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Foreword

Ten years ago Korea began the operation of its first HVDC

system, linking Cheju Island to Haenam on the mainland. It

was an extremely important contribution to our industry. In

the future, issues such as systemic links and the quality of

large scale, renewable energy will become crucial. HVDC is

critical to solving these major concerns, I am proud to be a

part of that project.

This book, a compendium of work relating to HVDC

technology, is a key resource. Enormous effort has been

undertaken to produce this great body of material in such a

short period of time.

In our industry, we must acknowledge the inevitable

depletion of fossil fuels and the growing importance of

environmental awareness. As such, electricity offers a num-

ber of advantages in terms of efficiency, economy, and clean energy, especially compared to

coal, oil, and gas. HVDC can resolve a number of issues, including voltage stability in

alternating current systems, reducing growing fault currents, and increasing electric power

reserves. Clearly, it plays a crucial role in the future of electric power.

Most significantly, HVDC is the most effective solution in areas which require high quality

electricity or links to large scale renewable resources.

This book encompasses a number of studies which cover basic and advanced HVDC

applications, all conducted under the supervision of world-renowned experts. Without doubt,

this is one of the best volumes of information available for HVDC technology. Science has no

boundaries, so I believe that this book will be a useful resource and beneficial to electric

industries around the world.

I sincerely hope that the authors of this book continue to dedicate their vast skills and efforts

to further research in the HVDC field.



I’m reminded of the tireless dedication of researchers I worked with when I was the

president at KEPRI. They had a slogan written across their desks that 1 believe in whole

heartedly. It said:

HVDC will bring benefits and improvement to the world!

Korea Electric Power Corporation

Transmission Division

Senior Vice-President Kim, Moon-Duk

x Foreword



Preface

Although HVDC transmission is considered to be a mature technology by some, it is quite

amazing how many new aspects and projects are under consideration. The complexity of

electrical power systems is increasing owing to its interconnections with existing systems and

application of new technology and at the same time, many economic and other constraints are

forcing the utilities to operate their system near the maximal limits of stability and provide

realiable and clean power at the lowest cost. In developing nations such as China, India, and

Brazil, the ongoing demand for power is forcing the need for HVDC bulk power transmission

over long distances. Developed nations wishing to interconnect networks and provide

flexibility are relying on HVDC B-to-B connections. Furthermore, there is growing interest

to incorporate renewable energy sources into the grid, again relying on HVDC links. It seems

that applications ofHVDC transmission technology are necessary as ameans to overcome such

problems.

The history of DC transmission began in 1897 when Thomas Edison succeeded in

implementing the supply and consumption of electricity at a low DC voltage. At that time,

the technological standards for electrical power industries were still being developed and the

technological competition between theDC power transmission and theAC power transmission

method through transformers, developed by George Westinghouse, were quite severe.

Subsequently, large-scale generation and transmission of electricity was in high demand as

people began to realize its importance. Since AC technology was superior in terms of

generation, reliability, transformation, and transmission voltage, it became the backbone of

the electric power industry. On the other hand, DC transmission gained respect only after the

development of the mercury arc valve in the 1930s. The HVDC type of electrical power

transmission began its first commercial operation in Gotland, Sweden in 1954 through a

submarine cable interconnection.

The unique characteristics of HVDC transmission continued to make the technology viable

for special niche applications. In the early 1970s, the advent of the thyristor valve gave a boost

to the applications of HVDC and considerably enhanced reliability and lowered the costs of

implementation. The availability of high power forced commutated switches in the 1990s

further enhanced the applications for HVDC. Today, the technology of HVDC is well

established and operates in partnership with FACTS-based AC transmission to provide

complex and versatile modes of power transmission. However, new applications are always

being developed. It is important, therefore, that the technology continues to be developed too

and that new researchers and engineers continue to understand this technology. We find,

however, that the literature on this subject is often lacking and not available in a comprehensive



manner. Consequently, it was felt that practicing engineers should add their expertise to this

information pool for upcoming generations.

The Korea Electric Power Corporation (KEPCO) is currently actively pursuing an electrical

power interconnection project encompassing the North-East Asian region domestically and

abroad. The engineers, who havemany years of practical experience behind them, got together

to prepare this textbook. As a result of their first-hand knowledge of the actual station between

Cheju and Haenam, this text combines practical and theoretical knowhow not available

elsewhere on the subject of HVDC transmission.

In Chapters 1 and 2, we provide an introduction to DC power transmission and describe the

basic components of a converter, which is the most essential element for HVDC transmission.

In addition, we describe the methods for compensating the reactive power demanded by the

converter and the methods for simulation of HVDC systems.

In Chapters 3–5, we have described the types of filters for removing harmonics and the

characteristics of the system impedance resulting from AC filter designs. We also describe the

IPC (Individual Phase Control) method, which is the basic method to control the phase of a

thyristor, as well as the EPC (Equidistant Pulse Control) method and the DC system control

method.

In Chapters 6–8, the design techniques for the main components of an HVDC system are

described: thyristor converters, converter transformers, smoothing reactors, overhead lines,

cable lines, ground electrodes, and Back-to-Back converters.

In Chapters 9–10, DC andAC transmission, in terms of their capacity of power transmission,

environmental impact, and economical characteristics, are compared. Based on the actual

application of electrical power transmission, we have fully described the current status of the

HVDC type of electrical power transmission technology and the trend for HVDC technologies

around the world.

Useful supplements for this title are available on the book’s companion website at the

following URL: http://www.wiley.com/go/hvdc.

It is our sincere hope that this text will add to thewealth of literature available on the subject

of HVDC transmission. We do realize that it is not possible to cover all aspects of this vast

technology, although we have tried to bring in a practical focus not available elsewhere.

Chan-Ki Kim

Vijay K. Sood

Gil-Soo Jang

Seong-Joo Lim

Seok-Jin Lee
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1

Development of HVDC
Technology

1.1 Introduction

The development of HVDC (High Voltage Direct Current) transmission system dates back to

the 1930s when mercury arc rectifiers were invented. In 1941, the first HVDC transmission

system contract for a commercial HVDC systemwas placed: 60MWwere to be supplied to the

city of Berlin through an underground cable of 115 km in length. In 1945, this systemwas ready

for operation. However, due to the end of World War II, the system was dismantled and never

became operational. It was only in 1954 that the first HVDC (10MW) transmission systemwas

commissioned in Gotland. Since the 1960s, HVDC transmission system is now a mature

technology and has played a vital part in both long distance transmission and in the

interconnection of systems.

HVDC transmission systems, when installed, often form the backbone of an electric power

system. They combine high reliability with a long useful life. Their core component is the

power converter, which serves as the interface to the AC transmission system. The conversion

from AC to DC, and vice versa, is achieved by controllable electronic switches (valves) in a

3-phase bridge configuration.

AnHVDC link avoids some of the disadvantages and limitations of AC transmission and has

the following advantages:

. No technical limit to the length of a submarine cable connection.

. No requirement that the linked systems run in synchronism.

. No increase to the short circuit capacity imposed on AC switchgear.

. Immunity from impedance, phase angle, frequency or voltage fluctuations.

. Preserves independent management of frequency and generator control.

. Improves both the AC system’s stability and, therefore, improves the internal power-

carrying capacity, by modulation of power in response to frequency, power swing or line

rating.

HVDC Transmission Chan-Ki Kim, Vijay K. Sood, Gil-Soo Jang, Seong-Joo Lim, and Seok-Jin Lee
� 2009 John Wiley & Sons (Asia) Pte Ltd



Figure 1.1 shows example applications ofHVDC transmission systems inwhich the labeling

is as follows:

1. Power transmission of bulk energy through long distance overhead line.

2. Power transmission of bulk energy through sea cable.

3. Fast and precise control of the flow of energy over an HVDC link to create a positive

damping of electromechanical oscillations and enhance the stability of the network by

modulation of the transmission power by using a Back-to-Back.

4. Since an HVDC link has no constraints with respect to frequency or to phase angle between

the two AC systems, it can be used to link systems with different frequencies using an

Asynchronous Back-to-Back.

5. When power is to be transmitted from a remote generation location across different

countries or different areas within one country, it may be strategically and politically

necessary to offer a connection to potential partners in the areas traversed by using a multi-

terminal DC link.

6. An HVDC transmission system can also be used to link renewable energy sources, such as

wind power, when it is located far away from the consumer.

7. VSC (Voltage-Source Converter) based HVDC technology is gaining more and more

attention. This new technology has become possible as a result of important advances in the

development of Insulated Gate Bipolar Transistors (IGBT). In this system, Pulse-Width

60Hz

60Hz

Islanding
Area

Plant 

50Hz

Plant

Island

Plant Complex

Wind Power 

Wind Power 

Figure 1.1 Various applications of an HVDC system.
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Modulation (PWM) can be used for the VSC as opposed to the thyristor based conventional

HVDC. This technology is well suited for wind power connection to the grid.

8. Since reactive power does not get transmitted over a DC link, two AC systems can be

connected through an HVDC link without increasing the short circuit power; this technique

can be useful in generator connections.

1.2 Advantages of HVDC Systems

The classical application of HVDC systems is the transmission of bulk power over long

distances because the overall cost for the transmission system is less and the losses are lower

than AC transmission. A significant advantage of the DC interconnection is that there is no

stability limit related to the amount of power or the transmission distance.

Long Distance Bulk Power Transmission.When large amounts of power are to be delivered

over long distances, DC transmission is always an alternative to be considered. AC transmis-

sion becomes limited by:

. Acceptable variation of voltage over the transmission distance and expected loading levels.

. Need to maintain stability, that is, synchronous operation across the transmission, after a

disturbance, both transiently and dynamically.
. Economic effects of additions necessary to correct the above limitations.

The DC line, requiring as few as two conductors (one only for submarine with earth return)

compared to the AC line’s use of three, requires a smaller right of way and a less obtrusive

tower. Figure 1.2 shows schematically the tower configurations for 1200MW(two circuits AC,

Figure 1.2 Tower configurations for AC and DC transmission.

Development of HVDC Technology 3



bipolar DC) and 1500–2000MW transmission at EHVAC single circuit or monopolar DC by

alternative tower designs. (Note: a single circuit or a single pole above 1600MW capacity has

not been built to date (2008) because of the effect of the potential loss of such a high capacity

circuit on the system.)

As anAC line reaches either the limit imposed by system stability or its thermal capacity and

if adding a parallel line is impossible, it may be possible to convert it to DC. Applying DC up to

three times the AC capacity should be possible for transmission by altering the tower head

configuration, but not the foundations, tower size nor the right of way. Running AC and DC

lines on the same tower are also possible. At present, no example of these being put into effect

can be reported.

Interconnection by AC or HVDC. If two or more independent systems are to be inter-

connected by a synchronous AC link, the common rules concerning security, reliability,

frequency control, voltage control, primary and secondary control of reserve capacity and so on

need to be respected. When the basis for synchronism is established, it depend on the structure

and the strength of the power systems, the number of interconnecting lines, and whether or not

stability problems, for example, inter-area oscillations, may occur. In most cases, more than

one AC link is necessary for reliability; however, there are examples of single-circuit

interconnections for energy and reserve exchange, where limited reliability of the link is

accepted.

By contrast, interconnecting the systems with DC removes any constraints concerning

stability problems or control strategies. The common rules listed above concerning security

and so on can largely be left within the jurisdiction of the separate AC systems, remaining

independent of the agreement to link. The interconnection can bemade byHVDCback-to-back

stations along the border or by interconnecting load and generation centers within the systems

by long distance transmission.

For submarine interconnection, as distance increases, AC cables generate an increasingly

wide variation of voltage with power flow until the rating of the cable is fully taken up by its

charging current. Since intermediate, reactive compensation units cannot be installed, the

maximum practical distance was 50 km until recently. In recent years, the advent of the XLPE

cable (cross-linked polyethylene) for submarine use, with a lower shunt capacitance than

earlier types, has increased this limit to about 100 km. Beyond this distance, DC is the only

technically viable solution.AnHVDCconnection requires only positive and negative (pole and

return) conductors, or in some cases a single conductor with sea return and there is no practical

technical limit to length except cost.

HVDCMulti-Terminal Systems.When power is to be transmitted from a remote generation

location across different countries or different areaswithin one country, itmay be economically

and politically necessary to offer a connection to potential partners in the areas traversed.

Multi-terminal DC is a possibility for this type of application.

HVDCmulti-terminal systems allowmore participants. They have proved to be feasible, for

example, the SACOI 3-terminal cable system between Italy, Corsica (France), and Sardinia

(Italy) and the Quebec–New England 3-terminal overland system in Canada/USA. The Pacific

Intertie and the Nelson River DC links are examples of multi-terminal DC put to practical use.

These are examples of parallelmulti-terminal systems. Seriesmulti-terminal systems have also

been proposed but no practical applications exist at present.

A further example for interconnecting more systems via long distance HVDC links is the

planning of the East–West High Power Trans, connecting Russia, the Baltic States, Belarus,
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Poland and Germany, where a multi-terminal HVDC system is under consideration. The

advantages of interconnection can be exploited without establishing common rules (for

example, of frequency control) and AC systems can continue to operate and develop

independently. If, in the longer term, the requirements for AC interconnection are fulfilled

and it is agreed to synchronize, the HVDC transmission becomes a strong backbonewithin the

interconnected system and brings considerable stability advantages.

A control choice is available to operate multi-terminal systems with either a coordinated

master power controller, or with each terminal having its own power controller and the voltage-

controlling terminal supplies the balance of power. New control concepts may become

available to overcome the need for a master controller and to allow expansion with more

terminals, each convertor operating with locally available information.

Care has to be taken when weak systems have to be integrated into a multi-terminal

system, so that faults within them do not cause too widespread a disturbance. Furthermore,

if a multi-terminal system is to develop and grow independently, as AC systems can do, the

integration of a new converter station needs a review and re-coordination of the control

structure and parameters of all converters. However, smaller converters (with current rating

below or equal to the current margin, that is, about 10% of the existing system) may be

integrated at a later date.

AC System Support. An AC load flow depends on the difference in angle between voltage

vectors in different parts of the network. This angle cannot be influenced directly but depends

on the power balance. Secondly, a change in power generation or in the load demandwill cause

a change in system frequency that has to be restored by altering the generation. As this task has

to be fulfilled by the generator speed controllers, the frequency restoration is a slow action.

System stability also depends on there being sufficient flexibility to allow the automatic

adjustment of the voltage vectors.

If stability problems are encountered which can be solved by fast frequency control, HVDC

systems can fulfill this task by drawing the energy from the remote network. Due to the ability

to change the operating point virtually instantaneously, HVDC can feed (or reduce) active

power into the disturbed system to control the frequencymuch faster than a normally controlled

generator. If the feeding AC system is strong enough, the DC link can, within its rating, control

the frequency in the receiving system. A prerequisite for this kind of system support is only the

appropriate mode of control.

Take the case of an AC system containing relatively long transmission lines, where

electromechanical oscillations can be excited by system faults and are weakly damped.

Assume the addition of a DC link (point-to-point or back-to-back) from outside into this

system. Control features for power modulation, with the appropriate phase angle, can actively

introduce damping torque. In general, this valuable feature of an HVDC link is inherent and

requires no significant extra costs. Where the systems at each end of the DC have different

natural frequencies of oscillation, the damping torque can be applied to either/or both systems

simultaneously if necessary.

Two controls are available. Where a terminal’s AC network is part of a large system, the DC

controls can react to swings of power and attempt to mitigate their effect by damping power to

maintain synchronism.Where it is a separate system, applying a slope characteristic similar to

that of a generator can be used to apply frequency control.

Limitation of Faults. Faults causing depression of voltage on power swings do not transmit

across a DC barrier. They may emerge on the other side of a DC link simply as a reduction in
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power, but voltage will not affected. Constraining the influence of certain critical faults on AC

systems can be a valuable attribute of DC.

Limitation of Short Circuit Level.When new lines are built to extend AC systems, the short

circuit level of the system will unavoidably be increased. The switchgear apparatus must cope

with the short circuit requirements or an expensive refurbishment has to take place. Since

reactive power is not transmitted over a DC link, it provides ameans to extend the active power

exchanged without increasing the short circuit level.

Power Flow Control. An HVDC link operates at any condition of voltage and frequency of

the two AC systems. An independent control is therefore available to transmit power, leaving

each system’s existing load frequency control to act normally. A valuable strategy then is to

hold in reserve the system control features given above for occasionswhenvoltage or frequency

stray outside the normal bands of operation.

Where a link is contained within one AC system the same applies, but special stability

controls act when system oscillations exceed a certain band of, for example, the rate of change

of bus bar voltage angle.

Voltage Control.AnHVDC link can also be used for voltage control. The converter absorbs

reactive power depending on its control angle, which normally will be compensated for by

filters and/or capacitor banks. By extending the control angle operating range (to a lower

voltage) and additional capacitor banks (to raise voltage) togetherwith a fast acting transformer

tap-changer, the reactive power demand can be used for independent voltage control at both

connection points. This operation, outside the optimum (minimum) control angles, leads to

higher short-time operational losses and stress on components, but these are usually marginal

compared to the operational improvement. If it is to be used as a permanent feature, thismethod

of operation has to be taken into account in the design phase of the DC link.

It is important to realize that the normal constant power regime of a DC link can destabilize

anAC network under distress. A normal feature of theDC link is the voltage-dependent current

limit where DC power is limited when voltage drops below the normal range, so that the

reactive power is made available to the AC system. Under disturbed conditions, it is a good

principle to look after theACvoltage first, and then order the power flow accordingly. There are

substantial AC filters at the converter stations, which can be used to bolster AC voltage if

stability is threatened. The DC control drops DC power, so that the converters absorb less

reactive power and the reactive capacity of the filters is available to the network. Though the

loss of power flow is unwelcome, the boost to AC voltage maybe more valuable.

Self-commutatedVSCs are able to provide independent control of active and reactive power.

Reactive power generation or absorption is possible, within converter ratings, at anyDC power

transfer rate.

System Reserve. The maximum unit site of generation in the system is determined by the

maximum loss of power for which the system frequency can be maintained, within defined

limits. When a large amount of power is fed into an AC system by an HVDC long distance

transmission system, it can also be thought of as generation. The maximum power of one pole

of the HVDC link is in the same way limited by the system parameters.

The largest possible loss of power of an HVDC link, in case of a fault causing line outages,

depends on the DC line tower configuration and on the ability to transmit power via ground or

metallic return. Assuming that the current carrying capacity of a conductor is well above its

nominal current rating, there can be a short-time capacity of overload in the converter and line

on the remaining healthy equipment, to reduce the shock to the system as awhole in case of pole
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