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Preface

Our book ‘Zeolite Molecular Sieves: Structure and Synthesis’ (in Chinese) was first

published in 1987. Substantial progress has been made in these 19 years in developing

new molecular sieves with microporous structures such as zeolite and aluminophosphate

molecular sieves and many new families of molecular sieves with much diversified

structural features and compositional elements. Up until 2006, at least 167 types of

molecular sieves with unique framework structures had been reported. More then 30

compositional elements have been incorporated into the frameworks. In 1992, scientists

at Mobil Corporation for the first time reported the development of a new family of

materials (named M41S) characterized by their unique mesoporous structures (diameter

ranging from 2 to 50 nm), which instantly became headline news in science. This new

discovery has clearly marked a major milestone in this field, opening the door for

developing many new types of molecular sieves and porous materials. In 1998,

Wijnhoven and Vos reported the successful synthesis of macroporous material TiO2.

Since then a number of other new macroporous materials (diameter ranging from 50 to

2000 nm) such as SiO2, ZrO2, etc., have been synthesized. Parallel to these developments

is the emergence of another research area focused on development of porous coordination

polymers and hybrid solids with metal–organic frameworks (MOFs). The advent of this

family of MOFs has substantially expanded the pool of porous materials that traditionally

have their frameworks made of inorganic elements. In addition, the MOF materials with

their unique structural and functional characteristics have greatly diversified the existing

porous materials. Clearly, the rapid development of microporous compounds and the

advent of mesoporous, macroporous, and MOF materials have expanded the already rich

and complex molecular sieves and porous materials chemistry, leading to the emergence

of a brand new scientific discipline namely the porous materials chemistry. Thanks to

these new developments and the progress in related theoretical studies, research

methodology, and techniques, as well as the expansion in the scope of applications

from the traditional areas such as adsorption separation, catalysis and ion-exchange to the

making of new and more advanced materials, our understanding about the governing

principles and mechanisms and the observations made about molecular sieves and porous

material chemistry has improved significantly in the past decade; in particular, our

understanding about the relationships of ‘function–structure–synthesis’ of zeolites and



other porous materials has reached a new level. The idea of this book was conceived and

carefully planned in this general context, to which we give a new name ‘Chemistry of

Zeolites and Related Porous Materials - Synthesis and Structure’. This book will be

published in English by John Wiley & Sons, (Asia) Pte Ltd by the time of the 15th

International Zeolite Conference (Beijing, 2007).

The present book consists of nine chapters, with the synthetic and structural chemistry

of microporous and mesoporous materials as the core. Five chapters (Chapters 3, 4, 5, 6,

and 8) are allocated to cover the synthetic aspects of the topic. Chapter 3 introduces the

synthesis and related fundamental principles, synthetic strategies, and techniques for the

major microporous materials such as zeolites and microporous aluminophosphates. This

Chapter serves as Part I of the synthetic aspects of the microporous compounds.

A large number of new microporous materials have emerged in the past decade, with

(a) specially interesting structures such as extra-large microporous channels, intercon-

necting 2- and 3-dimensional channel systems, chiral channels, and various cage

structures, (b) special types such as the M(III)X(V)O4-type, oxide-, sulfide-, and

aluminoborate-type, and (c) specially interesting aggregated states such as nano-size

and ultra-fine particles, perfect crystals, and single crystals, microsphere, coating, film,

membrane, and special crystal morphologies, etc. All these new developments, along

with their increasingly wider range of applications, have motivated us to write a chapter

(Chapter 4) about the synthetic chemistry of the microporous materials with special

structures, types, and aggregated states. And this chapter serves as Part II of the synthetic

aspects of the microporous compounds.

Currently, most molecular sieves and porous materials are synthesized through

hydrothermal or solvothermal crystallization. Hence it was considered essential to

include a chapter addressing the crystallization process and related chemistry problems,

to help the reader better understand the formation of microporous compounds, and their

channel–framework structure, and the theory of crystallization, which should provide

useful guidance for exploring and developing new synthetic strategies, methodologies,

and techniques. This is the core of Chapter 5 (Crystallization of Microporous Com-

pounds), which is focused on three key chemistry issues relevant to crystallization, i.e.,

(a) the aggregated states and polymerization reactions of the source materials at the pre-

crystallization stage; (b) the crystallization mechanism of porous compounds and the

templating or structure-directing effects during nucleation and crystallization; (c) crystal-

lization kinetics and the mechanisms of crystal growth. It should be noted that some of

the mechanistic issues relevant to crystallization are still not well understood or only

partially understood, some of which are still debatable, due to the high complexity of the

crystallization processes and the lack of effective techniques for probing them scienti-

fically. So we have honestly presented our current understanding (or lack of it) of these

complex scientific issues, and let our readers fully appreciate the complexity of studying

the chemistry problems involved in crystallization of porous compounds and understand

the feasibility in tackling these problems. The preparation, secondary synthesis, and

modification of molecular sieves represent a unique set of problems, different from the

issues we have discussed related to crystallization of microporous compounds under

hydrothermal (or solvothermal) conditions. These deal with issues related to modifying

and refining the crystallized products of microporous compounds and hence their unique

process pathways and related mechanistic issues. Chapter 6 is designed to cover such
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problems. Mesoporous materials have their unique characteristics from the viewpoint of

structural chemistry and their synthesis, different from those of microporous materials

though some commonalities exist between the two from the viewpoint of studying porous

materials in general. This represents a new and extremely rich research field, playing

increasingly important roles in expanding the applications of porous materials. Hence we

have included one chapter (Chapter 8) focusing on mesoporous materials.

Microporous materials with regular pore architectures comprise wonderfully complex

structures and compositions. Their fascinating properties, such as ion-exchange, separa-

tion, and catalysis, and their roles as hosts in nanocomposite materials, are essentially

determined by their unique structural characters, such as the size of the pore window, the

accessible void space, the dimensionality of the channel system, and the numbers and

sites of cations, etc. Traditionally, the term ‘zeolite’ refers to a crystalline aluminosilicate

or silica polymorph based on corner-sharing TO4 (T ¼ Si and Al) tetrahedra forming a

three-dimensional four-connected framework with uniformly sized pores of molecular

dimensions. Nowadays, a diverse range of zeolite-related microporous materials with

novel open-framework structures have been discovered. The framework atoms of

microporous materials have expanded to cover most of the elements in the periodic

table. For the structural chemistry aspect of our discussions, the second key component of

the book, we have a chapter (Chapter 2) to introduce the structural characteristics of

zeolites and related microporous materials.

In addition to a systematic and in-depth coverage of the above material, we have

allocated two chapters (Chapters 7 and 9) to discussion of the cutting-edge research

issues in the chemistry of molecular sieves and porous materials, two of the most

important growing areas of this field. Chapter 7 focuses on molecular design and rational

synthesis of microporous molecular sieves, mainly based on the results of our own

research and the knowledge we have gained in the past two decades in the area of

molecular engineering of microporous compounds as well as the state-of-the-art research

results by other research groups in the world. Both of these areas clearly represent where

the science is going in regard to the chemistry of molecular sieves and porous materials.

They also demonstrate the ultimate goal that many scientists in different branches of

chemistry, such as solid-state chemists, material chemists, and synthesis chemists, have

been working diligently to accomplish. Microporous molecular sieves represent one of

the most important classes of target systems for molecular engineering studies in recent

years, because of the regularity of their framework structures and the large amount of

knowledge that scientists have gained about their key structural characteristics and the

mechanisms of their formation. Hence we have devoted one chapter (Chapter 7) to

presentation of the cutting-edge research issues in molecular engineering of molecular

sieves. Chapter 9 focuses on the development of another important area of porous

materials, i.e., porous host–guest advanced materials and MOF materials, which

represents one of the most promising directions in finding new applications of porous

materials in the high-tech materials. Chemistry of molecular sieves and porous materials

has increasingly attracted wider attention in the past decade because of the interesting

scientific issues that they raise and the prospect of their wide range of applications. This

new branch of chemistry is clearly emerging as an exciting new science by itself at the

interaction of various scientific disciplines.
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While writing this book, we have paid special attention to make sure that the most

recent and key developments at the forefront of the field are well covered in the book so

that the reader gets a good exposure to the true state-of-the-art of this new field. In

addition, we have tried to incorporate as many key research results and applications as

possible, wherever appropriate, that have been achieved in the field of molecular sieves

and porous materials. The overall design of the book’s structure and major content was

done by me and Professor Wenqin Pang. The writing of the book was done mainly by

Professor Wenqin Pang (Chapter 6), Professor Jihong Yu (Chapters 2 and 7), Professor

Jiesheng Chen (Chapter 9) and me (Chapters 1, 3, 4, and 5). Dr Qisheng Huo of the USA,

one of the pioneer researchers in the syntheses of mesoporous materials, wrote Chapter 8.

The publication of this book is the result of the hard work by the authors of this book

including Prof. Ruren Xu, Prof. Wenqin Pang, Prof. Jihong Yu, Dr Qisheng Huo, and

Prof. Jiesheng Chen along with the long-term research experience and accumulation of

knowledge of many colleagues of the State Key Laboratory of Inorganic Synthesis and

Preparative Chemistry in Jilin University. Particularly, we would like to thank Dr Wenfu

Yan, Dr Jiyang Li, Dr Yi Li, and Mrs Fengjuan Zhang for their contribution to the

preparation of this book. In addition, we invited Prof. Yushan Yan at the University of

California, Riverside, USA, to write a section on ‘Preparation and Application of Zeolite

Membranes’, and Prof. Zi Gao at Fudan University, Shanghai, to write a section on

‘Channel and External Surface Modification’. Here we would like to express our heartfelt

gratitude for their contribution to this book. Finally, we would like to dedicate this book

to the 15th International Zeolite Conference (Beijing, 2007) and colleagues from

different parts of the world.

Ruren Xu
Chairman of 15th IZC

Professor of Chemistry

Jilin University

P. R. China

November 2006, Changchun
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1

Introduction

Natural zeolites were first discovered in 1756. During the 19th century, the microporous

properties of natural zeolites and their usefulness in adsorption and ion exchange were

gradually recognized. However, it was not until the 1940s that a series of zeolites with

low Si/Al ratios were hydrothermally synthesized through mimicking of the geothermal

formation of natural zeolites. The successful synthesis of zeolites laid the foundation for

rapid development of zeolite industry in the 20th and 21st centuries. Porous compounds

or porous materials share the common feature of regular and uniform porous structures.

To describe a porous structure, several parameters may be used and these include pore

size and shape, channel dimensionality and direction, composition and features of

channel walls, etc. Among these parameters, pore size and pore shape are the most impor-

tant. According to the aperture size of pores, porous compounds can be classified as

microporous (aperture diameter less than 2 nm), mesoporous (aperture diameter of

2–50 nm), and macroporous (aperture diameters larger than 50 nm) materials, respec-

tively.[1] The International Zeolite Association (IZA) database shows that the number of

structural types of unique microporous frameworks has been growing rapidly, from 27 in

1970, to 38 in 1978, to 64 in 1988, to 98 in 1996, and to 133 in 2001,[2] whereas currently

(Feb. 2007), this number has reached 174. In fact, during the past half century, a great

many microporous compounds with diverse compositional elements and primary build-

ing units have been synthesized thanks to the development of synthetic techniques.

However, because of a shortage of more powerful characterization techniques, the

framework structures of many novel zeolites could not be determined. It has been re-

ported that over 20 elements may be introduced into zeolite frameworks, and taking

into account the diversity of zeolite compositions, the number of unique zeolites might

be enormous. The announcement of M41S compounds in 1992 by Mobil scientists

has stimulated rapid growth of mesoporous materials, whereas the study of macroporous

materials has just begun to burgeon, and their special structural features and properties

Chemistry of Zeolites and Related Porous Material – Synthesis and Structure Ruren Xu, Wenqin Pang, Jihong Yu,
Qisheng Huo and Jiesheng Chen # 2007 John Wiley & Sons, (Asia) Pte Ltd



are very attractive. From microporous to mesoporous to macroporous, the conventional

framework compositions of molecular sieves and porous materials are purely inorganic.

However, in recent years, the appearance of porous metal-organic frameworks (MOFs)

has greatly enhanced the diversity and compositional complexity of porous materials, and

has offered further possibilities for the development of porous materials.

1.1 The Evolution and Development of Porous Materials

1.1.1 From Natural Zeolites to Synthesized Zeolites

The first natural microporous aluminosilicate, i.e., natural zeolite, was discovered more

than 200 years ago, and after long-term practical applications, the intrinsic properties of

natural zeolites such as reversible water-adsorption capacity were fully recognized.[3,4]

By the end of the 19th century, during exploitation of ion-exchange capacity of some

soils, it was found that natural zeolites exhibited similar properties: some cations in

natural zeolites could be ion-exchanged by other metal cations. Meanwhile, natural

chabazite could adsorb water, methanol, ethanol, and formic acid vapor, but could hardly

adsorb acetone, diethyl ether, or benzene. Soon afterwards, scientists began to realize the

importance of such features, and use these materials as adsorbents and desiccants. Later,

natural zeolites were also used widely in the field of separation and purification of air.

Natural zeolites were first discovered in cavities and vugs of basalts. At the end of the

19th century, they were also found in sedimentary rocks. As a result of many geological

explorations, zeolite formation was considered to include the following genetic types:[3]

1. Crystals resulting from hydrothermal or hot-spring activity involving reaction

between solutions and basaltic lava flows.

2. Deposits formed from volcanic sediments in closed alkaline and saline lake-systems.

3. Similar formations from open freshwater-lake or groundwater systems acting on

volcanic sediments.

4. Deposits formed from volcanic materials in alkaline soils.

5. Deposits resulting from hydrothermal or low-temperature alteration of marine

sediments.

6. Formations which are the result of low-grade burial metamorphism.

With geological exploration and study on minerals, more and more natural zeolites have

been discovered. Up to now, over 40 types of natural zeolites have been found, but fewer

than 30 of them have had their structures solved. Recently, many natural zeolite resources

have been discovered around the world, and the applications of these natural species are

drawing increasing attention. At present, natural zeolites are widely used in the fields of

drying and separation of gases and liquids, softening of hard water, treatment of sewage,

and melioration of soils. Some well selected or modified natural zeolites are also used as

catalysts or supports of catalysts in industry.

Zeolite science and technology in China has been in great progress as well in the

past several decades. According to incomplete statistics, there are many types of zeolite

resources in China, and among the natural zeolites discovered in China are mordenite,

clinoptilolite, analcime, heulandite, natrolite, thomsonite, stilbite, and laumontite.

With further exploration, it is believed that many more zeolite resources will be
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discovered in China. As research work on natural zeolites deepens, they will be applied

more broadly.

Because natural zeolites cannot meet the huge demands in industry, it becomes an

urgent necessity to use synthesized zeolites besides the natural ones. Synthesis of zeolites

was first conducted at the end of the 19th century through mimicking of the geothermal

conditions for natural zeolite formation, i.e., high-temperature hydrothermal reactions.

By the end of the 1940s, a number of scientists started to carry out research on massive

synthesis of zeolites.

Abundant natural zeolites were found later in sedimentary rocks. Since these zeolite

deposits were usually located near the surface of the earth, it was concluded that they had

been produced at temperatures and pressures which were not very high. During a study

on strata of Triassic rocks, it was found that zeolites were somehow in a chemical-

equilibrium state when they were formed. This state was metastable and was known as

the zeolite phase. The equilibrium process for zeolite phases was very similar to that of

low-temperature hydrothermal synthesis reactions. Therefore, researchers tried to synthe-

size zeolites using hydrothermal synthesis techniques at temperatures of around

25–150 �C (usually 100 �C). In the 1940s, low-silica zeolites were first synthesized.

The application of low-temperature hydrothermal techniques facilitated the extensive

industrial production of zeolites. By the end of 1954, zeolites A and X began to be

produced industrially. Following this, a number of companies in the United States, such

as Linde, UCC, Mobil, and Exxon, imitated the formation of natural zeolites and

produced a series of synthesized zeolites with an intermediate Si/Al ratio (Si/Al¼
2–5), including NaY, mordenite, zeolite L, erionite, chabazite, clinoptilolite, and so on.

These zeolites were widely applied in the fields of gas purification and separation,

catalytic processes of petroleum refining and petrochemistry, and ion exchange.

In China, zeolites A and X were first synthesized in 1959, followed by the industrial

production of zeolite Y and mordenite. With the development of the zeolite industry,

zeolites were applied in many fields as well in China. In the 1950s, zeolites were mainly

used in drying, separation, and purification of gases. Since the 1960s, zeolites have been

widely used as catalysts and catalyst supports in petroleum refining. At present, zeolites

have become the most important adsorbents and catalysts in the petroleum industry.

Although, compared with natural zeolites, synthesized zeolites have many advantages

such as high purity, uniform pore size, and better ion-exchange abilities, natural zeolites

are more applicable when there are huge demands and fewer quality requirements. The

reason is that natural zeolites are often located near the surface of the earth and can be

easily exploited and used after some simple treatments, which lead to lower costs and

hence lower prices. Therefore, natural zeolites have a good prospect of application

especially in the fields of agriculture and environmental protection.

1.1.2 From Low-silica to High-silica Zeolites

The period from 1954 to the early 1980s is the golden age for the development of

zeolites. Zeolites with low, medium, and high Si/Al ratios were extensively explored, and

this greatly facilitated the applications of zeolites and stimulated industrial progress.[5] In

order to increase the thermal stability and acidity of zeolites, Breck et al. synthesized

zeolite Y (Si/Al¼ 1.5�3.0), which played an extremely important role in the catalysis of
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hydrocarbon conversion. From then on, a variety of zeolites with an Si/Al ratio of 2�5,

i.e., ‘intermediate silica’ zeolites which include mordenite, zeolite L, erionite, chabazite,

clinoptilolite, zeolite �, etc, have been synthesized. At the beginning of the 1960s,

scientists at Mobil Corporation started to use organic amines and quaternary alkylam-

monium cations as templates in the hydrothermal synthesis of high-silica zeolites, and

this is considered a milestone in the progress of zeolite synthesis. In 1972, Argauer and

Landelt synthesized the first important member of the pentasil family, ZSM-5, using

Pr4NCl or Pr4NOH as the template at 120 �C, whereas in 1973, Chu synthesized ZSM-11

using Bu4N
þ as the template. In 1974, Rosinski and Rubin prepared ZSM-12 using

Et4N
þ as the template, followed by the syntheses of ZSM-21 and ZSM-34 in 1977 and

1978; later on, Wadlinger and Kerr synthesized high-silica zeolite beta (BEA).

The pentasil family, which includes high-silica zeolites with hydrophobic surfaces

and interconnected two-dimensional (2-D) 10-membered-ring channels, has played an

important role in shape-selective catalysis since its inception. In 1970, Flanigen at UCC

first synthesized pure-silica forms of ZSM-5 (silicalite-I) and ZSM-11 (silicalite-II),

which were the end members of the pentasil family. Meanwhile, the rapid progress in

synthesis of high-silica zeolites facilitated the study of the secondary synthesis of

zeolites. Some high-silica zeolites such as zeolite Y (Si/Al> 3), which were difficult to

synthesize directly, could be prepared from zeolites with medium Si/Al ratios through

steam treatment or de-alumination in framework by reaction with Si. For instance,

ultra-stable zeolite Y (USY), high-silica mordenite, erionite, BEA, and clinoptilolite

were all successfully synthesized in this way. In the past 25 years, the emergence of

zeolites with low (Si/Al¼ 1.0�1.5), medium (Si/Al¼ 2.0�5.0), and high Si/Al ratios

(Si/Al¼ 10�100), as well as pure-silica zeolites, facilitated the study of both the

structure and property of molecular sieves and porous compounds, and promoted their

applications.

The increase in type and structural diversity of zeolites, as well as deep insight into

zeolite properties such as thermal stability, acidity, hydrophobicity/hydrophilicity of

surfaces, and ion-exchange capacity, has led to application of a series of zeolites in

industry. These zeolites include synthesized ones such as zeolite A (Na, Ca, K), zeolite X

(Na, K, Ba), zeolite Y (Na, Ca, NH4), zeolite L (K, NH4), zeolite � (Na, H), zeolon

(MOR-H, Na), ZSM-5, zeolite F (K) and zeolite W (K), and natural ones such as mor-

denite, chabazite, erionite and clinoptilolite. These materials have been widely used as

commercial adsorbents for drying and purification of gases and for bulk separation of, for

example, normal-/iso-paraffins, isomers of xylenes and olefins, and O2 from air, as

catalysts for petroleum refining and petrochemistry, and as ion exchangers. Because of

their excellent ion-exchange capacities, zeolites A and X can be used as auxiliary agents

in the detergent industry, in radioactive waste treatment and storage, and in the treatment

of industrial liquid wastes.

1.1.3 From Zeolites to Aluminophosphate Molecular Sieves and Other

Microporous Phosphates

In 1982, Wilson, Lok, and Flanigen et al. successfully synthesized a novel family of

molecular sieves, that is, microporous aluminophosphates AlPO4-n.
[6] The discovery of

AlPO4-n is regarded as a milestone in the development of porous materials. Not only

4 Chemistry of Zeolites and Related Porous Materials



were large-, medium-, and small-pore AlPO4-n molecular sieves prepared, but also

SAPO-n (S¼ Si), MeAPO-n (Me ¼ Fe, Mg, Mn, Zn, Co, etc), MeASO-n, ElAPO-n

(El¼Ba, Ga, Ge, Li, As, etc) and ElAPSO-n could be obtained through introduction of

elements other than Al and P into the microporous frameworks of AlPO4-n. At present,

the aluminophosphate-based family of microporous compounds has over 200 members.

These compounds were synthesized through the crystallization of Al, P, and other

element sources together under hydrothermal or solvothermal conditions. Differing from

the aluminosilicate molecular sieves, normally the AlPO4-based compounds must cry-

stallize in the presence of templates or structure-directing agents. There are a large

number of structure types for AlPO4-based microporous materials and the compositions

of these materials also vary to a considerable degree.[7] Except for a few members which

are isostructural with zeolites, most aluminophosphate molecular sieve structures are

novel, and their elementary compositions are quite different from those of conventional

zeolites containing only silicon and aluminum. By 1986, 16 elements had been suc-

cessfully incorporated into frameworks of aluminophosphate molecular sieves. The

incorporation of heteroatoms into aluminophosphates has played an important role in

enhancing the diversity of structures and compositions of microporous compounds and

molecular sieves.

Since 1982, two major accomplishments have been achieved for aluminophosphate-

based molecular sieves. One is the discovery of various aluminophosphate microporous

compounds with an Al/P ratio less than unity.[8] For instance, JDF-20 ([Et3NH]2
[Al5P6O24H]�2H2O) is a microporous aluminophosphate with the largest aperture size

(20-membered ring, 14.5� 6.2Å); AlPO-CJB1 ([(CH2)6N4H3][Al12P13O52]) is the first

microporous aluminophosphate with Brönsted acidity. These 3-D microporous alumino-

phosphates with anionic frameworks are different from AlPO4-n with a neutral frame-

work constructed by the alternation of AlO4 and PO4 tetrahedra. The anionic frameworks

are constructed by Al-centered units (AlO4, AlO5, AlO6), and P(Ob)n(Ot)4�n tetrahedra

(b¼ bridging, t¼ terminal, n¼ 1�4), and this construction manner results in rich

structural chemistry. The existence of terminal oxygen of P��OH and P����O groups

strengthens the nonbonding interaction between the framework and template molecules,

rendering the templates hard to remove. The other accomplishment is the synthesis of

other families of metal phosphates, including zinc, gallium, titanium, iron, cobalt, nickel,

vanadium, and molybdenum phosphates.[9] The compositional and structural diversity of

aluminophosphates and their derivatives leads to potential applications in the fields of

adsorption, separation, formation of host–guest advanced materials, redox catalysis,

chiral catalysis, and macromolecular catalysis.

1.1.4 From 12-Membered-ring Micropores to Extra-large Micropores

For nearly 50 years, chemists failed to synthesize molecular sieves with channels larger

than 12-membered rings. It was not until 1988 that Davis et al. successfully synthesized

the first aluminophosphate molecular sieve, VPI-5 ((H2O)42[Al18P18O72]), with 18-

membered-ring apertures (12.7� 12.7 Å).[10] The synthesis of VPI-5 is another milestone

in the development of microporous materials.

It has been found that, except for a few silica or germanium oxide porous compounds,

most of the microporous molecular sieves with a large aperture are metal phosphates with
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1-D channels. The structures of large-pore microporous materials share the following

common features:

1. The frameworks are constructed by metal-centered primary building units with

various coordination states, such as [AlO4], [AlO6], [GaO4], and [GaO4(OH)2];

2. There are terminal groups in the frameworks, such as P����O, P-OH, and Al��OH,
which make the structures less stable than zeolites and aluminophosphate molecular

sieves with (4,2) networks. These terminal groups also favor the formation of

interrupted frameworks, such as cloverite and JDF-20;

3. The structure-directing agents used in the synthesis of these compounds usually possess

multiple amino groups, long chains, or large molecular weights, and occasionally the

synthesis also involves F� ions. Usually, F� ions exist in the open frameworks and are

located between two metal centers as bridging atoms or inside the double 4-ring (D4R)

cages. On the other hand, the oxygen atoms in the terminal groups normally have strong

non-bonding interactions with structure directing agents.

On the basis of these structural features, it is easy to understand why zeolites con-

structed by Si and Al cannot have extra-large pores. Nevertheless, pure-silica zeolites

with 14-membered rings, i.e. CIT-5 and UTD-1, have been synthesized recently, and

further investigation into crystallization mechanisms in combination with the vast ex-

perimental data available and with theoretical simulation and computation may help us

to rationally design and synthesize extra-large microporous aluminosilicate molecular

sieves with special channels such as multidimensionally interconnected and chiral

ones.

The discovery of extra-large microporous materials facilitates research on the catalytic

reaction of large and medium molecules, and also promotes host–guest chemistry and

related advanced materials.

1.1.5 From Extra-large Micropores to Mesopores

The discovery of mesoporous materials, which usually refer to materials with ordered

pores of diameter size 2�50 nm, is another leap in the development of molecular sieves

and porous materials.

In fact, the synthesis of ordered mesoporous materials began as early as 1971. Kuroda

et al. also started to synthesize mesoporous materials before 1990. However, it was not

until 1992, when Kresge et al. reported the discovery of M41S materials, that meso-

porous compounds started to attract real increasing attention.[11,12] Using surfactants as

templates, scientists at Mobil synthesized a series of mesoporous compounds, the M41S

family, including MCM-41 (hexagonal), MCM-48 (cubic), and MCM-50 (layered). This

discovery is comparable with the other great accomplishments in the history of zeolite

science and technology; for instance, the synthesis of ZSM-5 also by Mobil scientists.

For microporous zeolites used as catalysts, the reactants in their pores and/or channels are

usually smaller than 10 Å due to the microporous features of the catalysts, even after

modification of the channels. However, the successful synthesis of mesoporous materials

with channels of 2�50 nm might break this limitation.

Mesoporous materials have the advantages of ordered mesoporous channels with size

of 2�50 nm, as well as very large specific surfaces and pore volumes. However, since the
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channels in these materials are surrounded by amorphous walls, mesoporous materials

have less thermal and hydrothermal stability than do microporous molecular sieves.

Recently, the synthesis of SBA-15, MAS-7, and MAS-9 showed that the stabilities of

mesoporous materials could be enhanced. Another advantage of mesoporous materials is

that there are far fewer restrictions on their composition. Theoretically, any oxides, oxide

composites, inorganic compounds, or even metals could form mesoporous materials. In

fact, many oxides, such as TiO2, ZrO2, Al2O3, Ga2O3, MnO2, and other non-silicon

oxides, have been successfully synthesized in a mesoporous form. Recently, many highly

ordered mesoporous materials have been obtained, and these include MCM-41 (P6m),

MCM-48 (Ia3d), MCM-50 (layered), FSM-16, SBA-1, SBA-6 (Pm3n), SBA-2, SBA-12

(P63/mmc), SBA-11 (Pm3m), and SBA-16 (Im3m). Low-ordered ones such as HMS,

MSU-n, and KIT-1 have also been reported.

According to their compositions and structures, the periodic mesoporous materials can

be divided into 6 categories:

1. Mesoporous silicon oxides with different channel networks, sizes, and shapes;

2. Mesoporous silicon oxides with modified surfaces;

3. Mesoporous silicon oxides with organic compositions;

4. Mesoporous silicon oxides with other metal atoms on their channel walls;

5. Inorganic mesoporous materials without silicon;[13]

6. Mesoporous materials without oxygen.

There will be many more categories if we consider specific polymorphs. The rapid

development and constant improvement of mesoporous materials as well as the progress

in related research areas will render mesoporous materials more widely applicable.

1.1.6 Emergence of Macroporous Materials

Ordered macroporous materials have special optical features due to their pore diameters.

Since the synthesis of macroporous materials has just started, there are no general

synthetic strategies for this type of materials at present, and hence only a few examples

will be mentioned here.

By using modified colloidal particles as templates, silicon oxide macroporous ma-

terials with uniform submicrometer-sized pores can be synthesized.[14] Modified poly-

styrene emulsion microspheres (200�1000 nm) can be electronegative (sulfates) or

electropositive (amidines). After these microspheres are packed in an orderly fashion,

they can interact with surfactants and silicon oxides to form macroporous solid com-

posites, and further to form macroporous materials after the removal of the templates by

calcination. The sizes of the macropores in the products range from 150 to 1000 nm.

Macroporous TiO2 can also be prepared in a similar way.

Mineralization on hyphae can also generate macroporous materials.[15] Using this

method in the synthesis of mesoporous materials, mesoporous and macroporous

composites can be obtained. The long channels in these composites are parallel to

each other. The pores are at a micron level, and the thickness of the walls ranges from

50 to 200 nm.

By using colloid as the template, inorganic oxides can be deposited on the outer

surface of the colloidal droplet to form macroporous materials with apertures of 50 nm
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to several microns in size.[16] Oil can form uniform droplets in formamide colloid and

can further be used as the template. Polymers, such as the triblock copolymer formed

by ethylene glycol and propylene glycol, can stabilize this colloid. Many macroporous

materials have been synthesized using this method, such as macroporous titanium oxides,

silicon oxides, and zirconium oxides.

1.1.7 From Inorganic Porous Frameworks to Porous

Metal-organic Frameworks (MOFs)

From natural zeolites to the recently discovered meso- and macro-porous materials, the

ordered porous frameworks are all constructed by inorganic species. However, in the past

ten years, a new family of porous compounds composed of metal-organic frameworks

(MOFs) has attracted enormous attention. The main reason is that the poor thermal and

chemical stability of MOFs has been somewhat improved. In addition, the discovery of

some advantages of MOFs that are lacking in molecular sieves and mesoporous materials

has also stimulated the research on MOFs.

In 2001, Chen et al. synthesized a coordination polymer, Cu3(BTB)2(H2O)(DMF)9-

(H2O)2 (MOF-14) (BTB-4,40,400-benzene-1,3,5-triyltribenzoic acid), from which the

DMF could be removed by heating at 250 �C under inert gas flow.[17] The N2 and Ar

adsorption isotherms of MOF-14 are of type-I, confirming its microporous structure. The

adsorption isotherms of MOF-5 are also characteristic of type-I. Adsorptions of CO, CH4,

CH2Cl2, CCl4, C6H6, C6H12 and m-xylene in these materials are all reversible, as in zeo-

lites. However, the pore volume for MOF-14 is 0.53 cm3/g whereas the specific surface

area is 1502 cm2/g, and these two values are distinctly higher than the corresponding ones

for inorganic microporous compounds. In 2002, Yaghi and coworkers reported the

synthesis of a microporous compound (MOF-5), Zn4O(R
1-BDC)3 (R1¼H), by the

crystallization of Zn(NO3)2�4H2O and 1,4-benzenedicarboxylate (terephthalate (BDC)

in N,N-diethylformamide (DEF) solvent at 85�105 �C.[18] The microporous framework

of this compound is constructed by the primary building unit of the [Zn4O(CO2)6]

octahedron and bridging R groups. Yaghi and coworkers used different BDC derivatives

and related naphthalene -2,6-dicarboxylic acid (2,6-NDC) and triphenyldicarboxylate

(TpDC) compounds to obtain a series of microporous compounds with various pore

diameters (3.8�28.8 Å), and they found that the pore diameter varies with R. The free

porous volume increases remarkably from C5H11O-BDC (55.8%) to TpDC (91.1%), both

of which are much larger than the free volume of the zeolite FAU. The adsorption

properties of the compound are similar to those of zeolites.

MOF-6 has a great adsorption capacity for CH4 (240 cm
3/g; 36 atm, 298 K), which

could be exploited for storage and transportation of CH4. In addition, it has been

demonstrated that a number of MOF compounds exhibit promising H2-storage

capacities. Furthermore, other groups, such as -Br, -NH2, -OC3H7, -OC5H11, -C2H4,

and -C4H4, could be added into the R groups. Therefore, the MOFs may be

functionalized to meet special catalysis or adsorption demands. Conventional inorganic

porous compounds have no such advantages, and therefore, in a sense, the emergence

of MOFs has broadened the applications of porous materials and facilitated their

development.
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1.2 Main Applications and Prospects

As mentioned earlier in this chapter, it is the social demands and wide applications of

porous materials that keep them under continuous exploration. From natural zeolites

to synthesized ones, from low-silica zeolites to high-silica ones, from aluminosilicate

molecular sieves to aluminophosphate-based ones, from extra-large microporous materials

to mesoporous materials, and from inorganic porous frameworks to MOFs, together with

newly emerging macroporous materials, all these porous materials have ordered and

uniform porous systems.

Here, we would like to take ZSM-5 as an example to illustrate the relationship between

structure and function. ZSM-5 has an interconnected 2-D 10-membered-ring channel

system ([100] 10 5.1� 5.5* $ [010] 10 5.3� 5.6*). Since the Si/Al ratio of ZSM-5 can

be varied from 10 to infinity as found in pure-silica silicalite-I, the type, acidity, and

distribution of acidic sites can also be controlled accordingly. Furthermore, because of its

special channel system, ZSM-5 may function very differently for different molecules. For

example, the diffusion, the adsorption/desorption, the reaction rate, and the formation of

intermediate and final product of molecules may vary to a great extent. ZSM-5 has been

widely used in petroleum refining as a catalyst with good shape-selectivity.

Since 1950s, there have been three traditional fields of application for molecular sieves

and porous materials: 1) separation, purification, drying and environment treatment

process; 2) petroleum refining, petrochemical, coal and fine chemical industries; 3) ion-

exchange, detergent industry, radioactive waste storage, and treatment of liquid waste. In

addition to the traditional application fields, zeolites and related porous materials may

also find applications in new areas such as microelectronics and molecular device

manufacture.

1.2.1 The Traditional Fields of Application and Prospects of Microporous

Molecular Sieves

Since the first application of NaA in the separation of normal and isoalkanes by the Linde

company in the 1950s, and X- and Y- zeolites as catalysts for cracking reactions of

hydrocarbon conversion in the 1960s, NaA, NaX, and NaY have been widely used in the

petroleum industry in reactions such as cracking, alkylation, isomerization, shape-

selective reforming, hydrogenation and dehydrogenation, methanol-to-gasoline conver-

sion (MTG), etc. These porous materials have also been extensively used in the detergent

industry and in a variety of adsorption and separation processes such as the drying, the

removal of CO2 from, and the desulfurization for natural gas, and the separation of

xylene isomers, of alkenes, and of O2/N2 from air.[5] In the past half century, molecular

sieves have played increasingly important roles as catalysts in the petroleum refining,

petrochemical, and other chemical industries. According to the statistics studies con-

ducted by Marcilly in 2001, the annual output of synthesized molecular sieves exceeded

1.6 million tons, and the annual output of natural zeolites rose to 0.3 million tons (about

18% of the total output).[19] The value of the annual gross product of synthesized

molecular sieves exceeded 2.0 G$. Furthermore, the value of annual gross product of

other catalysts, adsorbents, and ion-exchangers related to molecular sieves and their
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derivatives greatly exceeded the values of molecular sieves themselves.[5] Despite this,

there are still many prospects for development of molecular sieves in the above three

main traditional fields. First, there are 174 known molecular sieve frameworks. Con-

sidering the differences in their composition, there should be more space for further

development. However, currently only a few frameworks, including LTA, FAU, MOR,

LTL, MFI, BEA, MTW, CHA, FER, AEL, and TON, have been widely used in industry.

Second, at present, molecular sieves are mainly used in petroleum related industries and

intermediary chemistry processes. It is believed that, in the next 20 years, molecular

sieves will be more widely used in catalysis, adsorption, and separation, with the

development of petroleum refining, petrochemical, intermediary chemical, and fine

chemical industries.

According to Marcilly’s proposal in 2001, in the next 20 years, there will be several

new application fields in petroleum refining and petrochemical industries:[19]

� FCC (fluid catalytic cracking): to develop novel molecular sieves which are com-

parable with or better than ZSM-5 in shape-selectivity of light olefins (C3
¼–C5

¼).

� HDC (hydrocracking): to develop novel zeolitic catalysts dedicated to the production

of middle distillates, integrating both the activity and stability of zeolites.

� Aliphatic alkylation: to develop novel molecular sieves with a three-dimensional open

framework and catalytic activity higher than BEA.

� Alkane isomerization of paraffins: to develop novel molecular sieves with high selec-

tivities (2 branches or more) for isomerizations of C7–C9 middle paraffins in gasoline

(petrol).

In addition, in the field of dewaxing (gas oils, HDC residues, lubricating oil, etc.),

synthesis of novel molecular sieves with better adsorption and separation abilities is

highly desired. In the past 20 years, thanks to the discovery of many molecular sieves

with new compositions and structural features [secondary building units (SBUs) and

pores], there have appeared a number of new application fields for molecular sieves, such

as basic catalysis, extra-large microporous molecular sieve catalysis, redox catalysis,

asymmetric catalysis, and dual- and multi-functional catalysis.[20] All of these will lay a

further solid foundation for the development of molecular sieves in catalysis, adsorption,

and separation.

1.2.2 Prospects in the Application Fields of Novel, High-tech,

and Advanced Materials

In molecular sieves and microporous crystalline compounds, there exist channels with

apertures of 12-, 14-, 16-, 18-, 20-, or 24-membered rings, and cages or cavities constructed

by interconnected 2- or 3-D channels. For example, the FAU cavity (11.8 Å) is constructed

by the intersection of three 12-membered-ring channels; the a cage (11.4 Å) in LTA by the

intersection of three 8-membered-ring channels; the EMT cage (13.5 Å) in EMC-2 by the

intersection of three 12-membered-ring channels; the AFS cage (14.0 Å) in MAPSO-46 by

the intersection of a 12-membered-ring channel and two 8-membered-ring channels, the

DFO cage (15.5 Å) in DAF-1 by the intersection of 12-, 8-, and 10-membered-ring

channels; the CLO cavity (30 Å) by the intersection of 20- and 8-membered-ring channels.

These large cages or cavities can act as favorable reaction venues. For example, through the
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so-called ‘ship-in-bottle’ synthetic strategy,[21] a dye composite can be prepared in the

cavities of FAU or channels of AlPO4-5,
[22,23] and through using nanoscale chemical

synthesis techniques, Cd4S4 semiconductive nanometer-sized clusters can be obtained in the

FAU cages.[24] The overall process takes two steps:

Step 1: H44Na11Yþ 44ðCH3Þ2M ! ðCH3MÞ44Na11Yþ 44CH4" ðM����Zn;CdÞ

Step 2: ðCH3MÞ44Na11Yþ 29:84H2X!ðM5:5X3:73Þ8 H15:64 Na11Yþ 44CH4ðX����S; SeÞ

Another approach to the preparation of zeolite composite materials is to add on some

complicated molecules, complexes, metal-organic compounds, supermolecules, clusters,

or polymers with specific functions in the nanometer-sized cages or channels in

molecular sieves through grafting or other reaction routes. As Pool mentioned in 1994,

‘zeolites – crystalline materials riddled with nanometer-sized cavities – can exert

exquisite control over chemical reactions and produce devices on the smallest

scale’.[25] In the mid -1990s, Ozin, Herron, Bein,[26] and others extensively studied the

preparation of quantum dot arrays, molecular wires, and magnetons inside porous

materials. They also carried out a variety of basic research on microdevices, molecular

circuits, molecular switchs, sensors, and optical memory. In the past decade, with the

development of meso- and macro-porous materials and the successful preparation of

molecular sieve membranes and millimeter- to centimeter-sized single crystals, the

application of novel advanced materials based on porous materials has undergone

great progress. The following are several examples of progress achieved in recent

years. With the aid of poly-(propylene glycol), Fan et al. synthesized porous materials

with low dielectric constant (k ¼ 1:3),[27] which are promising for commercial use,[1]

whereas gadolinium zeolite has been used as a radiography reagent for magnetic

resonance imaging (MRI).[1] Another new field of application for microporous materials

is the utilization of zeolite-dye composites as microlasing materials.[1,23] In a word,

microporous materials have promising prospects, but there is still a long way to go before

the application potential of these materials is fully realized.

1.2.3 The Main Application Fields and Prospects for Mesoporous Materials

Since the ordered mesoporous material MCM-41 was reported in 1992,[1–3] comprehen-

sive research on the potential applications of mesoporous materials has been carried out,

with focus on their catalysis, adsorption, and the preparation of novel advanced materials.

Their applications in catalysis have attracted the most intense attention.

The unique properties of mesoporous materials arise from their high specific surface

areas (>1000m2/g) and their uniform mesopores (diameters range from 2 to

50 nm).[11,28,29] In the past decade, mesoporous materials have been widely used in the

field of catalysis, such as in petroleum processing, the fine-chemicals industry, and in

reactions involving large molecules. For petroleum processing, the conventional catalysts

are usually microporous zeolites, such as zeolite Y and ZSM-5. However, with the de-

crease of petroleum resources in the world and the increase of heavy components in crude

oil, the applications of conventional zeolites are more and more restricted due to their

small pores. Mesoporous materials have ordered mesopores which might have potential

applications in the catalysis of heavy oil processing.[29] For example, Al-MCM-41 has
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shown better catalysis performance in hydrocracking, hydrodesulfurization, and hydro-

denitrogenation reactions than do traditional microporous materials.[30]

In green oxidation reactions, zeolite TS-1 is the typical catalyst. Since the size of its

channels ranges from 5 to 6 Å, TS-1 can be used as the catalyst only for benzene and

phenol conversion. However, ordered mesoporous titanium silicate materials have pores

large enough for the catalytic reactions of bulkier molecules, and this is very important

for the production of fine chemicals. For example, for the oxidation reaction of terpineol,

Ti-MCM-41 performs much better than do microporous titanium silicate molecular

sieves as a catalyst.[29]

However, on the other hand, the hydrothermal stability and catalytic activity of ordered

mesoporous materials are still lower than those of conventional microporous molecular

sieves. In recent years, many measures have been taken to solve this problem, such as

adding inorganic salts during the synthesis of mesoporous materials,[31] intensifying the

post treatment,[32,33] using triblock copolymers as templates to obtain thicker channel

walls of mesoporous materials,[28] using neutral surfactants to synthesize mesoporous

materials,[34] using mixed templates,[35–37] and synthesizing mesoporous materials at

high temperatures.[38] Although these methods more or less help enhance the hydro-

thermal stability of mesoporous materials, their catalytically active centers are still not

comparable with those of conventional microporous molecular sieves. In recent years,

scientists have tried to prepare novel ordered mesoporous materials through the self-

assembly of nanoparticles consisting of microporous building units and surfactant

micelles. Using this approach, both the hydrothermal stability and the catalytic activity

of mesoporous materials have been enhanced.[39–41] For instance, the novel mesoporous

titanium silicate material, MTS-9, has shown better catalytic activity than have Ti-MCM-

41 and TS-1 in the synthesis of an intermediate product of vitamin E.[41]

Mesoporous materials have great application potential in novel and high-technology

areas as well. They can be used for the stabilization or separation of enzymes and

proteins, the degradation of organic wastes, the purification of water, and the transforma-

tion of exhaust gas. They can also be used for energy storage. Many functional materials

are able to be assembled into mesoporous materials. For example, advanced mesoporous

optical materials may be prepared through assembly of laser-generating species or

materials with optical activities.[42–44] Ordered mesoporous conducting polymers may

form through polymerization in ordered mesopores followed by chemical removal of the

inorganic host.[45] Ordered mesoporous carbon materials can be obtained through

complete mixing of mesoporous materials and a glucoside followed by carbonization

and dissolution of the inorganic species.[46] It has been demonstrated that the mesoporous

carbon thus formed exhibits better performance than do conventional carbon materials

when used as electrodes of fuel cells.[47] Through using the ordered channels in me-

soporous materials as micro-reactors, fine nanoparticles and other quantum composite

materials can be synthesized. Because of small-size or quantum-size effects arising from

the confinement of ordered channels, these composite materials exhibit unique optical,

electrical, and magnetic properties. For example, it has been demonstrated that modified

mesoporous zirconium oxides show unusual photoluminescence at room temperature.

In contrast with carbon nanotubes, mesoporous materials composed of silica and non-

silica species exhibit rich surface chemical activity. The ordered channels in mesoporous

materials may act as micro-reactors to assemble nanometer-sized homogeneous guest
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materials, and, as a result, the application fields of mesoporous materials can be further

broadened on the basis of the host–guest effects. Through using stable mesoporous

materials as hosts, a variety of inorganic photoelectric nano-sized materials such as Si,

BN, SiC, AgI, and AlN, and giant magneto-resistant transition metals such as Ni, Cu, and

Co can be prepared. Assembly of some semiconductor clusters with a wide band-gap

such as ZnO, ZnS, and CdS into mesoporous materials may greatly increase the

fluorescence intensities of the former due to the host–guest interactions and quantum-

size effects, implying promising applications of these composites in the field of

optoelectronics.

In view of the many applications in the fields of separation, purification, biology,

medicine, chemical industry, catalysis, information, environment, energy, and advanced

composite materials, it is believed that mesoporous materials will play more important

roles in the 21st century as an increasing number of mesoporous materials with advanced

functions are designed and synthesized.

1.3 The Development of Chemistry for Molecular
Sieves and Porous Materials

In the past half century, with the expansion of structure types and compositions of porous

materials, the number of application fields and the total demand for these materials have

been continuously growing, and meanwhile, the characterization techniques and instru-

mentation have been greatly improved. As a result, our comprehension of the chemistry

of molecular sieves and porous materials has been deepened to a great extent. Here, we

take two main branches in the chemistry of molecular sieves and porous materials as

examples to illustrate how zeolite science has been developed.

1.3.1 The Development from Synthesis Chemistry to Molecular

Engineering of Porous Materials

In 1968, the first International Zeolite Conference (IZC) was held in London. This was

the first international conference focusing on zeolites and microporous aluminosili-

cates, and various issues related to zeolite research were addressed. Because only a few

natural zeolites had been discovered and about 20 synthesized at that time, all the

scientific topics about the synthesis of zeolites were focused on the formation of

aluminosilicate microporous materials, and the influence of synthetic conditions on

reactions and products (for example, crystallization zone diagrams, and crystallization

kinetic curves, etc). In the past 30 years, the compositional elements have increased

from 2 to over 30, and the framework types have increased to 174 (Feb. 2007).

Therefore, it is important to summarize the synthetic chemistry for pore construction,

and to conduct an in-depth study on related scientific issues, such as the structures

of intermediates and products, the polymerization of reactants, the structures and

transformation of sols and gels, nucleation and crystallization, the templating and

structure-directing effects, the metastable state and crystal transformation, and the

growth of crystals and their aggregation. Inorganic synthesis and preparative chemistry,

hydrothermal and solvothermal chemistry, sol–gel chemistry, crystallization and
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crystal–growth, host–guest chemistry, and combinatorial chemistry all help to paved

the way for the progress of the synthetic chemistry of porous materials or the so-called

‘pore-construction’ synthetic chemistry.

On the other hand, the most important goal for chemistry is to create new materials.

Synthesis and preparative chemistry is the core of chemistry, and it is always on the

frontier of development. During the process of development, the research mode of

‘synthesis–structure–function’ is formed. With the progress of science and technology, it

has become a key issue to explore ways to avoid creating new materials without clear

goals and to develop rational, effective, and environment-friendly synthetic routes in the

21st century. As chemistry and related disciplines have gained deep insight into and

reasonable control over molecules, a new research field, that of molecular design and

molecular engineering, has emerged. In recent years, molecular design and engineering

has attracted increasing attention in chemistry, materials science, and life sciences,

leading the development of chemistry into the age of molecular engineering.

Differing from traditional chemistry, molecular engineering involves the design of

structures based on their required function. Molecular engineering focuses on the forma-

tion and assembly of primary building units, and, with the aid of computational simula-

tions, gradually realizes the rational synthesis of compounds with specific functions and

structures. In some sense, molecular engineering is the chemistry of rational design and

synthesis. The key impact of molecular engineering on chemistry is that it broadens the

perspectives on function, structure, and synthesis, draws more attention to ‘function–

structure–synthesis’, and promotes a better understanding of structure types and levels

beyond molecular structures, rather than excessively focusing on the synthesis of

individual compounds.

The channels in porous molecular sieves are rather regular and uniform. The

framework features, the secondary building units (SBUs), and the interactions between

building units and structure-directing agents for porous materials have been thoroughly

investigated. Furthermore, the formation behavior, the crystallization mechanism, and

the movement and reactions of reactant molecules in the channels have also been

elucidated for over half a century. Therefore, in contrast with other materials, porous

materials, with molecular sieves as their representatives, have been well studied in

terms of the relations among function, structure, and synthesis. With the aid of

computers, ideal porous structure models can be designed to meet specific function

requests. Then feasible structures and corresponding synthesis conditions can be

selected under the guidance of structure and synthesis databases. Finally, rational

synthesis can be achieved using combinatorial chemistry. At present, several research

groups, including the authors’ own group, in the world have been engaged in this work,

and satisfactory results have been obtained in some aspects. Although there is still a

long way to go, molecular engineering has pushed the chemistry of porous materials to

a new level, and more challenging research directions and scientific issues will come up

in this emerging field.

1.3.2 Developments in the Catalysis Study of Porous Materials

The first use of molecular sieves in catalysis occurred in 1959 when zeolite Y was used as

a catalyst for isomerization reactions. In 1962, the Mobil Company used zeolite X in the
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