, which is discussed in section 9.3 of this chapter, is the topic of chapter 32.

[...]

1.2 Optimality

The standard phonological rule aims to encode grammatical generalizations in this format:

(1) A → B / C—D

The rule scans potential inputs for structures CAD and performs the change on them that is explicitly spelled out in the rule: the unit denoted by A takes on property B. For this format to be worth pursuing, there must be an interesting theory which defines the class of possible predicates CAD (Structural Descriptions) and another theory which defines the class of possible operations A → B (Structural Changes). If these theories are loose and uninformative, as indeed they have proved to be in reality, we must entertain one of two conclusions:

(i) phonology itself simply doesn’t have much content, is mostly ‘periphery’ rather than ‘core’, is just a technique for data-compression, with aspirations to depth subverted by the inevitable idiosyncrasies of history and lexicon; or

(ii) the locus of explanatory action is elsewhere.

We suspect the latter.

The explanatory burden can of course be distributed quite differently than in the re-write rule theory. Suppose that the input–output relation is governed by conditions on the well-formedness of the output, ‘markedness constraints’, and by conditions asking for the exact preservation of the input in the output along various dimensions, ‘faithfulness constraints’. In this case, the inputs falling under the influence of a constraint need share no input-specifiable structure (CAD), nor need there be a single determinate transformation (A→B) that affects them. Rather, we generate (or admit) a set of candidate outputs, perhaps by very general conditions indeed, and then we assess the candidates, seeking the one that best satisfies the relevant constraints. Many possibilities are open to contemplation, but some well-defined measure of value excludes all but the best. The process can be schematically represented like this [the function H-eval, ‘Harmonic Evaluation’, determines the relative Harmony of the candidates]:

(2) Structure of Optimality-theoretic Grammar
 a. Gen (In_k) → {Out_1, Out_2, ...}
 b. H-eval (Out_i, 1 ≤ i ≤ ∞) → Out_{real}
The grammar must define a pairing of underlying and surface forms, (inputi, outputj). Each input is associated with a candidate set of possible analyses by the function Gen (short for ‘generator’), a fixed part of Universal Grammar. In the rich representational system employed below, an output form retains its input as a subrepresentation, so that departures from faithfulness may be detected by scrutiny of output forms alone. A ‘candidate’ is an input–output pair, here formally encoded in what is called ‘Out,’ in (2).

Gen contains information about the representational primitives and their universally irrevocable relations: for example, that the node σ may dominate a node Onset or a node μ (implementing some theory of syllable structure), but never vice versa. Gen will also determine such matters as whether every segment must be syllabified – we assume not, below, following McCarthy 1979 and others – and whether every node of syllable structure must dominate segmental material – again, we will assume not, following Itô 1986, 1989.

The function H-eval determines the relative Harmony of the candidates, imposing an order on the entire set. An optimal output is at the top of the harmonic order on the candidate set; by definition, it best satisfies the constraint system. Though Gen has a role to play, the burden of explanation falls principally on the function H-eval, a construction built from well-formedness constraints, and the account of interlinguistic differences is entirely tied to the different ways the constraint-system H-eval can be put together, given UG.

H-eval must be constructible in a general way if the theory is to be worth pursuing. There are really two notions of generality involved here: general with respect to UG, and therefore cross-linguistically; and general with respect to the language at hand, and therefore across constructions, categories, descriptive generalizations, etc. These are logically independent, and success along either dimension of generality would count as an argument in favor of the optimality approach. But the strongest argument, the one that is most consonant with the work in the area, and the one that will be pursued here, broaches the distinction, seeking a formulation of H-eval that is built from maximally universal constraints which apply with maximal breadth over an entire language.

Optimality Theory, in common with much recent work, shifts the burden from the theory of operations (Gen) to the theory of well-formedness (H-eval). To the degree that the theory of well-formedness can be put generally, the theory will fulfill the basic goals of generative grammar. To the extent that operation-based theories cannot be so put, they must be rejected.

Among possible developments of the optimality idea, we need to distinguish some basic architectural variants. Perhaps nearest to the familiar derivational conceptions of grammar is what we might call ‘harmonic serialism’, by which Gen provides a set of candidate analyses for an input, which are harmonically evaluated; the optimal form is then fed back into Gen, which produces another set of analyses, which are then evaluated; and so on until no further improvement in representational Harmony is possible. Here Gen might mean: ‘do any one thing: advance all candidates which differ in one respect from the input.’ The Gen ⇒ H-eval loop would iterate until there was nothing left to be done or, better, until nothing that could be done would result in increased Harmony. A significant proposal of roughly this character is the Theory of Constraints and Repair Strategies of Paradis 1988a, 1988b, with a couple of
caveats: the constraints involved are a set of parochial level-true phonotactic statements, rather than being universal and violable, as we insist; and the repair strategies are quite narrowly defined in terms of structural description and structural change rather than being of the ‘do-undo-α’ variety. A key aspect of Paradis’s work is that it confronts the problem of well-definition of the notion ‘repair’: what to do when applying a repair strategy to satisfy one constraint results in violation of another constraint (at an intermediate level of derivation). Paradis refers to such situations as ‘constraint conflicts’ and although these are not conflicts in our sense of the term – they cannot be, since all of her constraints are surface- or level-true and therefore never disagree among themselves in the assessment of output well-formedness – her work is of unique importance in addressing and shedding light on fundamental complexities in the idea of wellformedness-driven rule-application. The ‘persistent rule’ theory of Myers 1991 can similarly be related to the notion of Harmony-governed serialism. The program for Harmonic Phonology in Goldsmith 1991, 1993 is even more strongly of this character; within its lexical levels, all rules are constrained to apply harmonically. Here again, however, the rules are conceived of as being pretty much of the familiar sort, triggered if they increase Harmony, and Harmony itself is to be defined in specifically phonotactic terms. A subtheory which is very much in the mold of harmonic serialism, using a general procedure to produce candidates, is the ‘Move-x’ theory of rhythmic adjustment (Prince 1983, Hayes 1991).²

A contrasting view would hold that the Input → Output map has no internal structure: all possible variants are produced by Gen in one step and evaluated in parallel. In the course of this paper, we will see instances of both kinds of analysis, though we will focus predominantly on developing the parallel idea, finding strong support for it, as do McCarthy & Prince 1993. Definitive adjudication between parallel and serial conceptions, not to mention hybrids of various kinds, is a challenge of considerable subtlety, as indeed the debate over the necessity of serial Move-α illustrates plentifully (e.g., Aoun 1986, Browning 1991, Chomsky 1981), and the matter can be sensibly addressed only after much well-founded analytical work and theoretical exploration.

Optimality Theory abandons two key presuppositions of earlier work. First, that it is possible for a grammar to narrowly and parochially specify the Structural Description and Structural Change of rules. In place of this is Gen, which generates for any given input a large space of candidate analyses by freely exercising the basic structural resources of the representational theory. The idea is that the desired output lies somewhere in this space, and the constraint system of the grammar is strong enough to find it. Second, Optimality Theory abandons the widely held view that constraints are language-particular statements of phonotactic truth. In its place is the assertion that constraints are essentially universal and of very general formulation, with great potential for disagreement over the well-formedness of analyses; an individual grammar consists of a ranking of these constraints, which resolves any conflict in favor of the higher-ranked constraint. The constraints provided by Universal Grammar are simple and general; interlinguistic differences arise from the permutations of constraint-ranking; typology is the study of the range of systems that re-ranking permits. Because they are ranked, constraints are regularly violated in the grammatical forms of a language. Violability has significant consequences not only for the mechanics of description, but also for the process of theory construction:
a new class of predicates becomes usable in the formal theory, with a concomitant shift in what we can think the actual generalizations are. We cannot expect the world to stay the same when we change our way of describing it.

[...]

2 Optimality in Grammar: Core Syllabification in Imdlawn Tashlhiyt Berber

Here we argue that certain grammatical processes can only be properly understood as selecting the optimal output from among a set of possibilities, where the notion optimal is defined in terms of the constraints bearing on the grammatical domain at issue.

2.1 The heart of Dell & Elmedlaoui

The Imdlawn Tashlhiyt dialect of Berber (ITB) has been the object of a series of remarkable studies by François Dell and Mohamed Elmedlaoui (Dell & Elmedlaoui 1985, 1988, 1989). Perhaps their most surprising empirical finding is that in this language any segment – consonant or vowel, obstruent or sonorant – can form the nucleus of a syllable. One regularly encounters syllables of the shape tK, rB, xZ, wL, for example. (Capitalization represents nucleus-hood of consonants.) Table 1 provides illustrative examples, with periods used to mark syllable edges.

Table 1

<table>
<thead>
<tr>
<th>Nucleus type</th>
<th>Example</th>
<th>Morphology</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>voiceless stop</td>
<td>.ra.tK.ti.</td>
<td>ra-t-kti</td>
<td>1985: 113</td>
</tr>
<tr>
<td>voiced stop</td>
<td>.bD.dL.</td>
<td>bddl</td>
<td>1988: 1</td>
</tr>
<tr>
<td></td>
<td>.ma.ra.tGt.</td>
<td>ma=ra-t-g-t</td>
<td>1985: 113</td>
</tr>
<tr>
<td>voiceless fricative</td>
<td>.tF.tKt.</td>
<td>t-ftk-t</td>
<td>1985: 113</td>
</tr>
<tr>
<td></td>
<td>.tX.zNt.</td>
<td>t-xzn-t</td>
<td>1985: 106</td>
</tr>
<tr>
<td>voiced fricative</td>
<td>.txZ.nakk".</td>
<td>t-xzn#nakk"</td>
<td>1985: 113</td>
</tr>
<tr>
<td>nasal</td>
<td>.tzMt.</td>
<td>t-zmt</td>
<td>1985: 112</td>
</tr>
<tr>
<td></td>
<td>.tM.zh.</td>
<td>t-mzh</td>
<td>1985: 112</td>
</tr>
<tr>
<td>liquid</td>
<td>.tR.gLt.</td>
<td>t-rgl-t</td>
<td>1985: 106</td>
</tr>
<tr>
<td>high vowel</td>
<td>.il.di.</td>
<td>i-ldi</td>
<td>1985: 106</td>
</tr>
<tr>
<td></td>
<td>.rat.lult.</td>
<td>ra-t-lul-t</td>
<td>1985: 108</td>
</tr>
<tr>
<td>low vowel</td>
<td>.tR.ba.</td>
<td>t-rba</td>
<td>1985: 106</td>
</tr>
</tbody>
</table>
Dell and Elmedlaoui marshall a compelling range of evidence in support of the claimed patterns of syllabification. In addition to native speaker intuition, they adduce effects from segmental phonology (emphasis spread), intonation, versification practice, and prosodic morphology, all of which agree in respecting their syllabic analysis.

The domain of syllabification is the phonological phrase. All syllables must have onsets except when they occur in absolute phrase-initial position. There, syllables may begin with vowels, either with or without glottal striction (Dell & Elmedlaoui 1985: 127 fn. 20), evidently a matter of phonetic implementation. Since any segment at all can form the nucleus of a syllable, there is massive potential ambiguity in syllabification, and even when the onset requirement is satisfied, a number of distinct syllabifications will often be potentially available. But the actual syllabification of any given string is almost always unique. Dell & Elmedlaoui discovered that assignment of nuclear status is determined by the relative sonority of the elements in the string. Thus we find the following typical contrasts:

(3) Sonority Effects on Nuclear Status

a. tzMt — *tZmt ‘m beats z as a nucleus’
b. rat.lult — *ra.tL.wL.t ‘u beats l as a nucleus’

Orthography: we write u for the nuclear version, w for the marginal version of the high back vocoid, and similarly for i and y: as with every other margin/nucleus pair, we assume featural identity.

All the structures in (3), including the ill-formed ones, are locally well-formed, composed of licit substructures. In particular, there is nothing wrong with syllables tZ, tL, or wL nor with word-final sequences mt — but the more sonorous nucleus is chosen in each case. By examining the full range of such contrasts, Dell and Elmedlaoui establish the relevance of the following familiar kind of 8-point hierarchy:

(4) Sonority Scale

|Low V| > |High V| > |Liquid| > |Nasal| > |Voiced Fric.| > |Voiceless Fric.| > |Voiced Stop| > |Voiceless Stop|

We write |α| for the sonority or intrinsic prominence of α.

With the sonority scale in hand, Dell and Elmedlaoui then propose an iterative syllable-construction procedure that is designed to select the correct nuclei. Their algorithm can be stated in the following way, modified slightly from Dell & Elmedlaoui 1985: 111(15):

(5) Dell–Elmedlaoui Algorithm for Core Syllabification (DEA)

Build a core syllable (“CV”) over each substring of the form XY, where

X is any segment (except [a]), and

Y is a matrix of features describing a step of the sonority scale.

Start Y at the top of the sonority scale and replace it successively with the matrix of features appropriate to the next lower step of the scale.

(Iterate from Left to Right for each fixing of the nuclear variable Y.)

Like all such procedures, the DEA is subject to the Free Element Condition (FEC: Prince 1985), which holds that rules establishing a level of prosodic structure apply only to elements that are not already supplied with the relevant structure. By the FEC,
the positions analyzed by the terms X,Y must be free of syllabic affiliation. Effectively, this means that any element seized as an onset is no longer eligible to be a nucleus, and that a segment recruited to nucleate a syllable is not then available to serve as an onset.

There are other syllabification phenomena in ITB that require additional rules beyond the DEA; we will abstract away from these and focus on the sense of DEA itself.4 We will also put aside some wrinkles in the DEA which are related to parenthesized expressions in (5) – the lack of a glide counterpart for /a/, the phrase-initial loosening of the onset requirement, and the claimed left-to-rightness of the procedure.5

The DEA is a rule, or rather a schema for rules, of exactly the classical type \(A \rightarrow B / C\). Each rule generated by the schema has a Structural Description specified in featural terms and a Structural Change (‘construct a core syllable’). To see how it works, consider the following derivations:

(6) DEA in Action

<table>
<thead>
<tr>
<th>Steps of the DEA</th>
<th>/ratlult/ ‘you will be born’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seek [X][+low,−cns] & Build</td>
<td>(ra)tltlt</td>
</tr>
<tr>
<td>Seek [X][−low,−cns] & Build</td>
<td>(ra)t(ul)lt</td>
</tr>
<tr>
<td>Seek [X][+cns,son,−nas]</td>
<td>blocked by FEC</td>
</tr>
<tr>
<td>Seek [X][+cns,son,+nas]</td>
<td>—</td>
</tr>
<tr>
<td>Seek [X][−son,+cnt,+voi]</td>
<td>—</td>
</tr>
<tr>
<td>Seek [X][−son,+cnt,−voi]</td>
<td>—</td>
</tr>
<tr>
<td>Seek [X][−son,−cnt,+voi]</td>
<td>—</td>
</tr>
<tr>
<td>Seek [X][−son,−cnt,−voi] & Build</td>
<td>(ra)t(ul)(IT)6</td>
</tr>
</tbody>
</table>

(7) DEA in Action

<table>
<thead>
<tr>
<th>Steps of the DEA</th>
<th>/txznt/ ‘you sg. stored’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seek [X][+low,−cns]</td>
<td>—</td>
</tr>
<tr>
<td>Seek [X][−low,−cns]</td>
<td>—</td>
</tr>
<tr>
<td>Seek [X][+cns,son,−nas]</td>
<td>—</td>
</tr>
<tr>
<td>Seek [X][+cns,son,+nas] & Build</td>
<td>tx(2N)t</td>
</tr>
<tr>
<td>Seek [X][−son,+cnt,+voi]</td>
<td>—</td>
</tr>
<tr>
<td>Seek [X][−son,+cnt,−voi] & Build</td>
<td>(tX)(2N)t</td>
</tr>
<tr>
<td>Seek [X][−son,−cnt,+voi]</td>
<td>—</td>
</tr>
<tr>
<td>Seek [X][−son,−cnt,−voi]</td>
<td>—</td>
</tr>
</tbody>
</table>
The DEA in Action

The DEA provides an elegant and straightforward account of the selection of syllable nuclei in the language. But it suffers from the formal arbitrariness characteristic of re-writing rules when they are put to the task of dealing locally with problems that fall under general principles, particularly principles of output shape. (By ‘formal arbitrariness’, we mean that a formal system rich enough to allow expression of the desired rule will also allow expression of many undesired variations of the rule, so that the rule itself appears to be an arbitrary random choice among the universe of possibilities.) The key to the success of the DEA is the way that the variable Y scans the input, starting at the top of the sonority scale and descending it step by step as the iterative process unfolds. We must ask, why start at the top? why descend the scale? why not use it in some more elaborate or context-dependent fashion? why apply the scale to the nucleus rather than the onset? 7

The answers are to be found in the theory of syllable structure markedness, which is part of Universal Grammar. The more sonorous a segment is, the more satisfactory it is as a nucleus. Conversely, a nucleus is more satisfactory to the degree that it contains a more sonorous segment. It is clear that the DEA is designed to produce syllables with optimal nuclei; to ensure that the syllables it forms are the most harmonic that are available, to use the term introduced in §1. Dell and Elmedlaoui clearly understand the role of sonority in choosing between competing analyses of a given input string; they write:

When a string $\ldots PQ \ldots$ could conceivably be syllabified as $\ldots Pq \ldots$ or as $\ldots pQ \ldots$ (i.e. when either syllabification would involve only syllable types which, when taken individually, are possible in ITB), the only syllabification allowed by ITB is the one that takes as a syllabic peak the more sonorous of the two segments. (Dell & Elmedlaoui 1985: 109)

But if phonology is couched in re-writing rules, this insight cannot be cashed in as part of the function that assigns structural analyses. It remains formally inert.
Dell and Elmedlaoui refer to it as an ‘empirical observation’, emphasizing its extra-grammatical status.

The DEA itself makes no contact with any principles of well-formedness; it merely scans the input for certain specific configurations, and acts when it finds them. That it descends the sonority scale, for example, can have no formal explanation. But the insight behind the DEA can be made active if we re-conceive the process of syllabification as one of choosing the optimal output from among the possible analyses rather than algorithmic structure-building. Let us first suppose, with Dell and Elmedlaoui, that the process of syllabification is serial, affecting one syllable at a time (thus, that it operates like Move-α or more exactly, Move-x of grid theory). At each stage of the process, let all possible single syllabic augmentations of the input be presented for evaluation. This set of candidates is evaluated by principles of syllable well-formedness and the most harmonic structure in the set is selected as the output. We can state the process informally as follows:

(9) Serial Harmonic Syllabification (informal)
Form the optimal syllable in the domain.
Iterate until nothing more can be done.

This approach depends directly on the principles of well-formedness which define the notion ‘optimal’. No instructions are issued to the construction process to contemplate only one featurally specified niche of the sonority scale. Indeed, the Harmonic Syllabification algorithm has no access to any information at all about absolute sonority level or the specific featural composition of vowels, which are essential to the DEA; it needs to know whether segment α is more sonorous than segment β, not what their sonorities or features actually are. All possibilities are entertained simultaneously and the choice among them is made on grounds of general principle. That you start at the top of the scale, that you descend the scale rather than ascending it or touring it in some more interesting fashion, all this follows from the principles that define relative well-formedness of nucleus–segment pairings. The formal arbitrariness of the DEA syllable-constructing procedure disappears because the procedure itself (‘make a syllable’) has been stripped of intricacies.8

This is an instance of Harmony-increasing processing (Smolensky 1983, 1986; Goldsmith 1991, 1993). The general rubric is this:

(10) Harmonic Processing
Go to the most harmonic available state.

We speak not of ‘relative well-formedness’ but rather of relative Harmony. Harmony is a well-formedness scale along which a maximal Harmony structure is well-formed and all other structures are ill-formed.

We conclude that the Dell–Elmedlaoui results establish clearly that harmonic processing is a grammatical mechanism; and that optimality-based analysis gives results in complex cases. Let us now establish a formal platform that can support this finding.
2.2 Optimality Theory

What, then, is the optimal syllable that Harmonic Syllabification seeks? In the core process that we are focusing on, two constraints are at play, one ensuring onsets, the other evaluating nuclei. The onset constraint can be stated like this (Itô 1986, 1989):

(11) The Onset Constraint (ONS)
Syllables must have onsets (except phrase initially).

As promised, we are not going to explicate the parenthesized caveat, which is not really part of the basic constraint (McCarthy & Prince 1993: §4). The nuclear constraint looks like this:

(12) The Nuclear Harmony Constraint (HNuc)
A higher sonority nucleus is more harmonic than one of lower sonority.
i.e. If $|x| > |y|$ then Nuc/x > Nuc/y.

The formalizing restatement appended to the constraint uses some notation that will prove useful:

For ‘x is more harmonic than y’ we write $x > y$.
For ‘the intrinsic prominence of x’ we write $|x|$.
‘A/x’ means ‘x belongs to category A, x is the constituent-structure child of A’.

The two kinds of order $>$ and $>$ are distinguished notationally to emphasize their conceptual distinctness. Segments of high sonority are not more harmonic than those of lower sonority. It is only when segments are contemplated in a structural context that the issue of well-formedness arises.

It is necessary to specify not only the relevant constraints, but also the set of candidates to be evaluated. To do this we need to spell out the function Gen that admits to candidacy a specific range of structurings or parses of the input. In the case at hand, we want something roughly like this:

(13) Gen ($input_i$)
The set of (partial) syllabifications of $input_i$, which differ from $input_i$ in no more than one syllabic adjunction.

For any form $input$, to undergo Serial Harmonic Syllabification, the candidate set Gen($input_i$) must be evaluated with respect to the constraints ONS and HNuc. There would be little to say if evaluation were simply a matter of choosing the candidate that satisfies both constraints. Crucially, and typically, this straightforward approach cannot work. Conflict between the constraints ONS and HNuc is unavoidable; there are candidate sets in which no candidate satisfies both constraints.

Consider, for example, the syllabification of the form /haul-tn/ ‘make them (m.) plentiful’ (Dell & Elmedlaoui 1985: 110). Both ONS and HNuc agree that the core