Principles and Practice of Skin Toxicology

Editors

Robert P. Chilcott
Chemical Hazards and Poisons Division, Health Protection Agency, Chilton, UK

and

Shirley Price
School of Biomedical and Molecular Sciences, University of Surrey, UK

John Wiley & Sons, Ltd
Principles and Practice of Skin Toxicology
Principles and Practice of Skin Toxicology

Editors

Robert P. Chilcott

Chemical Hazards and Poisons Division, Health Protection Agency, Chilton, UK

and

Shirley Price

School of Biomedical and Molecular Sciences, University of Surrey, UK

John Wiley & Sons, Ltd
Dedications

(RC) For all my teachers, lecturers and professors. Especially the ones that were left in despair.

For Emlyn Evans and Trefor Pedrick. True gentlemen of knowledge.

For all of my family.

For the young ladies in my life:

Caroline, Florence Megan and Charlotte Rose.

(SP) For my partner in crime, Rob Chilcott, the more verbose member of the partnership, and Carolyn, for her patience

For Pete, my husband, and for Jessica and Jonathan for their patience during the editing of this document

For my mentors who taught me the essence of Toxicology – I am still learning!!
Contents

Foreword xv
Preface xvii
Acknowledgements xix
List of contributors xxı

PART I Introduction 1

1 Cutaneous anatomy and function 3
 Robert P. Chilcott

 1.1 Introduction and scope 3
 1.2 Surface features 3
 1.3 Functional histology of the epidermis and associated structures 8
 1.4 Species differences 13
 Summary 15
 References 15

2 Biochemistry of the skin 17
 Simon C. Wilkinson

 2.1 Introduction and scope 17
 2.2 Protein synthesis and organisation during epidermal differentiation 18
 2.3 Lipid synthesis and organisation during epidermal differentiation 19
 2.4 Lipid classes in the stratum corneum 20
 2.5 Stratum corneum turnover 23
 2.6 Biotransformations in skin 24
 Summary 42
 References 42
3 Skin photobiology

Mark A. Birch-Machin and Simon C. Wilkinson

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction and scope</td>
<td>51</td>
</tr>
<tr>
<td>3.2 Photoprotection and melanogenesis</td>
<td>51</td>
</tr>
<tr>
<td>3.3 Increased environmental ultraviolet radiation exposure and its link with photoageing and skin cancer</td>
<td>55</td>
</tr>
<tr>
<td>3.4 Mitochondrial DNA as a biomarker of sun exposure in human skin</td>
<td>60</td>
</tr>
<tr>
<td>3.5 Apoptosis</td>
<td>61</td>
</tr>
<tr>
<td>3.6 Sun protection</td>
<td>63</td>
</tr>
<tr>
<td>Summary</td>
<td>65</td>
</tr>
<tr>
<td>References</td>
<td>65</td>
</tr>
</tbody>
</table>

PART II Skin Absorption

4 Skin as a route of entry

Simon C. Wilkinson

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Salient anatomical features of the stratum corneum – the ‘brick and mortar model’</td>
<td>71</td>
</tr>
<tr>
<td>4.2 Species and regional variation in skin structure</td>
<td>72</td>
</tr>
<tr>
<td>4.3 Species and regional variation in skin permeability</td>
<td>74</td>
</tr>
<tr>
<td>4.4 Intra- and inter-individual variation in percutaneous absorption</td>
<td>75</td>
</tr>
<tr>
<td>4.5 Effect of age on skin barrier function</td>
<td>76</td>
</tr>
<tr>
<td>4.6 Role of skin appendages</td>
<td>77</td>
</tr>
<tr>
<td>4.7 The in vitro skin sandwich model</td>
<td>78</td>
</tr>
<tr>
<td>4.8 Penetration of particles through appendages</td>
<td>79</td>
</tr>
<tr>
<td>Summary</td>
<td>80</td>
</tr>
<tr>
<td>References</td>
<td>80</td>
</tr>
</tbody>
</table>

5 Physicochemical Factors Affecting Skin Absorption

Keith R. Brain and Robert P. Chilcott

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>83</td>
</tr>
<tr>
<td>5.2 Physicochemical properties</td>
<td>84</td>
</tr>
<tr>
<td>5.3 Exposure considerations</td>
<td>89</td>
</tr>
<tr>
<td>Summary</td>
<td>91</td>
</tr>
<tr>
<td>References</td>
<td>91</td>
</tr>
</tbody>
</table>

6 Principles of Diffusion and Thermodynamics

W. John Pugh and Robert P. Chilcott

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>93</td>
</tr>
<tr>
<td>6.2 Physicochemical properties</td>
<td></td>
</tr>
<tr>
<td>6.3 Exposure considerations</td>
<td></td>
</tr>
<tr>
<td>Summary</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

6.1 Introduction and scope 93
6.2 Some definitions pertaining to skin absorption kinetics 94
6.3 Basic concepts of diffusion 97
6.4 Fick’s Laws of diffusion 97
6.5 Thermodynamic activity 98
6.6 Skin absorption of a substance from two different vehicles 99
6.7 Partitioning 101
6.8 Diffusivity 102
6.9 Skin absorption data and risk assessments 105

Summary 106

References 106

7 *In vivo* measurements of skin absorption 109

James C. Wakefield and Robert P. Chilcott

7.1 Introduction and scope 109
7.2 Why conduct *in vivo* studies? 110
7.3 Ethics and legislation 110
7.4 Standard methodology: OECD Guideline 427 115
7.5 Alternative *in vivo* methods 119

Summary 126

References 126

8 *In vitro* percutaneous absorption measurements 129

Ruth U. Pendlington

8.1 Introduction and scope 129
8.2 Regulatory guidelines 129
8.3 Why assess percutaneous absorption *in vitro*? 130
8.4 Basic principle of *in vitro* percutaneous absorption measurements 131
8.5 Choice of diffusion cell 131
8.6 Skin membrane considerations 136
8.7 Integrity measurements 137
8.8 Choice of receptor fluid and sampling considerations 138
8.9 Test material considerations 139
8.10 Application of test preparation to the skin 140
8.11 Examples of results from *in vitro* skin absorption studies 142
8.12 What is considered to be absorbed? 146
8.13 Micro-autoradiography 147

Summary 147

References 147
PART III Toxicological Assessment 149

9 Skin immunology and sensitisation 151

David A. Basketter

9.1 Introduction 151
9.2 Definitions 151
9.3 Skin sensitisation 152
9.4 Identification of skin sensitisers 155
9.5 Risk assessment 160
9.6 Other types of allergic skin reaction 163
9.7 Future prospects 164

Summary 164

References 165

10 In vitro phototoxicity assays 169

Penny Jones

10.1 Introduction and scope 169
10.2 In vitro strategies for phototoxicity testing 169
10.3 The UV/visible absorption spectrum as a pre-screen for phototoxicity 171
10.4 In vitro assays for phototoxicity using monolayer cultures 172
10.5 In vitro assays for photoallergenicity 174
10.6 In vitro assays for phototoxicity using human 3-D skin models 177

Summary 181

References 181

11 In vitro alternatives for irritation and corrosion assessment 185

Penny Jones

11.1 Introduction and scope 185
11.2 Acute dermal irritation/corrosion 185
11.3 Validation/regulatory status of in vitro assays for skin corrosion 186
11.4 In vitro tests for skin corrosion 188
11.5 Validation/regulatory status of in vitro assays for skin irritation 194
11.6 In vitro tests for skin irritation 195

Summary 197

References 198

12 Instruments for measuring skin toxicity 201

Helen Taylor

12.1 Introduction and scope 201
CONTENTS

12.2 Skin surface pH 202
12.3 Biomechanical properties 204
12.4 Sebum 205
12.5 Skin surface contours 205
12.6 Thickness 205
12.7 Desquamation 205
12.8 Applications and measurement of transepidermal water loss 206
12.9 Guidance for TEWL measurements 208
12.10 Hydration measurement 209
12.11 Guidance for hydration measurements 212
12.12 Relationship between hydration and dermal toxicity 213
12.13 Colour measurement 213
12.14 Measurement of vascular perfusion 215
12.15 A final word of caution 216
 Summary 217
 References 217

PART IV Clinical Aspects 221

13 Introduction to dermatology 223
 Manjunatha Kalavala and Alex Anstey

 13.1 Introduction and scope 223
 13.2 Clinical assessment of patient with skin disease 224
 13.3 Cutaneous manifestations of disease following exposure to chemicals and pharmaceutical formulations 234
 13.4 Overview of standard treatments 241
 Summary 243

14 Clinical aspects of phototoxicity 245
 Anthony D. Pearse and Alex Anstey

 14.1 Introduction and scope 245
 14.2 UV-induced skin reactions 247
 14.3 Phototoxicity (photoirritancy) reactions 247
 14.4 Photosensitive reactions 251
 Summary 256
 References 256

15 Occupational skin diseases 259
 Jon Spiro
15.1 Introduction and scope 259
15.2 Dermatitis 260
15.3 Development of occupational dermatitis 263
15.4 Patterns of occupational dermatitis 264
15.5 Incidence of occupational dermatitis 265
15.6 Effects of dermatitis on work 265
15.7 The outlook in occupational dermatitis 266
15.8 Identification of occupational dermatitis 266
15.9 Other occupational skin disorders 267
15.10 Investigation of a case of dermatitis at work 270
Summary 276
References 276

16 Prevention of occupational skin disease 279
Chris Packham

16.1 Prevention of occupational skin disease 279
16.2 Defining the problem 280
16.3 Material safety data sheets 282
16.4 Chain of responsibility 283
16.5 Managing dermal exposure 284
16.6 Selection and use of personal protective equipment 289
16.7 Protective or ‘barrier’ creams: do they have a role? 294
16.8 The role of education and training 294
16.9 Conclusions 294
Summary 294
References 294

PART V Regulatory 297

17 Occupational skin exposures: legal aspects 299
Chris Packham

17.1 Introduction and scope 299
17.2 Brief overview of current United Kingdom legislation 300
17.3 The employer’s perspective 303
17.4 Hazard identification 304
17.5 Risk assessment 306
17.6 Gloves: a note of caution 309
Summary 310
References 310
CONTENTS

18 Safety assessment of cosmetics: an EU perspective 311
 Jo Larner

18.1 Introduction and scope 311
18.2 Overview and scope of Cosmetics Directive 76/768/EC 312
18.3 Overview of the requirements of the EU Cosmetics Directive 315
18.4 Scientific advice 316
18.5 Influence of other legislation 317
18.6 Adverse effects from cosmetics 318
18.7 Toxicity of cosmetic ingredients 320
18.8 The safety assessment 326
18.9 A final consideration 328
 Summary 329
 References 329
 Appendix 18.1 Additional obligations for cosmetic suppliers 330

19 Regulatory dermatotoxicology and international guidelines 333
 Adam Woolley

19.1 Introduction 333
19.2 Regulatory context 334
19.3 Product groups and the human context 335
19.4 Dermal toxicology with the different product groups 336
19.5 Factors in dermal toxicity 338
19.6 Repeat dose dermal toxicology 339
19.7 Classic short-term dermal toxicity studies 341
19.8 Pragmatic considerations 344
 Summary 345
 References 345

20 Glossary of main terms and abbreviations 347
 James C. Wakefield

Index 358
Foreword

Dermatologists seldom tire of telling us that the skin is a large and important organ. They are correct. The skin and the lungs are the two organ systems that are in constant and direct contact with the environment from birth to death and are thus, also, of great interest to toxicologists. The skin is susceptible to damage by a range of physical and chemical agents and responds to insult in a variety of ways. In some cases chronic exposure to chemicals leads to serious damage to the skin and to a loss of its essential protective function. Responses also include malignant changes and these, far from being protective, are sometimes lethal.

This book deals with many aspects of skin biology and skin toxicology and the editors, Dr Robert Chilcott and Dr Shirley Price, are to be congratulated on drawing together a distinguished team of authors and on producing a book that will, I think, take a leading place in the literature of his subject. The reader will find that the subject has been addressed in a systematic way beginning, appropriately, with normal structure and function and going on to consider the effects of an unusually wide range of toxic compounds. On reading this book I was struck by the truly scientific approach adopted wherever possible. This, for example in the sections dealing with the physico-chemical aspects of absorption of chemicals, has led to discussion that the beginner will find challenging. But this is appropriate in an advanced monograph and the quantitative approach developed by the authors is both very welcome and much needed in this, and other, areas of toxicology.

This book is the first from the Toxicology Unit of the Chemical Hazards and Poisons Division of the Health Protection Agency: its high standard is the best possible advertisement for our work.

Professor Robert L. Maynard CBE, FBTS
Chemical Hazards and Poisons Division,
Health Protection Agency, Chilton, UK
Preface

The idea for this book was first conceived during the planning of a module in dermal toxicology as part of the Modular Training Programme in Applied Toxicology at the University of Surrey. In preparing a background reading list for the course, it became apparent that there was a niche for a basic, introductory text on the subject. We were very fortunate in that many of the experts who lectured on the course kindly agreed to contribute chapters in their specialist area. Furthermore, considerable effort has been made to ensure that the book is not just a collection of separate monographs on discrete areas of skin toxicology but is an integrated body of general information which draws across a broad spectrum of disciplines.

We hope that this book will succeed in being a useful aid for those wishing to acquire a basic understanding of the principles and practice of skin toxicology.

Robert P. Chilcott
Shirley Price
March 2008
Acknowledgements

Firstly, we wish to thank Professor Robert Maynard for his support, advice and encouragement and for reviewing the draft manuscript.

Perhaps rather obviously, this text would have not been possible without the time and effort of the contributors to whom many thanks are due.

Finally, we would like to thank all our colleagues at the Health Protection Agency and University of Surrey for their understanding and support during times when things didn’t quite go exactly to plan.
List of contributors

Alexander Anstey, Gwent Healthcare NHS Trust, Royal Gwent Hospital, Cardiff Road, Newport, Gwent NP20 2UB, UK.

David A. Baskettter, St John’s Institute of Dermatology, St Thomas’ Hospital, London SE1 7EH, UK.

Mark Birch-Machin, Dermatological Sciences, Institute of Cellular Medicine, Newcastle-Upon-Tyne, NE2 4AA, UK.

Keith Brain, Welsh School of Pharmacy, Cardiff University, Cardiff, CF10 3XF and An-eX, Capital Business Park, Cardiff, CF3 2PX, UK.

Robert P. Chilcott, Chemical Hazards and Poisons Division, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Oxfordshire OX11 0RQ, UK.

Penny Jones, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedford, Bedfordshire MK44 1LQ, UK.

Manjunatha Kalavala, University Hospital of Wales, Heath Park, Cardiff, CF14 4NJ, UK.

Jo Larner, ForthTox Ltd, PO Box 13550, Linlithgow, West Lothian EH49 7YU, UK.

Chris Packham, Enviroderm Services, North Littleton, Evesham, WR11 8QY, UK.

Anthony D Pearse, Cutest Systems Ltd, 214 Whitchurch Road, Cardiff, CF14 3ND, UK.

Ruth U. Pendlington, Safety & Environmental Assurance Centre, Unilever Colworth Science Park, Sharnbrook, Bedford, Bedfordshire MK44 1LQ, UK.

W. John Pugh, Welsh School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF1 3XF, UK.

Jon Spiro, Capita Health Solutions, Didcot, Oxfordshire OX11 0TA, UK.

Helen Taylor, Enviroderm Services, North Littleton, Evesham, WR11 8QY, UK.

James Wakefield, Chemical Hazards and Poisons Division, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Oxfordshire OX11 0RQ, UK.

Simon C. Wilkinson, Medical Toxicology Research Centre, University of Newcastle, Newcastle-Upon-Tyne, NE2 4AA, UK.

Adam Woolley, ForthTox Limited, PO Box 13550, Linlithgow, West Lothian EH49 7YU, UK.
PART I:
Introduction
1 Cutaneous anatomy and function

Robert P. Chilcott

Chemical Hazards and Poisons Division, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Oxfordshire OX11 ORQ, UK

Primary Learning Objectives

• Appreciation of the highly variable morphology of the skin, particularly between anatomical regions (intra-individual variation) and between species.
• Basic understanding of the functional anatomy of the epidermis in relation to skin barrier properties.

1.1 Introduction and scope

In terrestrial mammals, the integument contributes to a variety of physiological functions including thermoregulation, immune defence and the prevention of catastrophic water loss. It is the barrier property of skin that is of specific relevance to dermal toxicology (dermatotoxicology), so the purpose of this chapter is to outline the anatomical and histological features that contribute to skin barrier function. Therefore, this chapter concentrates on the outermost (epidermal) layers associated with protecting the skin from the ingress of xenobiotics. More detailed information on the structure and function of the dermis and hypodermis may be found elsewhere (Forslind et al. 2004; Freinkel and Woodley 2001; Montagna 1962).

1.2 Surface features

The skin is not a homogenous covering. Its structure and function vary considerably, resulting in regional variations in permeability that may span several orders of magnitude.

The protective function of the human integument is reflected by its relatively small surface area (∼2 m²). In contrast, the lung and gastrointestinal tract have evolved to facilitate absorption and so have much higher surface areas (∼150 and 200 m², respectively).
Human skin can essentially be divided into two types; glabrous (non-hairy) and non-glabrous. The former is generally thicker and less permeable than the latter and is limited to areas such as the palms of the hand, soles of the feet and lips.

Skin surface morphology varies according to anatomical region and this is particularly evident in humans where localised, functional adaptations have resulted in overt differences in appearance (Figure 1.1). Regional differences include variation in epidermal thickness and the density of hair follicles, sweat and sebaceous ducts (Table 1.1). Other differences include the presence or absence of ridges and sulci (dermatoglyphs), flexure lines, surface roughness and extent of oily (sebaceous) deposits. It is conceivable that the presence of furrows, wrinkles or dermatoglyphs may affect the skin surface distribution of liquids applied to the skin by providing a means for capillary motion away from the point of contact, thus facilitating skin surface spreading and so increasing the area of skin contamination (Figure 1.2). However, the influence of the skin surface micro-relief on skin absorption has not been thoroughly investigated. The human integument is also characterised by lines of cleavage referred to as Langer's lines, which result from the (congenital) orientation of collagen fibres within the dermis. The lines of Langer are of clinical significance in surgical procedures: incisions made

![Figure 1.1](image)

Figure 1.1 Skin surface over the inner ear (A), hand (dorsum) (B) and wrist (ventral aspect) (C). Some dermatoglyphs are discernible on the inner ear site, but the main feature of the picture is the enlarged sebaceous duct (SD) specific to this anatomical region. The duct is surrounded by fine (velous) hairs, which provide some limited protection against foreign objects. Dermatoglyphics are pronounced on the back of the hand and are occasionally punctuated by hair follicles (HF) sprouting hair of medium coarseness. The wrist area is largely free of hair but flexure lines (indicated by small arrows) can be clearly seen running in parallel. Also visible are superficial veins (SV) of this region. Photographs courtesy of Dr Helen Packham, Enviroderm Services. A full-colour version of this figure appears in the colour plate section of this book.
Table 1.1 Selection of quantitative data of human skin characteristics

<table>
<thead>
<tr>
<th>Anatomical Location</th>
<th>Thickness</th>
<th>Kinetics</th>
<th>Appendageal Density</th>
<th>Temperature</th>
<th>Surface Lipids</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Epidermis (µm)</td>
<td>Dermis (µm)</td>
<td>Turnover (days)</td>
<td>Desquamation (g m⁻² day⁻¹)</td>
<td>Glands (cm⁻²)</td>
</tr>
<tr>
<td>Finger</td>
<td>547</td>
<td>1207</td>
<td>0–50</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>Thigh</td>
<td>61</td>
<td>1298</td>
<td>0.3</td>
<td>5</td>
<td>32.1</td>
</tr>
<tr>
<td>Forearm</td>
<td>53</td>
<td>1118</td>
<td>0.1</td>
<td>32.1</td>
<td>32.6</td>
</tr>
<tr>
<td>Abdomen</td>
<td>42</td>
<td>2163</td>
<td>0.6</td>
<td>100</td>
<td>65</td>
</tr>
<tr>
<td>Thorax</td>
<td>51</td>
<td>1676</td>
<td>1</td>
<td>32.7</td>
<td>10</td>
</tr>
<tr>
<td>Axilla</td>
<td>44</td>
<td>1186</td>
<td>2</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>Back</td>
<td>71</td>
<td>2326</td>
<td>15</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>Pubis</td>
<td>45</td>
<td>1014</td>
<td></td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>Sole</td>
<td>1139</td>
<td>1534</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Face</td>
<td>52</td>
<td>2271</td>
<td></td>
<td></td>
<td>700</td>
</tr>
<tr>
<td>Forehead</td>
<td>82</td>
<td>1500</td>
<td>6.3</td>
<td>0.1</td>
<td>400–900</td>
</tr>
<tr>
<td>Palms</td>
<td>575</td>
<td>1100</td>
<td>30</td>
<td>3.5</td>
<td>765</td>
</tr>
<tr>
<td>Scalp</td>
<td>9.6</td>
<td>2.1</td>
<td></td>
<td></td>
<td>350</td>
</tr>
</tbody>
</table>

Turnover (kinetics) refers to the average time taken for a cell in the stratum basale to reach the stratum corneum.
Figure 1.2 Surface autoradiograph of pig skin exposed to a single, discrete droplet (100 µl) of 14C-radiolabelled benzene under unoccluded conditions. Radioactive material (indicated by the dark areas) can be seen to preferentially partition into hair follicles (F) and hair shafts (S). Dermatoglyphics can be seen radiating from (and interconnecting) adjacent hair follicles (RD), indicative of capillary movement along the sulci.

parallel to Langer’s lines generally heal more readily and are less likely to form scar tissue (Monaco and Grumbine 1986).

Numerous studies have demonstrated that skin permeability is also subject to anatomical variation (Feldmann and Maibach 1967, Maibach et al. 1971, Rougier et al. 1986). Whilst epidermal thickness is commonly considered to be a prime determinant of regional skin permeability, such generalisations should be interpreted with caution (for example, see Figure 1.3) as other factors such as the regional lipid content (Table 1.1) or morphology of the stratum corneum may be implicated (Rougier et al. 1988).

There is a superficial ‘layer’ of skin that is often overlooked in dermal toxicology: the ‘acid mantle’. This forms a thin film on the skin surface and is comprised of sebum, corneocyte debris and residual material from sweat. This mixture of substances generally imparts a low pH on the skin surface owing to the presence of free fatty acids and, being predominantly lipophilic, may conceivably influence the partitioning of substances into the skin or act as an adsorbent matrix to trap microscopic particles such as dirt, dust or powders.

The predominant component of the acid mantle is sebum, considered by some to be vestigial (Kligman 1963). Sebum is mainly composed of triglycerides, wax esters and squalene, with the actual composition (and amount being secreted) varying according to anatomical location (Figure 1.4).

The evolutionary significance of sebum has been subject to much debate and several putative functions including anti-microbial activity, ‘water-proofing’ and ‘sweat-sheet’ formation have been proposed (Porter 2001). However, sebum may represent a significant route of excretion for lipophilic substances (Faergemann et al. 1993; Iida et al. 1999) and may be of physiological significance for the delivery of vitamin E to the skin surface where it could act as a superficial antioxidant (Thiele et al. 1999).