A PRACTICAL APPROACH TO SIGNALS AND SYSTEMS

D. Sundararajan

John Wiley & Sons (Asia) Pte Ltd

A PRACTICAL APPROACH TO SIGNALS AND SYSTEMS

A PRACTICAL APPROACH TO SIGNALS AND SYSTEMS

D. Sundararajan

John Wiley & Sons (Asia) Pte Ltd

Copyright © 2008

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop, # 02-01, Singapore 129809

Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as expressly permitted by law, without either the prior written permission of the Publisher, or authorization through payment of the appropriate photocopy fee to the Copyright Clearance Center. Requests for permission should be addressed to the Publisher, John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop, #02-01, Singapore 129809, tel: 65-64632400, fax: 65-64646912, email: enquiry@wiley.com.sg

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book. All trademarks referred to in the text of this publication are the property of their respective owners.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, ONT, L5R 4J3, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Sundararajan, D.
Practical approach to signals and systems / D. Sundararajan.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-82353-8 (cloth)
1. Signal theory (Telecommunication) 2. Signal processing. 3. System analysis. I. Title.
TKTK5102.9.S796 2008
621.382'23-dc22

ISBN 978-0-470-82353-8 (HB)

Typeset in 11/13pt Times by Thomson Digital, Noida, India. Printed and bound in Singapore by Markono Print Media Pte Ltd, Singapore. This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

Contents

Preface				
Abbreviations				XV
1	Introduction			1
	1.1	The C	Organization of this Book	1
2	Disc	5		
	2.1	Classi	ification of Signals	5
		2.1.1	Continuous, Discrete and Digital Signals	5
		2.1.2	Periodic and Aperiodic Signals	7
		2.1.3	Energy and Power Signals	7
		2.1.4	Even- and Odd-symmetric Signals	8
		2.1.5	Causal and Noncausal Signals	10
		2.1.6	Deterministic and Random Signals	10
	2.2	Basic	Signals	11
		2.2.1	Unit-impulse Signal	11
		2.2.2	Unit-step Signal	12
		2.2.3	Unit-ramp Signal	13
		2.2.4	Sinusoids and Exponentials	13
	2.3	2.3 Signal Operations		20
		2.3.1	Time Shifting	21
		2.3.2	Time Reversal	21
		2.3.3	Time Scaling	22
	2.4	Sumn	nary	23
		Furthe	er Reading	23
		Exerc	ises	23
3	Con	tinuou	s Signals	29
	3.1	Classi	ification of Signals	29
		3.1.1	Continuous Signals	29
		3.1.2	Periodic and Aperiodic Signals	30
		3.1.3	Energy and Power Signals	31

		3.1.4	Even- and Odd-symmetric Signals	31
	2.2	3.1.5	Causal and Noncausal Signals	33
	3.2	Basic	Signals	33
		3.2.1	Unit-step Signal	33 24
		3.2.2	Unit-impulse Signal	34 42
		3.2.3 2.2.4	Unit-ramp Signal	42
	2.2	5.2.4 Signal	Siliusoids	45
	3.3		Time Shifting	43
		3.3.1	Time Bayersel	43
		3.3.2	Time Scaling	40
	31	5.5.5 Summ	Time Scaling	47
	5.4	Furthe	lal y pr Reading	40
		Exerci	ses	48
		LACICI		-10
4	Tim	e-doma	in Analysis of Discrete Systems	53
	4.1	Differ	ence Equation Model	53
		4.1.1	System Response	55
		4.1.2	Impulse Response	58
		4.1.3	Characterization of Systems by their Responses to Impulse	
			and Unit-step Signals	60
	4.2	Classi	fication of Systems	61
		4.2.1	Linear and Nonlinear Systems	61
		4.2.2	Time-invariant and Time-varying Systems	62
		4.2.3	Causal and Noncausal Systems	63
		4.2.4	Instantaneous and Dynamic Systems	64
		4.2.5	Inverse Systems	64
		4.2.6	Continuous and Discrete Systems	64
	4.3	Convo	olution–Summation Model	64
		4.3.1	Properties of Convolution–Summation	67
		4.3.2	The Difference Equation and Convolution–Summation	68
		4.3.3	Response to Complex Exponential Input	69
	4.4	Syster	n Stability	71
	4.5	Realiz	ation of Discrete Systems	72
		4.5.1	Decomposition of Higher-order Systems	73
		4.5.2	Feedback Systems	74
	4.6	Summ	ary	74
		Furthe	r Reading	75
		Exerci	ises	75

 5.1 Classification of Systems 5.1.1 Linear and Nonlinear Systems 5.1.2 Time-invariant and Time-varying Systems 5.1.3 Causal and Noncausal Systems 5.1.4 Instantaneous and Dynamic Systems 5.1.5 Lumped-parameter and Distributed-parameter Systems 5.1.6 Inverse Systems 5.2 Differential Equation Model 5.3 Convolution-integral Model 	80 80 81 82 83 83 83 83 83 85 87 88 88 89 91
 5.1.1 Linear and Nonlinear Systems 5.1.2 Time-invariant and Time-varying Systems 5.1.3 Causal and Noncausal Systems 5.1.4 Instantaneous and Dynamic Systems 5.1.5 Lumped-parameter and Distributed-parameter Systems 5.1.6 Inverse Systems 5.2 Differential Equation Model 5.3 Convolution-integral Model 	80 81 82 83 83 83 83 83 85 87 88 88 89 91
 5.1.2 Time-invariant and Time-varying Systems 5.1.3 Causal and Noncausal Systems 5.1.4 Instantaneous and Dynamic Systems 5.1.5 Lumped-parameter and Distributed-parameter Systems 5.1.6 Inverse Systems 5.2 Differential Equation Model 5.3 Convolution-integral Model 	81 82 83 83 83 83 83 85 87 88 88 89 91
 5.1.3 Causal and Noncausal Systems 5.1.4 Instantaneous and Dynamic Systems 5.1.5 Lumped-parameter and Distributed-parameter Systems 5.1.6 Inverse Systems 5.2 Differential Equation Model 5.3 Convolution-integral Model 	82 83 83 83 83 83 85 87 88 88 89 91
 5.1.4 Instantaneous and Dynamic Systems 5.1.5 Lumped-parameter and Distributed-parameter Systems 5.1.6 Inverse Systems 5.2 Differential Equation Model 5.3 Convolution-integral Model 	83 83 83 83 85 87 88 88 88 89 91
 5.1.5 Lumped-parameter and Distributed-parameter Systems 5.1.6 Inverse Systems 5.2 Differential Equation Model 5.3 Convolution-integral Model 	83 83 83 85 87 88 88 88 89 91
 5.1.6 Inverse Systems 5.2 Differential Equation Model 5.3 Convolution-integral Model 	83 83 85 87 88 88 89 91
5.2 Differential Equation Model 5.3 Convolution-integral Model	83 85 87 88 88 89 91
5.3 Convolution-integral Model	85 87 88 88 89 91
	87 88 88 89 91
5.3.1 Properties of the Convolution-integral	88 88 89 91 92
5.4 System Response	88 89 91 92
5.4.1 Impulse Response	89 91 92
5.4.2 Response to Unit-step Input	91 02
5.4.3 Characterization of Systems by their Responses to Impulse	91 02
and Unit-step Signals	02
5.4.4 Response to Complex Exponential Input	24
5.5 System Stability	93
5.6 Realization of Continuous Systems	94
5.6.1 Decomposition of Higher-order Systems	94
5.6.2 Feedback Systems	95
5.7 Summary	96
Further Reading	97
Exercises	97
6 The Discrete Fourier Transform	101
6.1 The Time-domain and the Frequency-domain	101
6.2 Fourier Analysis	102
6.2.1 Versions of Fourier Analysis	104
6.3 The Discrete Fourier Transform	104
6.3.1 The Approximation of Arbitrary Waveforms with a Finite	
Number of Samples	104
6.3.2 The DFT and the IDFT	105
6.3.3 DFT of Some Basic Signals	107
6.4 Properties of the Discrete Fourier Transform	110
6.4.1 Linearity	110
6.4.2 Periodicity	110
6.4.3 Circular Shift of a Sequence	110
6.4.4 Circular Shift of a Spectrum	111
6.4.5 Symmetry	111
6.4.6 Circular Convolution of Time-domain Sequences	112

		6.4.7	Circular Convolution of Frequency-domain Sequences	113
		6.4.8	Parseval's Theorem	114
	6.5	Applic	ations of the Discrete Fourier Transform	114
		6.5.1	Computation of the Linear Convolution Using the DFT	114
		6.5.2	Interpolation and Decimation	115
	6.6	Summa	ary	119
		Further	r Reading	119
		Exercis	ses	119
7	Fou	rier Seri	ies	123
	7.1	Fourier	r Series	123
		7.1.1	FS as the Limiting Case of the DFT	123
		7.1.2	The Compact Trigonometric Form of the FS	125
		7.1.3	The Trigonometric Form of the FS	126
		7.1.4	Periodicity of the FS	126
		7.1.5	Existence of the FS	126
		7.1.6	Gibbs Phenomenon	130
	7.2	Proper	ties of the Fourier Series	132
		7.2.1	Linearity	133
		7.2.2	Symmetry	133
		7.2.3	Time Shifting	135
		7.2.4	Frequency Shifting	135
		7.2.5	Convolution in the Time-domain	136
		7.2.6	Convolution in the Frequency-domain	137
		7.2.7	Duality	138
		7.2.8	Time Scaling	138
		7.2.9	Time Differentiation	139
		7.2.10	Time Integration	140
		7.2.11	Parseval's Theorem	140
	7.3	Approx	ximation of the Fourier Series	141
		7.3.1	Aliasing Effect	142
	7.4	Applic	ations of the Fourier Series	144
	7.5	Summa	ary	145
		Further	r Reading	145
		Exercis	ses	145
8	The	Discret	e-time Fourier Transform	151
	8.1	The Di	screte-time Fourier Transform	151
		8.1.1	The DTFT as the Limiting Case of the DFT	151
		8.1.2	The Dual Relationship Between the DTFT and the FS	156
		8.1.3	The DTFT of a Discrete Periodic Signal	158
		8.1.4	Determination of the DFT from the DTFT	158

	8.2	Proper	ties of the Discrete-time Fourier Transform	159
		8.2.1	Linearity	159
		8.2.2	Time Shifting	159
		8.2.3	Frequency Shifting	160
		8.2.4	Convolution in the Time-domain	161
		8.2.5	Convolution in the Frequency-domain	162
		8.2.6	Symmetry	163
		8.2.7	Time Reversal	164
		8.2.8	Time Expansion	164
		8.2.9	Frequency-differentiation	166
		8.2.10	Difference	166
		8.2.11	Summation	167
		8.2.12	Parseval's Theorem and the Energy Transfer Function	168
	8.3	Approx	ximation of the Discrete-time Fourier Transform	168
		8.3.1	Approximation of the Inverse DTFT by the IDFT	170
	8.4	Applic	ations of the Discrete-time Fourier Transform	171
		8.4.1	Transfer Function and the System Response	171
		8.4.2	Digital Filter Design Using DTFT	174
		8.4.3	Digital Differentiator	174
		8.4.4	Hilbert Transform	175
	8.5	Summa	ary	178
		Further	r Reading	178
		Exercis	ses	178
9	The	Fourier	· Transform	183
	9.1	The Fo	purier Transform	183
		9.1.1	The FT as a Limiting Case of the DTFT	183
		9.1.2	Existence of the FT	185
	9.2	Proper	ties of the Fourier Transform	190
		9.2.1	Linearity	190
		9.2.2	Duality	190
		9.2.3	Symmetry	191
		9.2.4	Time Shifting	192
		9.2.5	Frequency Shifting	192
		9.2.6	Convolution in the Time-domain	193
		9.2.7	Convolution in the Frequency-domain	194
		9.2.8	Conjugation	194
		9.2.9	Time Reversal	194
		9.2.10	Time Scaling	194
		9.2.11	Time-differentiation	195
		9.2.12	Time-integration	197

		9.2.13	Frequency-differentiation	198
		9.2.14	Parseval's Theorem and the Energy Transfer Function	198
	9.3	Fourier'	Transform of Mixed Classes of Signals	200
		9.3.1	The FT of a Continuous Periodic Signal	200
		9.3.2	Determination of the FS from the FT	202
		9.3.3	The FT of a Sampled Signal and the Aliasing Effect	203
		9.3.4	The FT of a Sampled Aperiodic Signal and the DTFT	206
		9.3.5	The FT of a Sampled Periodic Signal and the DFT	207
		9.3.6	Approximation of a Continuous Signal from its Sampled	
			Version	209
	9.4	Approxi	mation of the Fourier Transform	209
	9.5	Applicat	tions of the Fourier Transform	211
		9.5.1	Transfer Function and System Response	211
		9.5.2	Ideal Filters and their Unrealizability	214
		9.5.3	Modulation and Demodulation	215
	9.6	Summar	у	219
		Further	Reading	219
		Exercise	es	219
10	The	z-Transf	orm	227
	10.1	Fourier .	Analysis and the <i>z</i> -Transform	227
	10.2	The <i>z</i> -T	ransform	228
	10.3	Properti	es of the <i>z</i> -Transform	232
		10.3.1	Linearity	232
		10.3.2	Left Shift of a Sequence	233
		10.3.3	Right Shift of a sequence	234
		10.3.4	Convolution	234
		10.3.5	Multiplication by <i>n</i>	235
		10.3.6	Multiplication by a^n	235
		10.3.7	Summation	236
		10.3.8	Initial Value	236
		10.3.9	Final Value	237
		10.3.10	Transform of Semiperiodic Functions	237
	10.4	The Inve	erse z-Transform	237
	10.5	10.4.1	Finding the Inverse z-Transform	238
	10.5	Applicat	tions of the z-Transform	243
		10.5.1	Iranster Function and System Response	243
		10.5.2	Characterization of a System by its Poles and Zeros	245
		10.5.3	System Stability	247
		10.5.4	Realization of Systems	248
		10.5.5	Feedback Systems	251

	10.6	Summar	ry	253
		Further	Reading	253
		Exercise	es	253
11	The	Laplace	Transform	259
	11.1	The Lap	blace Transform	259
		11.1.1	Relationship Between the Laplace Transform and the	
			z-Transform	262
	11.2	Properti	es of the Laplace Transform	263
		11.2.1	Linearity	263
		11.2.2	Time Shifting	264
		11.2.3	Frequency Shifting	264
		11.2.4	Time-differentiation	265
		11.2.5	Integration	267
		11.2.6	Time Scaling	268
		11.2.7	Convolution in Time	268
		11.2.8	Multiplication by t	269
		11.2.9	Initial Value	269
		11.2.10	Final Value	270
		11.2.11	Transform of Semiperiodic Functions	270
	11.3	The Inve	erse Laplace Transform	271
	11.4	Applica	tions of the Laplace Transform	272
		11.4.1	Transfer Function and System Response	272
		11.4.2	Characterization of a System by its Poles and Zeros	273
		11.4.3	System Stability	274
		11.4.4	Realization of Systems	276
		11.4.5	Frequency-domain Representation of Circuits	276
		11.4.6	Feedback Systems	279
		11.4.7	Analog Filters	282
	11.5	Summar	ry	285
		Further	Reading	285
		Exercise	es	285
12	State	cnaca A	analysis of Disorata Systems	203
14	12 1	The State	ta space Model	293
	12.1	12 1 1	Derallal Dealization	293
		12.1.1 12.1.2	Cascade Realization	297
	122	12.1.2 Time_dc	Cascade Acalization	299
	14.2	12.2.1	Iterative Solution	300
		12.2.1 1222	Closed-form Solution	300
		12.2.2	The Impulse Response	307
		14.4.9		507

	12.3 Frequency-domain Solution of the State Equation	308
	12.4 Linear Transformation of State Vectors	310
	12.5 Summary	312
	Further Reading	313
	Exercises	313
13	State-space Analysis of Continuous Systems	317
	13.1 The State-space Model	317
	13.2 Time-domain Solution of the State Equation	322
	13.3 Frequency-domain Solution of the State Equation	327
	13.4 Linear Transformation of State Vectors	330
	13.5 Summary	332
	Further Reading	333
	Exercises	333
Ар	opendix A: Transform Pairs and Properties	337
Ар	349	
An	355	
Inc	377	

Preface

The increasing number of applications, requiring a knowledge of the theory of signals and systems, and the rapid developments in digital systems technology and fast numerical algorithms call for a change in the content and approach used in teaching the subject. I believe that a modern signals and systems course should emphasize the practical and computational aspects in presenting the basic theory. This approach to teaching the subject makes the student more effective in subsequent courses. In addition, students are exposed to practical and computational solutions that will be of use in their professional careers. This book is my attempt to adapt the theory of signals and systems to the use of computers as an efficient analysis tool.

A good knowledge of the fundamentals of the analysis of signals and systems is required to specialize in such areas as signal processing, communication, and control. As most of the practical signals are continuous functions of time, and since digital systems are mostly used to process them, the study of both continuous and discrete signals and systems is required. The primary objective of writing this book is to present the fundamentals of time-domain and frequency-domain methods of signal and linear time-invariant system analysis from a practical viewpoint. As discrete signals and systems are more often used in practice and their concepts are relatively easier to understand, for each topic, the discrete version is presented first, followed by the corresponding continuous version. Typical applications of the methods of analysis are also provided. Comprehensive coverage of the transform methods, and emphasis on practical methods of analysis and physical interpretation of the concepts are the key features of this book. The well-documented software, which is a supplement to this book and available on the website (www.wiley.com/go/sundararajan), greatly reduces much of the difficulty in understanding the concepts. Based on this software, a laboratory course can be tailored to suit individual course requirements.

This book is intended to be a textbook for a junior undergraduate level onesemester signals and systems course. This book will also be useful for self-study. Answers to selected exercises, marked *, are given at the end of the book. A Solutions manual and slides for instructors are also available on the website (www.wiley.com/ go/sundararajan). I assume responsibility for any errors in this book and in the accompanying supplements, and would very much appreciate receiving readers' suggestions and pointing out any errors (email address: d_sundararajan@yahoo.com). I am grateful to my editor and his team at Wiley for their help and encouragement in completing this project. I thank my family and my friend Dr A. Pedar for their support during this endeavor.

D. Sundararajan

Abbreviations

dc: Constant

DFT: Discrete Fourier transform

DTFT: Discrete-time Fourier transform

- FT: Fourier transform
- FS: Fourier series
- IDFT: Inverse discrete Fourier transform
 - Im: Imaginary part of a complex number or expression
 - LTI: Linear time-invariant
 - Re: Real part of a complex number or expression
- ROC: Region of convergence

1 Introduction

In typical applications of science and engineering, we have to process signals, using systems. While the applications vary from communication to control, the basic analysis and design tools are the same. In a signals and systems course, we study these tools: convolution, Fourier analysis, *z*-transform, and Laplace transform. The use of these tools in the analysis of linear time-invariant (LTI) systems with deterministic signals is presented in this book. While most practical systems are nonlinear to some extent, they can be analyzed, with acceptable accuracy, assuming linearity. In addition, the analysis is much easier with this assumption. A good grounding in LTI system analysis is also essential for further study of nonlinear systems and systems with random signals.

For most practical systems, input and output signals are continuous and these signals can be processed using continuous systems. However, due to advances in digital systems technology and numerical algorithms, it is advantageous to process continuous signals using digital systems (systems using digital devices) by converting the input signal into a digital signal. Therefore, the study of both continuous and digital systems is required. As most practical systems are digital and the concepts are relatively easier to understand, we describe discrete signals and systems first, immediately followed by the corresponding description of continuous signals and systems.

1.1 The Organization of this Book

Four topics are covered in this book. The time-domain analysis of signals and systems is presented in Chapters 2–5. The four versions of the Fourier analysis are described in Chapters 6–9. Generalized Fourier analysis, the *z*-transform and the Laplace transform, are presented in Chapters 10 and 11. State space analysis is introduced in Chapters 12 and 13.

The amplitude profile of practical signals is usually arbitrary. It is necessary to represent these signals in terms of well-defined basic signals in order to carry out

A Practical Approach to Signals and Systems D. Sundararajan

^{© 2008} John Wiley & Sons (Asia) Pte Ltd

efficient signal and system analysis. The impulse and sinusoidal signals are fundamental in signal and system analysis. In Chapter 2, we present discrete signal classifications, basic signals, and signal operations. In Chapter 3, we present continuous signal classifications, basic signals, and signal operations.

The study of systems involves modeling, analysis, and design. In Chapter 4, we start with the modeling of a system with the difference equation. The classification of systems is presented next. Then, the convolution–summation model is introduced. The zero-input, zero-state, transient, and steady-state responses of a system are derived from this model. System stability is considered in terms of impulse response. The basic components of discrete systems are identified. In Chapter 5, we start with the classification of systems. The modeling of a system with the differential equation is presented next. Then, the convolution-integral model is introduced. The zero-input, zero-state, transient, and steady-state responses of a system are derived from this model. Systems are identified is introduced. The zero-input, zero-state, transient, and steady-state responses of a system are derived from this model. System stability is considered in terms of impulse response. The basic components of a system are derived from this model. System stability is considered in terms of a system are derived from this model. System stability is considered in terms of impulse response. The basic components of continuous systems are identified.

Basically, the analysis of signals and systems is carried out using impulse or sinusoidal signals. The impulse signal is used in time-domain analysis, which is presented in Chapters 4 and 5. Sinusoids (more generally complex exponentials) are used as the basic signals in frequency-domain analysis. As frequency-domain analysis is generally more efficient, it is most often used. Signals occur usually in the time-domain. In order to use frequency-domain analysis, signals and systems must be represented in the frequency-domain. Transforms are used to obtain the frequency-domain representation of a signal or a system from its time-domain representation. All the essential transforms required in signal and system analysis use the same family of basis signals, a set of complex exponential signals. However, each transform is more advantageous to analyze certain types of signal and to carry out certain types of system operations, since the basis signals consists of a finite or infinite set of complex exponential signals with different characteristics-continuous or discrete, and the exponent being complex or pure imaginary. The transforms that use the complex exponential with a pure imaginary exponent come under the heading of Fourier analysis. The other transforms use exponentials with complex exponents as their basis signals.

There are four versions of Fourier analysis, each primarily applicable to a different type of signals such as continuous or discrete, and periodic or aperiodic. The discrete Fourier transform (DFT) is the only one in which both the time- and frequency-domain representations are in finite and discrete form. Therefore, it can approximate other versions of Fourier analysis through efficient numerical procedures. In addition, the physical interpretation of the DFT is much easier. The basis signals of this transform is a finite set of harmonically related discrete exponentials with pure imaginary exponent. In Chapter 6, the DFT, its properties, and some of its applications are presented.

Fourier analysis of a continuous periodic signal, which is a generalization of the DFT, is called the Fourier series (FS). The FS uses an infinite set of harmonically related continuous exponentials with pure imaginary exponent as the basis signals.

This transform is useful in frequency-domain analysis and design of periodic signals and systems with continuous periodic signals. In Chapter 7, the FS, its properties, and some of its applications are presented.

Fourier analysis of a discrete aperiodic signal, which is also a generalization of the DFT, is called the discrete-time Fourier transform (DTFT). The DTFT uses a continuum of discrete exponentials, with pure imaginary exponent, over a finite frequency range as the basis signals. This transform is useful in frequency-domain analysis and design of discrete signals and systems. In Chapter 8, the DTFT, its properties, and some of its applications are presented.

Fourier analysis of a continuous aperiodic signal, which can be considered as a generalization of the FS or the DTFT, is called the Fourier transform (FT). The FT uses a continuum of continuous exponentials, with pure imaginary exponent, over an infinite frequency range as the basis signals. This transform is useful in frequency-domain analysis and design of continuous signals and systems. In addition, as the most general version of Fourier analysis, it can represent all types of signals and is very useful to analyze a system with different types of signals, such as continuous or discrete, and periodic or aperiodic. In Chapter 9, the FT, its properties, and some of its applications are presented.

Generalization of Fourier analysis for discrete signals results in the *z*-transform. This transform uses a continuum of discrete exponentials, with complex exponent, over a finite frequency range of oscillation as the basis signals. With a much larger set of basis signals, this transform is required for the design, and transient and stability analysis of discrete systems. In Chapter 10, the *z*-transform is derived from the DTFT and, its properties and some of its applications are presented. Procedures for obtaining the forward and inverse *z*-transforms are described.

Generalization of Fourier analysis for continuous signals results in the Laplace transform. This transform uses a continuum of continuous exponentials, with complex exponent, over an infinite frequency range of oscillation as the basis signals. With a much larger set of basis signals, this transform is required for the design, and transient and stability analysis of continuous systems. In Chapter 11, the Laplace transform is derived from the FT and, its properties and some of its applications are presented. Procedures for obtaining the forward and inverse Laplace transforms are described.

In Chapter 12, state-space analysis of discrete systems is presented. This type of analysis is more general in that it includes the internal description of a system in contrast to the input–output description of other types of analysis. In addition, this method is easier to extend to system analysis with multiple inputs and outputs, and nonlinear and time-varying system analysis. In Chapter 13, state-space analysis of continuous systems is presented.

In Appendix A, transform pairs and properties are listed. In Appendix B, useful mathematical formulas are given.

The basic problem in the study of systems is how to analyze systems with arbitrary input signals. The solution, in the case of linear time-invariant (LTI) systems, is to

decompose the signal in terms of basic signals, such as the impulse or the sinusoid. Then, with knowledge of the response of a system to these basic signals, the response of the system to any arbitrary signal that we shall ever encounter in practice, can be obtained. Therefore, the study of the response of systems to the basic signals, along with the methods of decomposition of arbitrary signals in terms of the basic signals, constitute the study of the analysis of systems with arbitrary input signals.

2

Discrete Signals

A signal represents some information. Systems carry out tasks or produce output signals in response to input signals. A control system may set the speed of a motor in accordance with an input signal. In a room-temperature control system, the power to the heating system is regulated with respect to the room temperature. While signals may be electrical, mechanical, or of any other form, they are usually converted to electrical form for processing convenience. A speech signal is converted from a pressure signal to an electrical signal in a microphone. Signals, in almost all practical systems, have arbitrary amplitude profile. These signals must be represented in terms of simple and well-defined mathematical signals for ease of representation and processing. The response of a system is also represented in terms of these simple signals. In Section 2.1, signals are classified according to some properties. Commonly used basic discrete signals are described in Section 2.2. Discrete signal operations are presented in Section 2.3.

2.1 Classification of Signals

Signals are classified into different types and, the representation and processing of a signal depends on its type.

2.1.1 Continuous, Discrete and Digital Signals

A continuous signal is specified at every value of its independent variable. For example, the temperature of a room is a continuous signal. One cycle of the continuous complex exponential signal, $x(t) = e^{j(\frac{2\pi}{16}t + \frac{\pi}{3})}$, is shown in Figure 2.1(a). We denote a continuous signal, using the independent variable *t*, as x(t). We call this representation the time-domain representation, although the independent variable is not time for some signals. Using Euler's identity, the signal can be expressed, in terms of cosine and

A Practical Approach to Signals and Systems D. Sundararajan

^{© 2008} John Wiley & Sons (Asia) Pte Ltd

Figure 2.1 (a) The continuous complex exponential signal, $x(t) = e^{j(\frac{2\pi}{16}t + \frac{\pi}{3})}$; (b) the discrete complex exponential signal, $x(n) = e^{j(\frac{2\pi}{16}n + \frac{\pi}{3})}$

sine signals, as

$$x(t) = e^{j(\frac{2\pi}{16}t + \frac{\pi}{3})} = \cos\left(\frac{2\pi}{16}t + \frac{\pi}{3}\right) + j\sin\left(\frac{2\pi}{16}t + \frac{\pi}{3}\right)$$

The real part of x(t) is the real sinusoid $\cos(\frac{2\pi}{16}t + \frac{\pi}{3})$ and the imaginary part is the real sinusoid $\sin(\frac{2\pi}{16}t + \frac{\pi}{3})$, as any complex signal is an ordered pair of real signals. While practical signals are real-valued with arbitrary amplitude profile, the mathematically well-defined complex exponential is predominantly used in signal and system analysis.

A discrete signal is specified only at discrete values of its independent variable. For example, a signal x(t) is represented only at $t = nT_s$ as $x(nT_s)$, where T_s is the sampling interval and n is an integer. The discrete signal is usually denoted as x(n), suppressing T_s in the argument of $x(nT_s)$. The important advantage of discrete signals is that they can be stored and processed efficiently using digital devices and fast numerical algorithms. As most practical signals are continuous signals, the discrete signal is often obtained by sampling the continuous signal. However, signals such as yearly population of a country and monthly sales of a company are inherently discrete signals. Whether a discrete signal arises inherently or by sampling, it is represented as a sequence of numbers $\{x(n), -\infty < n < \infty\}$, where the independent variable n is an integer. Although x(n) represents a single sample, it is also used to denote the sequence instead of $\{x(n)\}$. One cycle of the discrete complex exponential signal, $x(n) = e^{j(\frac{2\pi}{16}n + \frac{\pi}{3})}$, is shown in Figure 2.1(b). This signal is obtained by sampling the signal (replacing t by nT_s) in Figure 2.1(a) with $T_s = 1$ s. In this book, we assume that the sampling interval, T_s , is a constant. In sampling a signal, the sampling interval, which depends on the frequency content of the signal, is an important parameter. The sampling interval is required again to convert the discrete signal back to its corresponding continuous form. However, when the signal is in discrete form, most of the processing is independent of the sampling interval. For example, summing of a set of samples of a signal is independent of the sampling interval.

When the sample values of a discrete signal are quantized, it becomes a digital signal. That is, both the dependent and independent variables of a digital signal are in

discrete form. This form is actually used to process signals using digital devices, such as a digital computer.

2.1.2 Periodic and Aperiodic Signals

The smallest positive integer N > 0 satisfying the condition x(n + N) = x(n), for all n, is the period of the periodic signal x(n). Over the interval $-\infty < n < \infty$, a periodic signal repeats its values in any interval equal to its period, at intervals of its period. Cosine and sine waves, and the complex exponential, shown in Figure 2.1, are typical examples of a periodic signal. A signal with constant value (dc) is periodic with any period. In Fourier analysis, it is considered as $A \cos(\omega n)$ or $Ae^{j\omega n}$ with the frequency ω equal to zero (period equal to ∞).

When the period of a periodic signal approaches infinity, there is no repetition of a pattern and it degenerates into an aperiodic signal. Typical aperiodic signals are shown in Figure 2.3.

It is easier to decompose an arbitrary signal in terms of some periodic signals, such as complex exponentials, and the input–output relationship of LTI systems becomes a multiplication operation for this type of input signal. For these reasons, most of the analysis of practical signals, which are mostly aperiodic having arbitrary amplitude profile, is carried out using periodic basic signals.

2.1.3 Energy and Power Signals

The power or energy of a signal are also as important as its amplitude in its characterization. This measure involves the amplitude and the duration of the signal. Devices, such as amplifiers, transmitters, and motors, are specified by their output power. In signal processing systems, the desired signal is usually mixed up with a certain amount of noise. The quality of these systems is indicated by the signal-to-noise power ratio. Note that noise signals, which are typically of random type, are usually characterized by their average power. In the most common signal approximation method, Fourier analysis, the goodness of the approximation improves as more and more frequency components are used to represent a signal. The quality of the approximation is measured in terms of the square error, which is an indicator of the difference between the energy or power of a signal and that of its approximate version.

The instantaneous power dissipated in a resistor of 1Ω is $x^2(t)$, where x(t) may be the voltage across it or the current through it. By integrating the power over the interval in which the power is applied, we get the energy dissipated. Similarly, the sum of the squared magnitude of the values of a discrete signal x(n) is an indicator of its energy and is given as

$$E = \sum_{n = -\infty}^{\infty} |x(n)|^2$$

The use of the magnitude |x(n)| makes the expression applicable to complex signals as well. Due to the squaring operation, the energy of a signal 2x(n), with double the amplitude, is four times that of x(n). Aperiodic signals with finite energy are called energy signals. The energy of $x(n) = 4(0.5)^n$, $n \ge 0$ is

$$E = \sum_{n=0}^{\infty} |4(0.5)^n|^2 = \frac{16}{1 - 0.25} = \frac{64}{3}$$

If the energy of a signal is infinite, then it may be possible to characterize it in terms of its average power. The average power is defined as

$$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x(n)|^2$$

For a periodic signal with period N, the average power can be determined as

$$P = \frac{1}{N} \sum_{n=0}^{N-1} |x(n)|^2$$

Signals, periodic or aperiodic, with finite average power are called power signals. Cosine and sine waveforms are typical examples of power signals. The average power of the cosine wave $2\cos(\frac{2\pi}{4}n)$ is

$$P = \frac{1}{4} \sum_{n=0}^{3} |x(n)|^2 = \frac{1}{4} (2^2 + 0^2 + (-2)^2 + 0^2) = 2$$

A signal is an energy signal or a power signal, since the average power of an energy signal is zero while that of a power signal is finite. Signals with infinite average power and infinite energy, such as x(n) = n, $0 \le n < \infty$, are neither power signals nor energy signals. The measures of signal power and energy are indicators of the signal size, since the actual energy or power depends on the load.

2.1.4 Even- and Odd-symmetric Signals

The storage and processing requirements of a signal can be reduced by exploiting its symmetry. A signal x(n) is even-symmetric, if x(-n) = x(n) for all n. The signal is symmetrical about the vertical axis at the origin. The cosine waveform, shown in Figure 2.2(b), is an example of an even-symmetric signal. A signal x(n) is odd-symmetric, if x(-n) = -x(n) for all n. The signal is asymmetrical

Figure 2.2 (a) The sinusoid $x(n) = \cos(\frac{2\pi}{8}n + \frac{\pi}{3})$ and its time-reversed version x(-n); (b) its even component $x_e(n) = \frac{1}{2}\cos(\frac{2\pi}{8}n)$; (c) its odd component $x_o(n) = -\frac{\sqrt{3}}{2}\sin(\frac{2\pi}{8}n)$

about the vertical axis at the origin. For an odd-symmetric signal, x(0) = 0. The sine waveform, shown in Figure 2.2(c), is an example of an odd-symmetric signal.

The sum (x(n) + y(n)) of two odd-symmetric signals, x(n) and y(n), is an odd-symmetric signal, since x(-n) + y(-n) = -x(n) - y(n) = -(x(n) + y(n)). For example, the sum of two sine signals is an odd-symmetric signal. The sum (x(n) + y(n)) of two even-symmetric signals, x(n) and y(n), is an even-symmetric signal, since x(-n) + y(-n) = (x(n) + y(n)). For example, the sum of two cosine signals is an even-symmetric signal. The sum (x(n) + y(n)) of an odd-symmetric signal x(n) and an even-symmetric signal y(n) is neither even-symmetric nor odd-symmetric, since x(-n) + y(-n) = -x(n) + y(n) = -(x(n) - y(n)). For example, the sum of cosine and sine signals with nonzero amplitudes is neither even-symmetric nor odd-symmetric.

Since x(n)y(n) = (-x(-n))(-y(-n)) = x(-n)y(-n), the product of two odd-symmetric or two even-symmetric signals is an even-symmetric signal. The product z(n) = x(n)y(n) of an odd-symmetric signal y(n) and an even-symmetric signal x(n) is an odd-symmetric signal, since z(-n) = x(-n)y(-n) = x(n)(-y(n)) = -z(n).

An arbitrary signal x(n) can always be decomposed in terms of its evensymmetric and odd-symmetric components, $x_e(n)$ and $x_o(n)$, respectively. That is, $x(n) = x_e(n) + x_o(n)$. Replacing *n* by -n, we get $x(-n) = x_e(-n) + x_o(-n) = x_e(n) - x_o(n)$. Solving for $x_e(n)$ and $x_o(n)$, we get

$$x_{e}(n) = \frac{x(n) + x(-n)}{2}$$
 and $x_{o}(n) = \frac{x(n) - x(-n)}{2}$

As the sum of an odd-symmetric signal $x_0(n)$, over symmetric limits, is zero,

$$\sum_{n=-N}^{N} x_{o}(n) = 0 \qquad \sum_{n=-N}^{N} x(n) = \sum_{n=-N}^{N} x_{e}(n) = x_{e}(0) + 2\sum_{n=1}^{N} x_{e}(n)$$

For example, the even-symmetric component of $x(n) = \cos(\frac{2\pi}{8}n + \frac{\pi}{3})$ is

$$x_{e}(n) = \frac{x(n) + x(-n)}{2} = \frac{\cos\left(\frac{2\pi}{8}n + \frac{\pi}{3}\right) + \cos\left(\frac{2\pi}{8}(-n) + \frac{\pi}{3}\right)}{2}$$
$$= \frac{2\cos\left(\frac{2\pi}{8}n\right)\cos\left(\frac{\pi}{3}\right)}{2} = \frac{\cos\left(\frac{2\pi}{8}n\right)}{2}$$

The odd-symmetric component is

$$x_{0}(n) = \frac{x(n) - x(-n)}{2} = \frac{\cos\left(\frac{2\pi}{8}n + \frac{\pi}{3}\right) - \cos\left(\frac{2\pi}{8}(-n) + \frac{\pi}{3}\right)}{2}$$
$$= \frac{-2\sin\left(\frac{2\pi}{8}n\right)\sin\left(\frac{\pi}{3}\right)}{2} = -\frac{\sqrt{3}}{2}\sin\left(\frac{2\pi}{8}n\right)$$

The sinusoid x(n) and its time-reversed version x(-n), its even component, and its odd component are shown, respectively, in Figures 2.2(a–c). As the even and odd components of a sinusoid are, respectively, cosine and sine functions of the same frequency as that of the sinusoid, these results can also be obtained by expanding the expression characterizing the sinusoid.

If a continuous signal is sampled with an adequate sampling rate, the samples uniquely correspond to that signal. Assuming that the sampling rate is adequate, in Figure 2.2 (and in other figures in this book), we have shown the corresponding continuous waveform only for clarity. It should be remembered that a discrete signal is represented only by its sample values.

2.1.5 Causal and Noncausal Signals

Most signals, in practice, occur at some finite time instant, usually chosen as n = 0, and are considered identically zero before this instant. These signals, with x(n) = 0 for n < 0, are called causal signals. Signals, with $x(n) \neq 0$ for n < 0, are called noncausal signals. Sine and cosine signals, shown in Figures 2.1 and 2.2, are noncausal signals. Typical causal signals are shown in Figure 2.3.

2.1.6 Deterministic and Random Signals

Signals such as $x(n) = \sin(\frac{2\pi}{8}n)$, whose values are known for any value of *n*, are called deterministic signals. Signals such as those generated by thermal noise in conductors or speech signals, whose future values are not exactly known, are called random signals. Despite the fact that rainfall record is available for several years in the past, the amount of future rainfall at a place cannot be exactly predicted. This type of signal is characterized by a probability model or a statistical model. The study of random

Figure 2.3 (a) The unit-impulse signal, $\delta(n)$; (b) the unit-step signal, u(n); (c) the unit-ramp signal, r(n)

signals is important in practice, since all practical signals are random to some extent. However, the analysis of systems is much simpler, mathematically, with deterministic signals. The input–output relationship of a system remains the same whether the input signal is random or deterministic. The time-domain and frequency-domain methods of system analysis are common to both types of signals. The key difference is to find a suitable mathematical model for random signals. In this book, we confine ourselves to the study of deterministic signals.

2.2 Basic Signals

As we have already mentioned, most practical signals have arbitrary amplitude profile. These signals are, for processing convenience, decomposed in terms of mathematically well-defined and simple signals. These simple signals, such as the sinusoid with infinite duration, are not practical signals. However, they can be approximated to a desired accuracy.

2.2.1 Unit-impulse Signal

The unit-impulse signal, shown in Figure 2.3(a), is defined as

$$\delta(n) = \begin{cases} 1 & \text{for } n = 0\\ 0 & \text{for } n \neq 0 \end{cases}$$

The unit-impulse signal is an all-zero sequence except that it has a value of one when its argument is equal to zero. A time-shifted unit-impulse signal $\delta(n - m)$, with argument (n - m), has its only nonzero value at n = m. Therefore, $\sum_{n=-\infty}^{\infty} x(n)\delta(n - m) = x(m)$ is called the sampling or sifting property of the impulse. For example,

$$\sum_{n=-\infty}^{\infty} 2^n \delta(n) = 1 \sum_{n=-2}^{0} 2^n \delta(n-1) = 0 \sum_{n=-2}^{0} 2^n \delta(-n-1) = 0.5$$
$$\sum_{n=-2}^{0} 2^n \delta(n+1) = 0.5 \sum_{n=-\infty}^{\infty} 2^n \delta(n+2) = 0.25 \sum_{n=-\infty}^{\infty} 2^n \delta(n-3) = 8$$

In the second summation, the argument n - 1 of the impulse never becomes zero within the limits of the summation.

The decomposition of an arbitrary signal in terms of scaled and shifted impulses is a major application of this signal. Consider the product of a signal with a shifted impulse $x(n)\delta(n-m) = x(m)\delta(n-m)$. Summing both sides with respect to *m*, we get

$$\sum_{m=-\infty}^{\infty} x(n)\delta(n-m) = x(n)\sum_{m=-\infty}^{\infty} \delta(n-m) = x(n) = \sum_{m=-\infty}^{\infty} x(m)\delta(n-m)$$

The general term $x(m)\delta(n - m)$ of the last sum, which is one of the constituent impulses of x(n), is a shifted impulse $\delta(n - m)$ located at n = m with value x(m). The summation operation sums all these impulses to form x(n). Therefore, the signal x(n)is represented by the sum of scaled and shifted impulses with the value of the impulse at any n being x(n). The unit-impulse is the basis function and x(n) is its coefficient. As the value of the sum is nonzero only at n = m, the sum is effective only at that point. By varying the value of n, we can sift out all the values of x(n). For example, consider the signal x(-2) = 2, x(0) = 3, x(2) = -4, x(3) = 1, and x(n) = 0 otherwise. This signal can be expressed, in terms of impulses, as

$$x(n) = 2\delta(n+2) + 3\delta(n) - 4\delta(n-2) + \delta(n-3)$$

With n = 2, for instance,

$$x(2) = 2\delta(4) + 3\delta(2) - 4\delta(0) + \delta(-1) = -4$$

2.2.2 Unit-step Signal

The unit-step signal, shown in Figure 2.3(b), is defined as

$$u(n) = \begin{cases} 1 & \text{for } n \ge 0\\ 0 & \text{for } n < 0 \end{cases}$$

The unit-step signal is an all-one sequence for positive values of its argument and is an all-zero sequence for negative values of its argument. The causal form of a signal x(n), x(n) is zero for n < 0, is obtained by multiplying it by the unit-step signal as x(n)u(n). For example, $\sin(\frac{2\pi}{6}n)$ has nonzero values in the range $-\infty < n < \infty$, whereas the values of $\sin(\frac{2\pi}{6}n)u(n)$ are zero for n < 0 and $\sin(\frac{2\pi}{6}n)$ for $n \ge 0$. A shifted unit-step signal, for example u(n - 1), is u(n) shifted by one sample interval to the right (the first nonzero value occurs at n = 1). Using scaled and shifted unit-step signals, any signal, described differently over different intervals, can be specified, for easier mathematical analysis, by a single expression, valid for all n. For example, a