Market Risk Analysis _____ Volume III _____

Pricing, Hedging and Trading Financial Instruments

Carol Alexander

Market Risk Analysis _____ Volume III _____

Pricing, Hedging and Trading Financial Instruments

Market Risk Analysis _____ Volume III _____

Pricing, Hedging and Trading Financial Instruments

Carol Alexander

Published in 2008 by	John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
	West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wiley.com

Copyright © 2008 Carol Alexander

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Carol Alexander has asserted her right under the Copyright, Designs and Patents Act 1988, to be identified as the author of this work.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, Ontario, Canada L5R 4J3

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 978-0-470-99789-5 (HB)

Typeset in 10/12pt Times by Integra Software Services Pvt. Ltd, Pondicherry, India Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production. To Jacques Pézier

____ Contents _____

List of Figures	xiii
List of Tables	xvii
List of Examples	xix
Foreword	xxi
Preface to Volume III	XXV

III.1	Bonds	and Swap	S	1
	III.1.1 Introduction		1	
	III.1.2	Interest F	Interest Rates	
		III.1.2.1	Continuously Compounded Spot and Forward Rates	3
		III.1.2.2	Discretely Compounded Spot Rates	4
		III.1.2.3	Translation between Discrete Rates and Continuous	
			Rates	6
		III.1.2.4	Spot and Forward Rates with Discrete Compounding	6
		III.1.2.5	LIBOR	8
	III.1.3 Categorization of Bonds		8	
		III.1.3.1	Categorization by Issuer	9
		III.1.3.2	.2 Categorization by Coupon and Maturity	
III.1.4		Character	ristics of Bonds and Interest Rates	10
		III.1.4.1	Present Value, Price and Yield	11
		III.1.4.2	Relationship between Price and Yield	13
		III.1.4.3	Yield Curves	
		III.1.4.4 Behaviour of Market Interest Rates		17
		III.1.4.5	Characteristics of Spot and Forward Term Structures	19
	III.1.5	Duration	and Convexity	20
		III.1.5.1	Macaulay Duration	21
		III.1.5.2	Modified Duration	23
		III.1.5.3	Convexity	24
		III.1.5.4	Duration and Convexity of a Bond Portfolio	24
		III.1.5.5	Duration-Convexity Approximations to Bond Price	
			Change	25
		III.1.5.6	Immunizing Bond Portfolios	27

	III.1.6	Bonds wi	ith Semi-Annual and Floating Coupons	28
		III.1.6.1	Semi-Annual and Quarterly Coupons	29
		III.1.6.2	Floating Rate Notes	31
		III.1.6.3	Other Floaters	33
	III.1.7	Forward	Rate Agreements and Interest Rate Swaps	33
		III.1.7.1	Forward Rate Agreements	34
		III.1.7.2	Interest Rate Swaps	35
		III.1.7.3	Cash Flows on Vanilla Swaps	36
		III.1.7.4	Cross-Currency Swaps	38
		III.1.7.5	Other Swaps	40
	III.1.8	Present V	Value of Basis Point	41
		III.1.8.1	PV01 and Value Duration	41
		III.1.8.2	Approximations to PV01	44
		III.1.8.3	Understanding Interest Rate Risk	45
	III.1.9	Yield Cu	rve Fitting	48
		III.1.9.1	Calibration Instruments	48
		III.1.9.2	Bootstrapping	49
		III.1.9.3	Splines	51
		III.1.9.4	Parametric Models	52
		III.1.9.5	Case Study: Statistical Properties of Forward LIBOR	
			Rates	53
	III.1.10	Convertil	ble Bonds	59
		III.1.10.1	Characteristics of Convertible Bonds	60
		III.1.10.2	Survey of Pricing Models for Convertible Bonds	61
	III.1.11	Summary	and Conclusions	62
III.2	Future	s and For	wards	65
	III.2.1	Introduct	ion	65
	III.2.2	Character	ristics of Futures and Forwards	68
		III.2.2.1	Interest Rate and Swap Futures	68
		III.2.2.2	Bond Futures	70
		III.2.2.3	Currency Futures and Forwards	73
		III.2.2.4	Energy and Commodity Futures	74
		III.2.2.5	Stock Futures and Index Futures	79
		III.2.2.6	Exchange Traded Funds and ETF Futures	80
		III.2.2.7	New Futures Markets	82
	III.2.3	Theoretic	al Relationships between Spot, Forward and Futures	87
		III.2.3.1	No Arbitrage Pricing	87
		III.2.3.2	Accounting for Dividends	88
		III.2.3.3	Dividend Risk and Interest Rate Risk	90
		III.2.3.4	Currency Forwards and the Interest Rate Differential	91
		III.2.3.5	No Arbitrage Prices for Forwards on Bonds	92
		III.2.3.6	Commodity Forwards, Carry Costs and Convenience	
			Yields	93
		111007	Fair Values of Futures and Spot	94
		111.2.3.7	I all values of I didles and Spot	
	III.2.4	The Basis	s	95

		III.2.4.2 Correlation between Spot and Futures Returns	97
		III.2.4.3 Introducing Basis Risk	98
		III.2.4.4 Basis Risk in Commodity Markets	100
	III.2.5	Hedging with Forwards and Futures	101
		III.2.5.1 Traditional 'Insurance' Approach	102
		III.2.5.2 Mean–Variance Approach	104
		III.2.5.3 Understanding the Minimum Variance Hedge Ratio	106
		III.2.5.4 Position Risk	108
		III.2.5.5 Proxy Hedging	110
		III.2.5.6 Basket Hedging	111
		III.2.5.7 Performance Measures for Hedged Portfolios	112
	III.2.6	Hedging in Practice	113
		III.2.6.1 Hedging Forex Risk	113
		III.2.6.2 Hedging International Stock Portfolios	114
		III.2.6.3 Case Study: Hedging an Energy Futures Portfolio	118
		III.2.6.4 Hedging Bond Portfolios	124
	III.2.7	Using Futures for Short Term Hedging	126
		III.2.7.1 Regression Based Minimum Variance Hedge Ratios	127
		III.2.7.2 Academic Literature on Minimum Variance Hedging	; 129
		III.2.7.3 Short Term Hedging in Liquid Markets	131
	III.2.8	Summary and Conclusions	133
III.3	Option	15	137
	III.3.1	Introduction	137
	III.3.2	Foundations	139
		III.3.2.1 Arithmetic and Geometric Brownian Motion	140
		III.3.2.2 Risk Neutral Valuation	142
		III.3.2.3 Numeraire and Measure	144
		III.3.2.4 Market Prices and Model Prices	146
		III.3.2.5 Parameters and Calibration	147
		III.3.2.6 Option Pricing: Review of the Binomial Model	148
	III.3.3	Characteristics of Vanilla Options	151
		III.3.3.1 Elementary Options	152
		III.3.3.2 Put–Call Parity	153
		III.3.3.3 Moneyness	154
		III.3.3.4 American Options	155
		III.3.3.5 Early Exercise Boundary	156
		III.3.3.6 Pricing American Options	158
	III.3.4	Hedging Options	159
		III.3.4.1 Delta	159
		III.3.4.2 Delta Hedging	161
		III.3.4.3 Other Greeks	161
		III.3.4.4 Position Greeks	163
		III.3.4.5 Delta–Gamma Hedging	164
	III 2 5	III.5.4.0 Delta–Gamma–Vega Hedging	165
	111.3.5	Trading Options	167
		III.3.3.1 Bull Strategies	167

	III.3.5.2	Bear Strategies	168
	III.3.5.3	Other Spread Strategies	169
	III.3.5.4	Volatility Strategies	170
	III.3.5.5	Replication of P&L Profiles	172
III.3.6	The Black	c–Scholes–Merton Model	173
	III.3.6.1	Assumptions	174
	III.3.6.2	Black–Scholes–Merton PDE	175
	III.3.6.3	Is the Underlying the Spot or the Futures Contract?	176
	III.3.6.4	Black–Scholes–Merton Pricing Formula	178
	III.3.6.5	Interpretation of the Black-Scholes-Merton Formula	180
	III.3.6.6	Implied Volatility	183
	III.3.6.7	Adjusting BSM Prices for Stochastic Volatility	183
III.3.7	The Black	x-Scholes-Merton Greeks	186
	III.3.7.1	Delta	187
	III.3.7.2	Theta and Rho	188
	III.3.7.3	Gamma	189
	III.3.7.4	Vega, Vanna and Volga	190
	III.3.7.5	Static Hedges for Standard European Options	193
III.3.8	Interest R	ate Options	194
	III.3.8.1	Caplets and Floorlets	195
	III.3.8.2	Caps, Floors and their Implied Volatilities	196
	III.3.8.3	European Swaptions	198
	III.3.8.4	Short Rate Models	199
	III.3.8.5	LIBOR Model	201
	III.3.8.6	Case Study: Application of PCA to LIBOR Model	
		Calibration	203
III.3.9	Pricing Ex	xotic Options	207
	III.3.9.1	Pay-offs to Exotic Options	208
	III.3.9.2	Exchange Options and Best/Worst of Two Asset Options	209
	III.3.9.3	Spread Options	211
	III.3.9.4	Currency Protected Options	213
	III.3.9.5	Power Options	214
	III.3.9.6	Chooser Options and Contingent Options	214
	III.3.9.7	Compound Options	216
	III.3.9.8	Capped Options and Ladder Options	216
	III.3.9.9	Look-Back and Look-Forward Options	218
	III.3.9.10	Barrier Options	219
	III.3.9.11	Asian Options	221
III.3.10	Summary	and Conclusions	224

III.4	Volatil	ity		227
	III.4.1	Introduct	ion	227
	III.4.2	Implied V	Volatility	231
		III.4.2.1	'Backing Out' Implied Volatility from a Market Price	231
		III.4.2.2	Equity Index Volatility Skew	233
		III.4.2.3	Smiles and Skews in Other Markets	236

 III.4.2.5 Implied Volatility Surfaces III.4.2.6 Cap and Caplet Volatilities III.4.2.7 Swaption Volatilities III.4.3 Local Volatility III.4.3.1 Forward Volatility III.4.3.2 Dupire's Equation III.4.3.3 Parametric Models of Local Volatility III.4.3.4 Lognormal Mixture Diffusion III.4.4 Modelling the Dynamics of Implied Volatility 	239 240 242 243 244 245 248 249 255 255 255 257 261 264
 III.4.2.6 Cap and Caplet Volatilities III.4.2.7 Swaption Volatilities III.4.3 Local Volatility III.4.3.1 Forward Volatility III.4.3.2 Dupire's Equation III.4.3.3 Parametric Models of Local Volatility III.4.3.4 Lognormal Mixture Diffusion III.4.4 Modelling the Dynamics of Implied Volatility 	240 242 243 244 245 248 249 255 255 255 257 261 264
 III.4.2.7 Swaption Volatilities III.4.3 Local Volatility III.4.3.1 Forward Volatility III.4.3.2 Dupire's Equation III.4.3.3 Parametric Models of Local Volatility III.4.3.4 Lognormal Mixture Diffusion III.4.4 Modelling the Dynamics of Implied Volatility 	242 243 244 245 248 249 255 255 255 257 261 264
 III.4.3 Local Volatility III.4.3.1 Forward Volatility III.4.3.2 Dupire's Equation III.4.3.3 Parametric Models of Local Volatility III.4.3.4 Lognormal Mixture Diffusion III.4.4 Modelling the Dynamics of Implied Volatility 	243 244 245 248 249 255 255 257 261 264
 III.4.3.1 Forward Volatility III.4.3.2 Dupire's Equation III.4.3.3 Parametric Models of Local Volatility III.4.3.4 Lognormal Mixture Diffusion III.4.4 Modelling the Dynamics of Implied Volatility 	244 245 248 249 255 255 255 257 261 264
 III.4.3.2 Dupire's Equation III.4.3.3 Parametric Models of Local Volatility III.4.3.4 Lognormal Mixture Diffusion III.4.4 Modelling the Dynamics of Implied Volatility 	245 248 249 255 255 257 261 264
III.4.3.3 Parametric Models of Local VolatilityIII.4.3.4 Lognormal Mixture DiffusionIII.4.4 Modelling the Dynamics of Implied Volatility	248 249 255 255 257 261 264
III.4.3.4Lognormal Mixture DiffusionIII.4.4Modelling the Dynamics of Implied Volatility	249 255 255 257 257 261 264
III.4.4 Modelling the Dynamics of Implied Volatility	255 255 257 257 261 264
	255 257 261 264
III.4.4.1 Sticky Models	257 261 264
III.4.4.2 Case Study I: Principal Component Analysis of Implied	257 261 264
Volatilities	261 264
III.4.4.3 Case Study II: Modelling the ATM Volatility–Index	261 264
Relationship	264
III.4.4.4 Case Study III: Modelling the Skew Sensitivities	
III.4.4.5 Applications of Implied Volatility Dynamics to Hedging	
Options	265
III.4.5 Stochastic Volatility Models	268
III.4.5.1 Stochastic Volatility PDE	269
III.4.5.2 Properties of Stochastic Volatility	271
III.4.5.3 Model Implied Volatility Surface	275
III.4.5.4 Model Local Volatility Surface	277
III.4.5.5 Heston Model	278
III.4.5.6 GARCH Diffusions	280
III.4.5.7 CEV and SABR Models	285
III.4.5.8 Jumps in Prices and in Stochastic Volatility	287
III.4.6 Scale Invariance and Hedging	289
III.4.6.1 Scale Invariance and Change of Numeraire	291
III.4.6.2 Definition of Scale Invariance	291
III.4.6.3 Scale Invariance and Homogeneity	292
III.4.0.4 Model Free Price Hedge Ratios	294
III.4.6.5 Minimum Variance Hedging	297
III.4.0.0 Minimum variance fieldge Ratios in Specific Models	299
III.4.0.7 Empirical Results	300
III.4.7 Hadnig Volatility III.4.7.1 Variance Swans and Valatility Swans	303
III.4.7.2 Trading Forward Volatility	304
III.4.7.3 Variance Risk Premium	307
III 4.7.4 Construction of a Volatility Index	308
III 4.7.5 Effect of the Skew	309
III.4.7.6 Term Structures of Volatility Indices	309
III.4.7.7 Vix and Other Volatility Indices	311
III.4.7.8 Volatility Index Futures	312
III.4.7.9 Options on Volatility Indices	314
III.4.7.10 Using Realized Volatility Forecasts to Trade Volatility	315
III.4.8 Summary and Conclusion	

III.5	1.5 Portfolio Mapping		321	
III.5.1 Introduction		Introduct	ion	321
	III.5.2	Risk Fact	tors and Risk Factor Sensitivities	323
		III.5.2.1	Interest Rate Sensitive Portfolios	323
		III.5.2.2	Equity Portfolios	324
		III.5.2.3	International Exposures	327
		III.5.2.4	Commodity Portfolios	328
		III.5.2.5	Options Portfolios	328
		III.5.2.6	Orthogonalization of Risk Factors	330
		III.5.2.7	Nominal versus Percentage Risk Factors and Sensitivities	330
	III.5.3	Cash Flo	w Mapping	332
		III.5.3.1	Present Value Invariant and Duration Invariant Maps	332
		III.5.3.2	PV01 Invariant Cash Flow Maps	333
		III.5.3.3	Volatility Invariant Maps	334
		III.5.3.4	Complex Cash Flow Maps	336
	III.5.4	Applicati	ons of Cash Flow Mapping to Market Risk Management	337
		III.5.4.1	Risk Management of Interest Rate Sensitive Portfolios	337
		III.5.4.2	Mapping Portfolios of Commodity Futures	338
	III.5.5	Mapping	an Options Portfolio to Price Risk Factors	340
		III.5.5.1	Taylor Expansions	341
		III.5.5.2	Value Delta and Value Gamma	342
		III.5.5.3	Delta–Gamma Approximation: Single Underlying	344
		III.5.5.4	Effect of Gamma on Portfolio Risk	346
		III.5.5.5	Price Beta Mapping	347
		III.5.5.6	Delta–Gamma Approximation: Several Underlyings	349
		III.5.5.7	Including Time and Interest Rates Sensitivities	351
	III.5.6	Mapping	Implied Volatility	353
		III.5.6.1	Vega Risk in Options Portfolios	353
		III.5.6.2	Second Order Approximations: Vanna and Volga	354
		III.5.6.3	Vega Bucketing	355
		III.5.6.4	Volatility Beta Mapping	356
	III.5.7	Case Stu	dy: Volatility Risk in FTSE 100 Options	357
		III.5.7.1	Estimating the Volatility Betas	357
		III.5.7.2	Model Risk of Volatility Mapping	360
		III.5.7.3	Mapping to Term Structures of Volatility Indices	361
		III.5.7.4	Using PCA with Volatility Betas	361
	III.5.8	Summary	and Conclusions	364

References

367

Index

List of Figures

Drian wield aurway
Plice-yleid cuives
Bond price versus
maturity
Bond yield versus
maturity
US Treasury 3-month spot
rate, 1961–2006
UK spot rate curve,
January 2000 to December
2007
UK government spot and
6-month forward rates on
(a) 2 May 2000 and (b) 2
(a) 2 may 2000 and (b) 2 May 2003
Future value of a bond
under two different yield
Cash flows on a vanilla
swap
out as a function of
maturity
Uncertainty about future
values of a single cash
flow
UK LIBOR curve
(Svensson model)
UK LIBOR curve
(B-splines)
Difference between
Svensson rates and
B-spline rates
RMSE errors from the
model calibrations

14	III.1.15	Forward rate volatility	
		estimates based on	
15		B-splines and Svensson	56
	III.1.16	Forward rate correlation	
16		estimates (Svensson	
		model)	57
17	III.1.17	Forward rate correlation	
		estimates (B-spline model)	57
	III.1.18	Bank of England forward	
19		curve – volatilities	58
	III.1.19	Bank of England forward	
		curve - correlations	58
	III.2.1	Price-yield relationship	
20		for 5% semi-annual bond	
		with maturity 7 years	71
	III.2.2	Cheapest to deliver as a	
23		function of yield	73
	III.2.3	WTI crude oil constant	
37		maturity futures prices	76
	III.2.4	Henry Hub natural gas	
42		constant maturity futures	
		prices	77
	III.2.5	PJM electricity constant	
47		maturity futures prices	77
	III.2.6	Silver constant maturity	
53		futures prices	78
	III.2.7	Yellow corn constant	
54		maturity futures prices	78
	III.2.8	Lean hogs constant	
		maturity futures prices	79
54	III.2.9	Volume and open interest	
		on all Vix futures traded	
55		on CBOE	84

III.2.10	Vix December 2007		III.3.2	Pay-offs to a standard call
	futures prices and open			and put and an up and out
	interest	85		barrier
III.2.11	The no arbitrage range for		III.3.3	Early exercise boundary
	the market price of a			for an American call
	financial future	96	III.3.4	Early exercise boundary
III.2.12	Correlation between spot			for an American put
	and futures prices: crude		III.3.5	Relationship between
	oil	98		underlying price, delta and
III.2.13	The fair value of the basis			gamma
	over time	99	III.3.6	Bull spread or long collar
111.2.14	Spot and futures price of			P&L
	electricity	101	III.3.7	Bear spread or short collar
111.2.15	Mean-variance hedging	104		P&L
	with perfect hedge	104	III.3.8	P&L to 2:1 call ratio
111.2.16	Mean–variance hedging			spread
	with proxy hedge or	105	III.3.9	P&L to 2:1 put ratio
III 0 17	Bacanatmicted price corrige	105		spread
111,4,17	for the portfolio	110	III.3.10	Straddle P&L
TTT 2 18	NVMEX WTI crude oil	119	III.3.11	Strangle P&L
111.2.10	constant maturity futures		III.3.12	P&L profile of butterfly
	prices	120		spread
III.2.19	NYMEX heating oil	120	III.3.13	P&L profile of condor
111.2.17	constant maturity futures		III.3.14	Replicating a simple P&L
	prices	120		profile
III.2.20	NYMEX unleaded		III.3.15	Black–Scholes–Merton
	gasoline constant maturity			call option prices as a
	futures prices	121		function of S
III.2.21	EWMA minimum		III.3.16	Adjusting option prices for
	variance hedge ratios for			uncertainty in volatility
	crude oil	128	III.3.17	BSM delta for options of
III.2.22	Minimum variance hedge			different strike and
	ratios for the FTSE 100		III 2 1 0	maturity
	stock index	131	111.3.18	BSM theta for options of
III.2.23	Effectiveness of minimum			different strike and
	variance hedging over		111 2 10	maturity
	time: FTSE 100	132	111.3.19	BSM rho for options of
III.2.24	Effectiveness of minimum			different strike and
	variance hedging over		111.2.20	maturity
	time: NASDAQ	132	111.3.20	BSIM gamma for options
111.2.25	Effectiveness of minimum			of different strike and
	variance hedging over	100	TTT 2 A1	maturity
III 2 1	time: Hang Seng	133	111.3.21	Black-Scholes-Merton
111.5.1	Binomial tree with three	1.40		option prices as a function
	steps	149		or volatility

xv

III.3.22	BSM vega for options of		III.4.3	Vola
	different strike and			oil c
	maturity	191		2006
III.3.23	BSM volga for options of		III.4.4	Vola
	different strike and			gas (
	maturity	192	III.4.5	Equi
III.3.24	BSM vanna for options of			term
	different strike and		III.4.6	S&P
	maturity	192		vola
III.3.25	Time line of spot and		III.4.7	A sv
	forward rates	196		surfa
III.3.26	Historical data on UK		III.4.8	Impl
	forward LIBOR rates	203		for t
III.3.27	Forward rate historical			Tabl
	volatilities	204	III.4.9	Loca
III.3.28	Forward rate historical			the c
	correlations	205		III.4
III.3.29	The first three		III.4.10	Mar
	eigenvectors of the		III.4.11	Com
	forward rate correlation			mixt
	matrix	205		delta
III.3.30	Volatility factors	207	III.4.12	Com
III.3.31	Value of exchange option			mixt
	versus asset's correlation	210		gam
III.3.32	Approximate price for a		III.4.13	One
	spread option as a			vola
	function of M	212		and
III.3.33	Quanto versus compo put		III.4.14	Fixe
	price as a function of			ATN
	strike	214		FTS
III.3.34	Price of chooser versus		III.4.15	Eige
	choice time (days before		III.4.16	Eige
	expiry)	215	III.4.17	First
III.3.35	Price of a capped call			com
	versus cap level	217	III.4.18	ATN
III.3.36	Price of look-forward put		1110 1010	sens
	option versus minimum		III 4 19	Un
	price achieved so far	219	111.1.17	sens
III.3.37	Up and out barrier call			auad
	price with respect to		III 4 20	Five
	maturity	221	111 .7. 4V	sene
III.4.1	Solver setting for backing			FTC
	out implied volatility	232		Octo
III.4.2	Implied volatility skew of		III / 2 1	Corr
	March 2005 FTSE 100		111.7.41	adin
	index future options	234		delte
				uenta

	III.4.3	Volatility skews on crude	
		oil options in March	
		2006	237
	III.4.4	Volatility skews on natural	
		gas options in March 2006	237
2	III.4.5	Equity implied volatility	
		term structures	239
	III.4.6	S&P 500 implied	
		volatility surface	240
	III.4.7	A swaption volatility	
,		surface	243
	III.4.8	Implied volatility surface	
	111.110	for the option prices in	
		Table III 4 4	246
	III 4 9	Local volatility surface for	210
	111.11/	the option prices in Table	
		III 4 4	247
	III / 10	Market implied volatilities	252
	III. 4 .10	Comparison of lognormal	232
	111.4.11	mixture and PSM	
			252
,	III <i>4</i> 13	Comparison of lognormal	232
	111.4.12	Comparison of Toghorman	
		mixture and BSM	252
'		gammas	253
	111.4.13	One-month implied	
		volatilities, ATM volatility	
		and the FTSE 100 index	258
	111.4.14	Fixed strike spreads over	
		ATM volatility and the	
-		FTSE 100 index	259
	III.4.15	Eigenvectors (covariance)	260
	III.4.16	Eigenvectors (correlation)	261
	III.4.17	First three principal	
_		components	261
	III.4.18	ATM implied volatility	
		sensitivity to FTSE index	263
	III.4.19	Up and down returns	
)		sensitivities in the	
		quadratic EWMA model	264
	III.4.20	Fixed strike price	
		sensitivities of 1-month	
		FTSE 100 options on 1	
2		October 1998	265
	III.4.21	Comparison of BSM and	
		adjusted 'market' position	
-		deltas	267

III.4.22	Mean reversion in		
	variance	274	
III.4.23	Local volatility surface		
	belonging to a stochastic		
	volatility model	277	
III.4.24	Simulation of price and		
	Heston volatility	279	
III.4.25	Comparison of GARCH		
	and Heston volatility		
	simulations	283	
III.4.26	Simulations from CEV		
	processes	285	
III.4.27	SABR price and alpha	286	
III.4.28	Simulation from Merton's		
	lognormal jump diffusion	288	
III.4.29	Why scale invariance		
	models have floating local		
	volatility smiles	293	
III.4.30	Comparison of hedging		
	error distributions: delta		
	hedge	302	
III.4.31	Comparison of hedging		
	error distributions:		
	delta–gamma hedge	302	
III.4.32	Bloomberg variance swap		
	rates	305	
III.4.33	Calendar spread on		
	variance swap rates	306	
III.4.34	Ex post 30-day variance		
	risk premia	307	
III.4.35	Vftse 30 and the FTSE		
	100 index	310	

III.4.36	Term structures of FTSE	
	100 implied volatility	
	indices during 2005	310
III.4.37	Vftse term structure on 14	
	June 2006	311
III.4.38	Volatility indices, daily	
	historical data	312
III.4.39	Comparison of Vix	
	volatility and Vix futures	
	volatility	314
III.4.40	The Vix smile surface on	
	30 May 2007	315
III.4.41	Skews in Vix options	315
III.5.1	A volatility invariant	
	commodity futures or	
	forwards mapping	340
III.5.2	Delta–gamma	
	approximation	344
III.5.3	Effect of positive gamma	347
III.5.4	Three-month ATM and	
	fixed strike implied	
	volatilities of the FTSE	
	100 index	358
III.5.5	EWMA volatility betas	
	$(\lambda = 0.95)$ with respect to	
	the 3-month ATM implied	
	volatilities of the FTSE	
	100 index	359
III.5.6	Vftse term structure	
	during 2006	362
III.5.7	Factor weights on the	
	first three principal	
	components	363

List of Tables _____

	D: 1
111.1.1	Discretely compounded
	spot and forward rates
III.1.2	Examples of bonds
III.1.3	Market interest rates
III.1.4	Bond prices
III.1.5	Bond yields
III.1.6	Some market interest rates
III.1.7	Estimates and standard
	errors of one-factor
	interest rate models
III.1.8	Macaulay duration of a
	simple bond
III.1.9	A zero coupon yield curve
III.1.10	Duration-convexity
	approximation
III.1.11	Two bonds
III.1.12	Value duration and value
	convexity
III.1.13	An immunized bond
	portfolio
III.1.14	The value of a vanilla
	swap
III.1.15	USD and GBP 6-month
	LIBOR rates and spot
	GBP/USD exchange rate
III.1.16	Payments on a
	cross-currency basis swap
III.1.17	PV01 for a bond
III.1.18	PV01 for a cash flow
III.1.10 III.1.19	Forward rates and their
1111111	volatilities (in basis
	points)
III.1 20	Expectation and standard
111.1.40	deviation of future PV
III 1 2 1	Six bonds
111.1.4	SIA UUIUS

	III.1.22	Bootstrapping zero	
7		coupon yields	50
9	III.2.1	Bond futures prices,	
12		volume and open interest,	
12		19 October 2007	70
13	III.2.2	Conversion factors for	
15		10-year US Treasury note	
		futures	72
	III.2.3	Contract specifications for	
18		French corn futures	75
	III.2.4	ETFs in the United States,	
22		Europe and the world	81
22	III.2.5	Correlation between spot	
		and futures returns: stock	
26		indices	97
27	III.2.6	Number of futures	
27		contracts in an energy	
21		futures trading book	118
28	III.2.7	Daily correlations of	
20		futures prices at selected	
36		maturities	121
50	III.2.8	Results of PCA on the	
		futures returns covariance	
38		matrix	122
50	III.2.9	Minimum variance hedges	
39		to reduce to volatility of	
43		the futures portfolio	124
45	III.2.10	Daily minimum variance	
		hedge ratios, 2001-2006	127
	III.3.1	Moneyness of vanilla puts	
46		and calls	155
	III.3.2	Example of delta-gamma	
47		hedged portfolio	165
50	III.3.3	Position Greeks	166

III.3.4	Black-Scholes-Merton		III.4.10	Standard deviation of	
	Greeks (with respect to a			hedging errors relative to	
	spot price)	186		standard deviation of	
III.3.5	BSM Greeks for a			BSM hedging errors: S&P	
	150-day put option with			500 June 2004 options	301
	strike 90	186	III.4.11	Volatility indices on	
III.3.6	BSM prices and Greeks			CBOE and Eurex	312
	for some forex options	194	III.4.12	GARCH parameter	
III.3.7	Forward rates (on 1 April			estimates for volatility of	
	2009) and cash flow			Vix spot and Vix futures	314
	schedule for the cap	197	III.5.1	Fundamental risk factors	
III.3.8	Caplet and floorlet prices			by position type and broad	
	and sensitivities	198		asset class	331
III.3.9	Eigenvectors, volatilities		III.5.2	PV01 invariant cash flow	
	and forward rate volatility			mapping	334
	factors	206	III.5.3	Volatilities and	
111.3.10	Best of/worst of option			correlations of the	
TTT 4 4	prices	211		mapping set	336
111.4.1	Market prices of March		III.5.4	Value deltas and gammas	344
	options on FISE 100		III.5.5	Delta–gamma	
	index: Closing prices on	222		approximation (1%	
111 4 2	19 January 2005	233		change in S)	346
111.4.2	volatilitias 1 April 2003	220	III.5.6	A portfolio with four	
III / 3	ATM swaption implied	239		options	352
111.4.3	volatilitias for US LIBOP		III.5.7	Curves for valuing	
	swaptions 5 March 2004	243		the four options of	
III <i>4</i> 4	Call option prices	2+3 246		Table III.5.6	352
III.4.4 III.4.5	Market prices of standard	240	III.5.8	Option price sensitivities	352
111.110	European call options	251	III.5.9	A portfolio of options on	
III.4.6	Eigenvalues	259		FTSE 100	358
III.4.7	Parameters chosen for	207	III.5.10	Net vega of the options in	
	Heston model simulation	279		Table III.5.9	358
III.4.8	Parameters used in	,	III.5.11	Net value vega on	
	simulations	282		3-month FTSE 100 ATM	
III.4.9	Simulated underlying			volatility	359
	prices under different		III.5.12	Net vegas, eigenvalues	
	stochastic volatility			and normalized	
	models	284		eigenvectors	362

List of Examples _____

111.1.1	Continuous versus discrete
	compounding
III.1.2	Calculating forward rates
	(1)
III.1.3	Calculating forward rates
	(2)
III.1.4	Calculating the present
	value and yield of fixed
	coupon bonds
III.1.5	The effect of coupon
	and maturity on the
	price-vield curve
III.1.6	Comparison of yield
	curves for different bonds
III.1.7	Macaulay duration
III.1.8	Macaulay duration as a
	risk measure
III.1.9	Duration-convexity
	approximation
III.1.10	Immunizing bond
	portfolios
III.1.11	Yield on semi-annual
	bond
III.1.12	Duration and convexity of
	a semi-annual bond
III.1.13	Pricing a simple floater
III.1.14	Yield and duration of a
	simple floater
III.1.15	Valuing a swap
III.1.16	A cross-currency basis
	swap
III.1.17	A simple total return swap
III.1.18	Calculating the PV01 of a
	simple bond
III.1.19	Calculating PV01
	-

	111.1.20	Standard deviation of	
5		future PV	46
	III.1.21	Coupon stripping	50
6	III.2.1	Finding the conversion	
		factor and delivery	
7		price	71
	III.2.2	Calculating the dividend	
		yield	89
12	III.2.3	Fair value of a stock index	
		futures contract (zero	
		margin)	89
13	III.2.4	Exposure to stock index	
		futures	91
14	III.2.5	Forward forex exposure	92
21	III.2.6	Difference between fair	
		value and market value	95
22	III.2.7	Price risk and position risk	
		of naïve and minimum	
26		variance hedges	108
	III.2.8	Proxy hedging	110
27	III.2.9	Interest rate risk on a	
		hedged foreign investment	113
29	III.2.10	Beta and the minimum	
		variance hedge ratio	115
30	III.2.11	Hedging a stock portfolio	115
32	III.2.12	Basis risk in a hedged	
		stock portfolio	115
32	III.2.13	Hedging an international	
35		stock portfolio	116
	III.2.14	Hedging the cheapest to	
38		deliver	125
40	III.3.1	A simple delta hedge	161
	III.3.2	Net position delta	164
43	III.3.3	A simple delta–gamma	
45		hedge	165

III.3.4	A simple	
	delta–gamma–vega hedge	166
III.3.5	Black–Scholes–Merton	
	call and put prices	180
III.3.6	Adjusting BSM prices for	
	uncertainty in volatility	185
III.3.7	BSM Greeks	186
III.3.8	A delta–gamma–vega–	
	volga neutral forex	
	options portfolio	193
III.3.9	Pricing a cap	197
III.3.10	Exchange option price vs	
	correlation	210
III.3.11	Options on best of two	
	and worst of two assets	210
III.3.12	Pricing a spread option	212
III.3.13	Comparison of quanto and	
	compo option prices	213
III.3.14	Pricing a power option	214
III.3.15	Pricing a chooser option	215
III.3.16	Finding the fair premium	
	for a contingent option	216
III.3.17	Pricing a capped call	217
III.3.18	Price of a look-forward	
	put	219
III.3.19	Prices of up and in and up	
	and out barrier calls	220
III.3.20	Pricing a geometric	
	average price option	223
III.3.21	Pricing an arithmetic	
	average strike option	224
III.4.1	Backing out implied	
	volatility	231
III.4.2	Equity index implied	
	volatilities	233
III.4.3	Calibration of a local	
	volatility surface	245
III.4.4	Calibrating a simple	
	lognormal mixture	
	diffusion	251

	III.4.5	Delta and gamma from	
5		lognormal mixture model	251
	III.4.6	Adjusting delta for skew	
)		dynamics	267
	III.4.7	GARCH annual and daily	
5		parameters	282
5	III.4.8	GARCH option pricing	284
	III.4.9	Expected pay-off to a	
		variance swap	304
3	III.4.10	Marking a variance swap	
7		to market	305
	III.4.11	Calendar spreads on	
)		variance swaps	306
	III.5.1	Duration and present value	
0		invariant cash flow maps	333
2	III.5.2	Mapping cash flows to	
		preserve volatility	335
3	III.5.3	A present value, PV01	
4		and volatility invariant	
5		cash flow map	336
	III.5.4	Mapping commodity	
5		futures or forward	
7		positions	339
	III.5.5	Value delta of a portfolio	
9		with multiple underlying	
		assets	343
)	III.5.6	Delta–gamma	
		approximation with single	
3		underlying	345
	III.5.7	Delta–gamma	
4		approximation for an S&P	
		500 options portfolio	345
1	III.5.8	Delta-gamma mapping to	
		a single underlying	349
3	III.5.9	Delta–gamma	
		approximation for a	
5		portfolio of bond and	
		stock options	350
	III.5.10	Delta-gamma-theta-rho	
1		approximation	352

Foreword

How many children dream of one day becoming risk managers? I very much doubt little Carol Jenkins, as she was called then, did. She dreamt about being a wild white horse, or a mermaid swimming with dolphins, as any normal little girl does. As I start crunching into two kilos of Toblerone that Carol Alexander-Pézier gave me for Valentine's day (perhaps to coax me into writing this foreword), I see the distinctive silhouette of the Matterhorn on the yellow package and I am reminded of my own dreams of climbing mountains and travelling to distant planets. Yes, adventure and danger! That is the stuff of happiness, especially when you daydream as a child with a warm cup of cocoa in your hands.

As we grow up, dreams lose their naivety but not necessarily their power. Knowledge makes us discover new possibilities and raises new questions. We grow to understand better the consequences of our actions, yet the world remains full of surprises. We taste the sweetness of success and the bitterness of failure. We grow to be responsible members of society and to care for the welfare of others. We discover purpose, confidence and a role to fulfil; but we also find that we continuously have to deal with risks.

Leafing through the hundreds of pages of this four-volume series you will discover one of the goals that Carol gave herself in life: to set the standards for a new profession, that of market risk manager, and to provide the means of achieving those standards. Why is market risk management so important? Because in our modern economies, market prices balance the supply and demand of most goods and services that fulfil our needs and desires. We can hardly take a decision, such as buying a house or saving for a later day, without taking some market risks. Financial firms, be they in banking, insurance or asset management, manage these risks on a grand scale. Capital markets and derivative products offer endless ways to transfer these risks among economic agents.

But should market risk management be regarded as a professional activity? Sampling the material in these four volumes will convince you, if need be, of the vast amount of knowledge and skills required. A good market risk manager should master the basics of calculus, linear algebra, probability – including stochastic calculus – statistics and econometrics. He should be an astute student of the markets, familiar with the vast array of modern financial instruments and market mechanisms, and of the econometric properties of prices and returns in these markets. If he works in the financial industry, he should also be well versed in regulations and understand how they affect his firm. That sets the academic syllabus for the profession.

Carol takes the reader step by step through all these topics, from basic definitions and principles to advanced problems and solution methods. She uses a clear language, realistic illustrations with recent market data, consistent notation throughout all chapters, and provides a huge range of worked-out exercises on Excel spreadsheets, some of which demonstrate analytical tools only available in the best commercial software packages. Many chapters on

advanced subjects such as GARCH models, copulas, quantile regressions, portfolio theory, options and volatility surfaces are as informative as and easier to understand than entire books devoted to these subjects. Indeed, this is the first series of books entirely dedicated to the discipline of market risk analysis written by one person, and a very good teacher at that.

A profession, however, is more than an academic discipline; it is an activity that fulfils some societal needs, that provides solutions in the face of evolving challenges, that calls for a special code of conduct; it is something one can aspire to. Does market risk management face such challenges? Can it achieve significant economic benefits?

As market economies grow, more ordinary people of all ages with different needs and risk appetites have financial assets to manage and borrowings to control. What kind of mortgages should they take? What provisions should they make for their pensions? The range of investment products offered to them has widened far beyond the traditional cash, bond and equity classes to include actively managed funds (traditional or hedge funds), private equity, real estate investment trusts, structured products and derivative products facilitating the trading of more exotic risks – commodities, credit risks, volatilities and correlations, weather, carbon emissions, etc. – and offering markedly different return characteristics from those of traditional asset classes. Managing personal finances is largely about managing market risks. How well educated are we to do that?

Corporates have also become more exposed to market risks. Beyond the traditional exposure to interest rate fluctuations, most corporates are now exposed to foreign exchange risks and commodity risks because of globalization. A company may produce and sell exclusively in its domestic market and yet be exposed to currency fluctuations because of foreign competition. Risks that can be hedged effectively by shareholders, if they wish, do not have to be hedged in-house. But hedging some risks in-house may bring benefits (e.g. reduction of tax burden, smoothing of returns, easier planning) that are not directly attainable by the shareholder.

Financial firms, of course, should be the experts at managing market risks; it is their métier. Indeed, over the last generation, there has been a marked increase in the size of market risks handled by banks in comparison to a reduction in the size of their credit risks. Since the 1980s, banks have provided products (e.g. interest rate swaps, currency protection, index linked loans, capital guaranteed investments) to facilitate the risk management of their customers. They have also built up arbitrage and proprietary trading books to profit from perceived market anomalies and take advantage of their market views. More recently, banks have started to manage credit risks actively by transferring them to the capital markets instead of warehousing them. Bonds are replacing loans, mortgages and other loans are securitized, and many of the remaining credit risks can now be covered with credit default swaps. Thus credit risks are being converted into market risks.

The rapid development of capital markets and, in particular, of derivative products bears witness to these changes. At the time of writing this foreword, the total notional size of all derivative products exceeds \$500 trillion whereas, in rough figures, the bond and money markets stand at about \$80 trillion, the equity markets half that and loans half that again. Credit derivatives by themselves are climbing through the \$30 trillion mark. These derivative markets are zero-sum games; they are all about market risk management – hedging, arbitrage and speculation.

This does not mean, however, that all market risk management problems have been resolved. We may have developed the means and the techniques, but we do not necessarily

understand how to address the problems. Regulators and other experts setting standards and policies are particularly concerned with several fundamental issues. To name a few:

- How do we decide what market risks should be assessed and over what time horizons? For example, should the loan books of banks or long-term liabilities of pension funds be marked to market, or should we not be concerned with pricing things that will not be traded in the near future? We think there is no general answer to this question about the most appropriate description of risks. The descriptions must be adapted to specific management problems.
- 2. In what contexts should market risks be assessed? Thus, what is more risky, fixed or floating rate financing? Answers to such questions are often dictated by accounting standards or other conventions that must be followed and therefore take on economic significance. But the adequacy of standards must be regularly reassessed. To wit, the development of International Accounting Standards favouring mark-to-market and hedge accounting where possible (whereby offsetting risks can be reported together).
- 3. To what extent should risk assessments be 'objective'? Modern regulations of financial firms (Basel II Amendment, 1996) have been a major driver in the development of risk assessment methods. Regulators naturally want a 'level playing field' and objective rules. This reinforces a natural tendency to assess risks purely on the basis of statistical evidence and to neglect personal, forward-looking views. Thus one speaks too often about risk 'measurements' as if risks were physical objects instead of risk 'assessments' indicating that risks are potentialities that can only be guessed by making a number of assumptions (i.e. by using models). Regulators try to compensate for this tendency by asking risk managers to draw scenarios and to stress-test their models.

There are many other fundamental issues to be debated, such as the natural tendency to focus on micro risk management – because it is easy – rather than to integrate all significant risks and to consider their global effect – because that is more difficult. In particular, the assessment and control of systemic risks by supervisory authorities is still in its infancy. But I would like to conclude by calling attention to a particular danger faced by a nascent market risk management profession, that of separating risks from returns and focusing on downside-risk limits.

It is central to the ethics of risk managers to be independent and to act with integrity. Thus risk managers should not be under the direct control of line managers of profit centres and they should be well remunerated independently of company results. But in some firms this is also understood as denying risk managers access to profit information. I remember a risk commission that had to approve or reject projects but, for internal political reasons, could not have any information about their expected profitability. For decades, credit officers in most banks operated under such constraints: they were supposed to accept or reject deals a priori, without knowledge of their pricing. Times have changed. We understand now, at least in principle, that the essence of risk management is not simply to reduce or control risks but to achieve an optimal balance between risks and returns.

Yet, whether for organizational reasons or out of ignorance, risk management is often confined to setting and enforcing risk limits. Most firms, especially financial firms, claim to have well-thought-out risk management policies, but few actually state trade-offs between risks and returns. Attention to risk limits may be unwittingly reinforced by regulators. Of course it is not the role of the supervisory authorities to suggest risk–return trade-offs; so supervisors impose risk limits, such as value at risk relative to capital, to ensure safety and fair competition in the financial industry. But a regulatory limit implies severe penalties if breached, and thus a probabilistic constraint acquires an economic value. Banks must therefore pay attention to the uncertainty in their value-at-risk estimates. The effect would be rather perverse if banks ended up paying more attention to the probability of a probability than to their entire return distribution.

With *Market Risk Analysis* readers will learn to understand these long-term problems in a realistic context. Carol is an academic with a strong applied interest. She has helped to design the curriculum for the Professional Risk Managers' International Association (PRMIA) qualifications, to set the standards for their professional qualifications, and she maintains numerous contacts with the financial industry through consulting and seminars. In *Market Risk Analysis* theoretical developments may be more rigorous and reach a more advanced level than in many other books, but they always lead to practical applications with numerous examples in interactive Excel spreadsheets. For example, unlike 90% of the finance literature on hedging that is of no use to practitioners, if not misleading at times, her concise expositions on this subject give solutions to real problems.

In summary, if there is any good reason for not treating market risk management as a separate discipline, it is that market risk management should be the business of *all* decision makers involved in finance, with primary responsibilities on the shoulders of the most senior managers and board members. However, there is so much to be learnt and so much to be further researched on this subject that it is proper for professional people to specialize in it. These four volumes will fulfil most of their needs. They only have to remember that, to be effective, they have to be good communicators and ensure that their assessments are properly integrated in their firm's decision-making process.

Jacques Pézier

Preface to Volume III

A *financial instrument* is a legal contract between two or more parties that defines conditions under which the various parties incur costs and receive benefits. A cost or benefit need not be a monetary amount; it could be a commodity, for instance. The simplest type of financial instrument is a *financial asset*, which is a legal claim on a real asset such as a company, a commodity, cash, gold or a building. A *financial security* is a standardized form of financial asset that is traded in an organized market. For instance, equity securities (shares on a company's stock) are traded on exchanges and debt securities such as bonds and money market instruments (including bills, notes and repurchase agreements) are traded in brokers' markets.

A *derivative contract*, usually called a 'derivative' for short, is another type of financial instrument which is a contract on one or more *underlying* financial instruments. The underlying of a derivative does not have to be a traded asset or an interest rate. For instance, futures on carbon emissions or temperature have started trading on exchanges during the last few years. Derivatives are the fastest-growing class of financial instruments and the notional amount outstanding now far exceeds the size of ordinary securities markets. For instance, in 2007 the Bank for International Settlements estimated the total size of the debt securities market (including all corporate, government and municipal bonds and money market instruments) to be approximately US\$70 trillion. However, the amount outstanding on all interest rate derivatives was nearly \$300 trillion.

The most common types of financial derivatives are futures and forwards, swaps and options, and within each broad category there are numerous subcategories, so there is a huge diversity of financial derivatives. For instance, the vast majority of the trading in swaps is on interest rate swaps, but credit default swaps and cross-currency basis swaps are also heavily traded. Other swaps include variance swaps, covariance swaps, equity swaps and contracts for differences. But the greatest diversity amongst all derivative instruments can be found in the category of options. Options can be defined on virtually any underlying contract, including options on derivatives such as futures, swaps and other options. Many options, mostly standard calls and puts, are traded on exchanges, but there is a very active over-the-counter (OTC) market in non-standard options. Since the two parties in an OTC contract are free to define whatever terms they please, the pay-off to the holder of an OTC option can be freely defined. This means that ever more exotic options are continually being introduced, with pay-off profiles that can take virtually any shape.

A *portfolio* is a collection of financial instruments. An investor holds a portfolio with the aim of obtaining a particular return on his investment and to spread his risk. The more

differences between the financial instruments available to the investor, the better he can diversify his risk. Risk can be substantially reduced in large, well-diversified portfolios, but there can never be zero risk associated with any return above the risk free rate, and some investors are more averse to taking risks than others. The main reason for the terrific number of different financial instruments is that the risk–return profiles of different investors are not the same. Each new type of instrument is introduced specifically because it purports to provide its own unique profile of risk and return.

AIMS AND SCOPE

This book is designed as a text for advanced university and professional courses in finance. It provides a pedagogical and complete treatment of the characteristics of the main categories of financial instruments, i.e. bonds, swaps, futures and forwards, options and volatility. Given the tremendous diversity of financial instruments, it is not surprising that there are many books that deal with just one type of financial instrument. Often the textbooks that cover fixed income securities alone, or just futures and forwards, or swaps or options, are large books that go into considerable details about specific market conventions. Some present each subcategory of instrument in its own unique theoretical framework, or include all mathematical details. By contrast, this book adopts a general framework whenever possible and provides a concise but rigorous treatment of only the essential mathematics.

To cover all major financial instruments (excluding credit derivatives) in one volume, one has to be very selective in the material presented. The reason why I have decided to exclude credit derivatives is that this book series is on market risk and not credit risk. Also I have not set up the background in Volume I, *Quantitative Methods in Finance*, to be able to cover credit derivatives in the same detail as I can analyse swaps, futures, options and volatility. Also we do not have a chapter specifically devoted to cash equity in this volume. This material naturally belongs in the Econometrics volume of *Market Risk Analysis*. A large part of Volume II, *Practical Financial Econometrics*, concerns cash equity portfolios, including the regression factor models that are used to analyse their risk and return and more advanced equity trading strategies (e.g. pairs trading based on cointegration).

Readers will appreciate the need to be concise, and whilst a mathematically rigorous approach is adopted some detailed proofs are omitted. Instead we refer readers to tractable sources where proofs may be perused, if required. My purpose is really to focus on the important concepts and to illustrate their application with practical examples. Even though this book omits some of the detailed arguments that are found in other textbooks on financial instruments, I have made considerable effort not to be obscure in any way. Each term is carefully defined, or a cross-reference is provided where readers may seek further enlightenment in other volumes of *Market Risk Analysis*. We assume no prior knowledge of finance, but readers should be comfortable with the scope of the mathematical material in Volume I and will preferably have that volume to hand. In order to make the exposition accessible to a wide audience, illustrative examples are provided immediately after the introduction of each new concept and virtually all of these examples are also worked through in interactive Excel spreadsheets.

This book is much shorter than other general books on financial instruments such as Wilmott (2006), Hull (2008) and Fabozzi (2002), one reason being that we omit credit derivatives. Many other textbooks in this area focus on just one particular category

of financial instrument. Thus there is overlap with several existing books. For instance, Chapter 3 on *Options* covers the same topics as much of the material in James (2003). A similar remark applies to Gatheral (2006), which has content similar to the first 75 pages of Chapter 4, on *Volatility* but in Gatheral's book this is covered in greater mathematical depth.

The readership of this volume is likely to be equally divided between finance professionals and academics. The main professional audience will be amongst traders, quants and risk managers, particularly those whose work concerns the pricing and hedging of bonds, swaps, futures and forwards, options and volatility. The main academic audience is for faculty involved with teaching and research and for students at the advanced master's or PhD level in finance, mathematical finance or quantitative market risk management. There are only five (extremely long) chapters and each aims to provide sufficient material for a one-semester postgraduate course, or for a week's professional training course.

OUTLINE OF VOLUME III

Chapter 1, *Bonds and Swaps*, begins by introducing fundamental concepts such as the compounding of interest and the relationship between spot and forward rates, by providing a catalogue of fixed and floating coupon bonds by issuer and maturity and by performing a basic analysis of fixed coupon bonds, including the price—yield relationship, the characteristics of the zero coupon spot yield curve and the term structure of forward interest rates. We cover duration and convexity for single bonds and then for bond portfolios, the Taylor expansion to approximate the change in portfolio price for a parallel shift in the yield curve, and the traditional approach to bond portfolio immunization. Then we look at floating rate notes, forward rate agreements and interest rate swaps and explain their relationship; we analyse the market risk of an interest rate swap and introduce the PV01 and the dollar duration of cash flow. Bootstrapping, splines and parametric yield curve fitting methods and convertible bonds are also covered in this chapter.

Chapter 2, *Futures and Forwards*, gives details of the futures and forward markets in interest rates, bonds, currencies, commodities, stocks, stock indices, exchange traded funds, volatility indices, credit spreads, weather, real estate and pollution. Then we introduce the no arbitrage pricing argument, examine the components of basis risk for different types of underlying contract, and explain how to hedge with futures and forwards. Mean–variance, minimum variance and proxy hedging are all covered. We illustrate how futures hedges are implemented in practice: to hedge international portfolios with forex forwards, stock portfolios with index futures, and bond portfolios with portfolios of notional bond futures. The residual risk of a hedged portfolio is disaggregated into different components, showing which uncertainties cannot be fully hedged, and we include an Excel case study that analyses the book of an energy futures trader, identifying the key risk factors facing the trader and providing simple ways for the trader to reduce his risks.

Chapter 3, *Options*, introduces the basic principles of option pricing, and the options trading strategies that are commonly used by investors and speculators; describes the characteristics of different types of options; explains how providers of options hedge their risks; derives and interprets the Black–Scholes–Merton pricing model, and a standard trader's adjustment to this model for stochastic volatility; explains how to price interest rate options and how to calibrate the LIBOR model; and provides pricing models for European exotic options. It

begins with a relatively non-technical overview of the foundations of option pricing theory, including some elementary stochastic calculus, deriving the principle of risk neutral valuation and explaining the binomial option pricing model. The scope of the chapter is very broad, covering the pricing of European and American options with and without path-dependent pay-offs, but only under the assumption of constant volatility. 'Greeks' are introduced and analysed thoroughly and numerical examples how to hedge the risks of trading options. For interest rate options we derive the prices of European caps, floors and swaptions and survey the family of mean-reverting interest rate models, including a case study on the LIBOR model. Formulae for numerous exotics are given and these, along with more than 20 other numerical examples for this chapter, are all implemented in Excel.

Chapter 4, Volatility, begins by explaining how to model the market implied and market local volatility surfaces and discusses the properties of model implied and model local volatility surfaces. A long case study, spread over three Excel workbooks, develops a dynamic model of the market implied volatility surface based on principal component analysis and uses this to estimate price hedge ratios that are adjusted for implied volatility dynamics. Another main focus of the chapter is on option pricing models with stochastic volatility and jumps. The model implied and local volatility surfaces corresponding to any stochastic volatility model are defined intuitively and several stochastic volatility models, including their applications to options pricing and hedging, are discussed. We cover a few specific models with jumps, such as the Heston jump model (but not Lévy processes) and introduce a new type of volatility jump model as the continuous version of Markov switching GARCH. We explain why the models for tradable assets (but not necessarily interest rates) must be scale invariant and why it does not matter which scale invariant model we use for dynamic delta-gamma hedging of virtually any claim (!). Then we describe the market and the characteristics of variance swaps, volatility futures and volatility options and explain how to construct a term structure of volatility indices, using for illustration the Vftse, a volatility index that is not currently quoted on any exchange. At 94 pages, it is one of the longest and most comprehensive chapters in the book.

Chapter 5, *Portfolio Mapping*, is essential for hedging market risks and also lays the foundations for Volume IV, *Value-at-Risk Models*. It begins by summarizing a portfolio's risk factors and its sensitivities to these factors for various categories of financial instruments, including cash and futures or forward portfolios on equities, bonds, currencies and commodities and portfolios of options. Then it covers present value, duration, volatility and PV01 invariant cash flow mapping, illustrating these with simple interactive Excel spreadsheets. Risk factor mapping of futures and forward portfolios, and that of commodity futures portfolios in particular, and mappings for options portfolios are covered, with all technical details supported with Excel spreadsheets. Mapping a volatility surface is not easy and most vega bucketing techniques are too crude, so this is illustrated with a case study based on the Vftse index. Statistical techniques such as regression and principal component analysis are used to reduce the dimension of the risk factor space and the chapter also requires some knowledge of matrix algebra for multivariate delta–gamma mapping.

ABOUT THE CD-ROM

Virtually all the concepts in this book are illustrated using numerical and empirical examples which are stored in Excel workbooks for each chapter. These may be found on the accompanying CD-ROM in the folder labelled by the chapter number. Within these spreadsheets