Adaptive Array Systems
Fundamentals and Applications

B. Allen and M. Ghavami

Both of
Centre for Telecommunications Research
King’s College London, UK

John Wiley & Sons, Ltd
Adaptive Array Systems
Adaptive Array Systems
Fundamentals and Applications

B. Allen and M. Ghavami

Both of
Centre for Telecommunications Research
King’s College London, UK

John Wiley & Sons, Ltd
Contents

Preface xi
Acknowledgments xv
List of Figures xvii
List of Tables xxix
Introduction xxxiii

1 Fundamentals of Array Signal Processing 1
1.1 Introduction 1
1.2 The Key to Transmission 2
 1.2.1 Maxwell’s Equations 2
 1.2.2 Interpretation 3
 1.2.3 Key to Antennas 3
1.3 Hertzian Dipole 5
1.4 Antenna Parameters & Terminology 7
CONTENTS

4.6.1 Temporal Reference Beamforming 106
4.6.2 Spatial Reference Beamforming 107

4.7 Adaptive Algorithms 108
4.7.1 Wiener Solution 109
4.7.2 Method of Steepest-Descent 111
4.7.3 Least-Mean-Squares Algorithm (LMS) 112
4.7.4 Direct Matrix Inversion (DMI) Algorithm 113
4.7.5 Recursive Least-Squares (RLS) Algorithm 115

4.8 Source Location Techniques 116

4.9 Fourier Method 117

4.10 Capon's Minimum Variance 118

4.11 The MUSIC Algorithm 118

4.12 ESPRIT 121
4.12.1 Unitary ESPRIT 122

4.13 Maximum Likelihood Techniques 124

4.14 Spatial Smoothing 125
4.14.1 Comparison of Spatial Parameter Estimation Techniques 127

4.15 Determination of Number of Signal Sources 127

4.16 Blind Beamforming 129
4.16.1 Decoupled Iterative Least Squares Finite Alphabet Space-Time (DILFAST) Algorithm 130
4.16.2 Spectral Self-Coherence Restoral (SCORE) Algorithm 131
4.16.3 Constant Modulus Algorithm (CMA) 132
4.16.4 Least-Squares Despread Respread Multitarget Constant Modulus Algorithm (LS-DRMT) 133

4.17 Chapter Summary 133
4.18 Problems 134

5 Practical Considerations 135
5.1 Introduction 135
5.2 Signal Processing Constraints 136
5.2.1 Phase Error 136
5.2.2 Element Position Error 137
5.2.3 Element Failure 137
5.2.4 Steering Vector Error 137
5.2.5 Ill-Conditioned Signal Processing Matrices 137
5.2.6 Weight Jitter 138

5.3 Implementation Issues 138
5.3.1 System Linearity 145
5.3.2 Calibration 146
5.3.3 Mutual Coupling 154
5.3.4 Circular Arrays 156

5.4 Radiowave Propagation 160
5.4.1 Narrowband Single Antenna Channel Model 161
5.4.2 Multiple Antenna Channel Model 162
5.4.3 Wideband Multiple Antenna Channel Model 163
5.4.4 Uplink-Downlink Channel Modelling for FDD Systems 168

5.5 Transmit Beamforming 170
5.5.1 Blind Techniques 172
5.5.2 Feedback Based Techniques 177
5.5.3 Switched Beam Techniques 178
5.5.4 Downlink Signal Distribution Schemes 179

5.6 Chapter Summary 181
5.7 Problems 181

6 Applications 183
6.1 Introduction 183
6.2 Antenna Arrays for Radar Applications 183
6.3 Antenna Arrays for Sonar Applications 184
6.4 Antenna Arrays for Biomedical Applications 186
6.4.1 Medical Ultrasonic Arrays 186
6.4.2 Space-Time Beamforming for Microwave Imaging 192
6.5 Antenna Arrays for Wireless Communications 193
6.5.1 Uplink Beamforming for Second-Generation Mobile Wireless Networks 196
6.5.2 Downlink Beamforming for Third-Generation Mobile Wireless Networks 207
6.5.3 User Location and Tracking 219
6.5.4 Beamforming for Satellite Communications 231
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6 Chapter Summary</td>
<td>235</td>
</tr>
<tr>
<td>6.7 Problems</td>
<td>236</td>
</tr>
<tr>
<td>References</td>
<td>239</td>
</tr>
<tr>
<td>Index</td>
<td>251</td>
</tr>
</tbody>
</table>
Preface

Readership

Firstly, this book is set at a level suitable for senior undergraduate and postgraduate students who wish to understand the fundamentals and applications of adaptive array antenna systems. Array fundamentals are described in the text, and examples which demonstrate theoretical concepts are included throughout the book, as well as summaries and questions at the end of each chapter. We also consider this book to be useful for researchers, practising engineers and managers alike, especially where an accessible text on adaptive array fundamentals and applications is required. A complete chapter on implementation aspects highlights the challenges a designer may encounter during the development of an array system. The book contains explanations of fundamentals, description of algorithms and presentation of research-based case studies making it appeal to a wide readership.

About the Book

This book aims to provide an accessible text on adaptive array fundamentals. Although the book considers a wide range of applications, including wireless communications, radar, sonar and bio-medical, the focus is predominantly wireless communications. This reflects the research interests of the authors, but it should
be noted that many of the techniques introduced throughout the text can be applied to other branches of engineering such as bio-medical.

The book is structured as follows. Chapter 1 (Fundamentals of Array Signal Processing) introduces antenna and sensor terminology and then discusses common antenna elements and reviews the characteristics of each. The chapter concludes by reviewing the array system concept. In chapter 2 (Narrowband Array Systems), the behaviour of narrowband antenna arrays is analysed. The function of phase and amplitude weights and beamsteering is explored within the context of a narrowband array, and the phenomenon of grating lobes is introduced. The chapter concludes by characterising a number of common window functions that are used to control the sidelobe levels of array beam-patterns. Chapter 3 (Wideband Array Processing) then introduces and analyses several wideband beamforming techniques and compares the performance of each. The focus of chapter 4 (Adaptive Arrays) is on algorithms, where a range of adaptive algorithms and direction of arrival algorithms are presented and discussed. The chapter concludes with a review of several blind beamforming algorithms and a comparison of direction of arrival estimation performance. Chapter 5 (Practical Considerations) contains a wide variety of topics that relate to implementation aspects of adaptive arrays. These include hardware implementation aspects, circular arrays, channel modelling and transmit beamforming. Finally, chapter 6 (Applications) discusses the application of adaptive array systems through several detailed case studies on:

- wideband arrays, radar, sonar and bio-medical imaging;
- second- and third-generation terrestrial wireless systems; and
- satellite communication systems.

Several texts already exist on adaptive arrays as it is a topic that has undergone significant research and development over the last 50 years. These texts can be broadly classified as follows:

- rigorous mathematical treatment;
- emphasis on radar; and
- emphasis on wireless communications.

In contrast to many of these texts, we have tried to make this book readable and accessible to the uninitiated, with a broad range of applications considered and full chapters covering wideband beamforming and implementation aspects. We have also included research-based material making it appeal to the experienced researcher as well.

Some consider adaptive antennas to be a mature technology with little research left to tackle. Contrary to this belief, we consider there to be an ongoing interest in adaptive antennas for future (3G and 4G) mobile communications systems,
ultra wideband (UWB) wireless systems where the signal bandwidth is very large, and satellite communication and navigation systems. In particular, UWB presents many research challenges in the area of communications and bio-medical engineering and the applications of antenna arrays can provide performance gains to both.

We consider this text to be unique because it covers array fundamentals for a wide range of applications, as well as specifically covering implementation aspects and applications through detailed case studies. Examples are included throughout the text which illustrate the concepts under discussion and we have attempted to write the text in an accessible and appealing way.

Prerequisites

In order for the most to be gained from the contents of this book, it is recommended (but not essential) that the reader has a firm grounding in the principles of:

- engineering mathematics, including Fourier analysis and matrix algebra;
- signals and systems;
- electromagnetics;
- radiowave propagation;
- radio frequency circuit design; and
- communications engineering principles.

Course Design

This book has been designed in such a way that it forms a complete semester’s course on adaptive array systems. We suggest that such a self-contained course consists of four-hours of lectures and a two-hour tutorial for each chapter, with actual times being adjusted according to ability. In particular, chapters 1 and 2 present the fundamentals of radiation, antenna elements and beamforming suitable for taught courses, and chapter 4 contains fundamental signal processing concepts for adaptive arrays. These topics can be complemented with implementation issues and case studies in chapters 5 and 6. In contrast, chapter 3 is particularly suited for the research-active readership, as is substantial sections of chapters 5 and 6 where novel developments are reported, especially with regard to wideband beamforming algorithms and channel modelling.

As an extra resource, the companion website for our book contains a solutions manual, Matlab m-files for the examples and problems, and a sample chapter.
Also, for those wishing to use this material for lecturing purposes, electronic versions of some of the figures are available. Please go to the following URL and take a look: ftp://ftp.wiley.co.uk/pub/books/allen.

We hope that you find this book useful both as a reference, a learning tool and a stepping stone to further your own efforts in this multi-disciplinary field of engineering.

B. Allen
M. Ghavami

London
Our thanks are extended to our colleagues at the Centre for Telecommunications Research, King's College London for providing a rich research environment that has enabled the timely development of this book. In particular, we wish to thank Professor Hamid Aghvami for his leadership and provision of opportunity. Also, we especially thank Dr Mischa Dohler, Neville Tyler, Adil Shah and Dora Karveli for contributing to this book. Without these contributions the book would not have reached its current form. Thank you!

The authors wish to express their gratitude to Professors Joe McGeehan, Andy Nix, Mark Beach, and Dr Geoff Hilton of the University of Bristol, who have conducted substantial research into adaptive antenna systems that has aided in the formulation of this book. In particular, we wish to thank Professor Mark Beach for reviewing this book and Ben wishes to thank him for his expert PhD supervision that has provided invaluable inspiration.

Our gratitude goes to the IEEE and IEICE for granting permission to incorporate substantial sections of published works in chapters 3 and 6. We would also like to thank Sarah Hinton at Wiley for assisting with the organisation, marketing and production of this book, and to the anonymous copy editor for the attention to detail that was evident in the corrections.

Last, but certainly not least, Ben wishes to thank:

- his wife, Louisa, for her love and companionship during the last few years, during which a wide variety of challenges have been faced by us. He also wishes to dedicate this book to Louisa and his ancestors: Leslie (Bill) Allen
and William Smith who spent their working lives involved with early telecommunications technologies.

and Mohammad wishes to thank:

his wife, Mahnaz, and children for their love and patience during the period of preparation for this book. Mohammad would like to dedicate this book in memory of his father, Reza.
List of Figures

I.1 Two-element adaptive sidelobe canceller. xxxv

1.1 Feeding arrangement and coordinate system for Hertzian dipole. 5

1.2 Relationship between \mathbf{E} and \mathbf{H} in the far-field. 6

1.3 Linear, linear tilted, circular and elliptical polarisation states. 8

1.4 Equivalence between physical radiating antenna and linear circuit. 10

1.5 Two different representations of a radiation pattern: (a) polar plot, (b) Cartesian plot. 13

1.6 Common types of antenna elements: (a) dipole, (b) mono-pole, (c) square patch, (d) bow tie. 15

1.7 Radiation pattern of a dipole of length: (a) $L = 1.0\lambda$ and (b) $L = 1.2\lambda$. 16

1.8 Mono-pole above a ground-plane. 17
1.9 A frequency-independent (wideband) antenna in (a) theoretical realisation and (b) practical realisation (bow-tie antenna).

1.10 Dual polarised dipole.

1.11 Common types of antenna arrays: (a) linear array, (b) circular array, (c) planar array.

1.12 Dependency of the radiation pattern on the number of elements N.

1.13 Dependency of the beam direction on the progressive feeding phase α.

1.14 Principle of spatial filtering applied to a mobile communication system.

1.15 Concept of an adaptive antenna array.

2.1 Array signal model for a two-element array. $d =$ distance between elements, $\Theta =$ angle of arrival of wave from boresight, $\Delta d =$ additional distance of wave.

2.2 Planar array signal model for $M = 2$, $N = 2$ array. $d_x =$ distance between x-axis elements, $d_y =$ distance between y-axis elements, $\theta =$ azimuth angle of arrival of wave from boresight, $\phi =$ elevation angle of arrival of wave from boresight.

2.3 Radiation pattern with phase weighting for a two-element array with $\frac{\lambda}{2}$ spacing. Dotted line with no phase tapper, solid line with beam steered to 35°.

2.4 Joint beam and null steering: Main beam steered to 45°, null steered to -10°.

2.5 Examples of grating lobes for $d =$ 0.5λ, 0.6λ, 2λ. Solid line $d =$ 0.5λ, dashed line $d =$ 0.6λ, dotted line $d =$ 2λ.

2.6 Radiation patterns from the eight-element array showing the presence of a grating lobe at 78.8$^\circ$.
2.7 Array pattern of a four-element ULA with various amplitude weights. The impact of amplitude weighting on the sidelobe level and main beam width can be seen. Array pattern of a two-element array with unity amplitude weights is shown for comparison (solid line).

2.8 Radiation pattern with: (a) Rectangular windowing, (b) Bartlett windowing, (c) Blackman windowing, (d) Triangular windowing.

2.9 Radiation pattern with (a) Hamming windowing (b) Hanning windowing (c) Kaiser windowing: solid line $\beta = 1$, dotted line $\beta = 3$, dashed line $\beta = 5$ (d) Chebychev windowing: solid line $R_s = -20$ dB, dotted line $R_s = -30$ dB, dashed line $R_s = -40$ dB.

3.1 General structure of a TDL wideband array antenna using N antenna elements.

3.2 Incoming signal is arriving at the antenna array under angle θ.

3.3 Beam formation using adjustable delay lines.

3.4 Directional patterns of a delay beamformer for 11 frequencies uniformly distributed from 55 to 65 kHz.

3.5 Grating lobes have appeared as a result of the increase of spacing between the transducers.

3.6 Directional patterns of the delay beamformer at 45 kHz, 55 kHz, 65 kHz and 75 kHz.

3.7 Incoming signal is arriving at an $N_1 \times N_2$ array with azimuth angle θ and elevation angle ϕ. Each element is connected to a real multiplier, where not all of them are shown. Source: M. Ghavami, Wide-band smart antenna theory using rectangular array structures, IEEE Trans. Sig. Proc., Vol 50, No 9, pp 2143–2151, Sept, 2002 © IEEE.
3.8 The loci of constant angle θ and constant frequency f are radial and elliptical, respectively. Source: M. Ghavami, Wide-band smart antenna theory using rectangular array structures, IEEE Trans. Sig. Proc., Vol 50, No 9, pp 2143–2151, Sept, 2002 © IEEE.

3.9 Location of the desired points on the intersection of the constant angle and constant frequency loci. Source: M. Ghavami, Wide-band smart antenna theory using rectangular array structures, IEEE Trans. Sig. Proc., Vol 50, No 9, pp 2143–2151, Sept, 2002 © IEEE.

3.10 Beamwidth parameter, α, as a function of the beam angle θ_0 and the beamwidth $\Delta \theta$. Source: M. Ghavami, Wide-band smart antenna theory using rectangular array structures, IEEE Trans. Sig. Proc., Vol 50, No 9, pp 2143–2151, Sept, 2002 © IEEE.

3.12 Directional patterns of the beamformer for $f_i = 0.1 \frac{c}{d}$ and $f_h = 0.48 \frac{c}{d}$. Source: M. Ghavami, Wide-band smart antenna theory using rectangular array structures, IEEE Trans. Sig. Proc., Vol 50, No 9, pp 2143–2151, Sept, 2002 © IEEE.

3.18 The pattern of the 2D frequency response $H(f_1, f_2)$ for the desired 4×4 rectangular array. Source: M. Ghavami, Wide-band smart antenna theory using rectangular array structures, IEEE Trans. Sig. Proc., Vol 50, No 9, pp 2143–2151, Sept, 2002 © IEEE.

3.19 Directional patterns of the 4×4 rectangular array for 10 equally spaced frequencies between $\omega_l = 0.3c/d$ and $\omega_h = 0.4c/d$. Source: M. Ghavami, Wide-band smart antenna theory using rectangular array structures, IEEE Trans. Sig. Proc., Vol 50, No 9, pp 2143–2151, Sept, 2002 © IEEE.

3.20 A linear continuous and one-dimensional aperture.
3.21 Block diagram of a general one-dimensional wideband array with the origin at \(x = 0 \). 87

3.22 Maximum permissible spacing of a single-sided one-dimensional array to avoid grating lobes. 90

3.23 Beam pattern of a 17-element wideband array at 15 frequencies within the design bandwidth using multi-rate processing. 93

3.24 Beam pattern of a 17-element wideband array at 15 frequencies within the design bandwidth using a single sampling rate. 94

4.1 Beamformer Classification. 98

4.2 Beamformer convergence characteristics for a 3G mobile communications system with sampling period of 130 ns and using the RLS algorithm. 100

4.3 A multi-beam array system. 101

4.4 A scanning array system. 102

4.6 Eight orthogonal radiation patterns formed by an eight port Butler matrix. 105

4.7 Classical beamforming structure. 117

4.8 Sub-array arrangement. 121

4.9 Spatial spectrum comparison. 128

4.10 Basic concept of blind beamforming algorithms. 130

5.1 Typical examples of BS installations. (a) 30 m macro-cell with a 30° sectored array; (b) 12 m micro-cell with multiple 120° sectored arrays; (c) 7 m pico-cell with a 120° sectored array. 139
5.2 Comparison of LDF4-50A and LDF5-50A feeders:
(a) entering an equipment room routed from an antenna mast; and (b) fixed to a corner of a triangular mast section using fixing stays.

5.3 (a) A GSM micro-cell BS disguised as an artificial tree. (b) Base of GSM BS artificial tree, the feeder cables are routed within the tree trunk. (c) Top of GSM BS artificial tree, showing antennas mounted within the branches.

5.4 Block diagram of a typical down-converter used within a BS.

5.5 Effect of signal distortion on the signal path for one antenna element.

5.6 Variation in signal delay between two down-converter outputs (D1 and D2) due to change in operating temperature.

5.7 Analogue I/Q generation.

5.8 Example of sample clock dither.

5.9 Diagram of SMILE implementation.

5.10 Re-radiation of signals from the incident plane wave to element 1 of the UCA.

5.11 Example SMILE switching circuit.

5.12 Representation of signal wavefront impinging on a circular array.

5.13 Representation of the Davies transformation to translate a UCA response to a virtual ULA response.

5.14 Example impulse response for a 3G cellular system channel in an urban environment.

5.15 Example frequency response of a 3G cellular system channel in an urban environment.
5.16 Frequency correlation of a measured channel in the city of Bristol, UK. 166

5.17 Example scatter map of a 3G cellular system operating in an urban environment. 167

5.18 Example uplink and downlink power azimuth spectrums. 168

5.19 Laplacian distribution for c = 5: (a) histogram; (b) CDF. 169

5.20 Asymmetric user distribution in mixed traffic networks. LDR = low data rate, HDR = high data rate. 171

5.21 Downlink beamformer classification. 173

5.22 Downlink beamforming concept. 173

5.23 Uplink and downlink radiation patterns with \(d = \frac{\lambda_{ave}}{2} \). 175

6.1 Sonar array and isolation section for submarine applications. 185

6.2 Sub-diced linear array used in medical ultrasonic applications. 187

6.3 Four basic pressure waves generated by a voltage impulse. ‘+’ denotes compression wave and ‘—’ stands for rarefaction wave. 188

6.4 Two alternate geometries to focus short axis elevation: (a) external focus; (b) internal focus. 190

6.5 Plot of angular sensitivity of individual array element and influence of boundary conditions and different kerf fillers. 191

6.6 Spatial transmit diversity concept with two transmit and one receive antenna. The system could employ additionally multiple receive antennas. 194

6.7 SDMA principle. 195

6.24 If the mobile terminal (MT) and the BS are in LOS, then \(\varphi(\alpha_1) > d_1 \). Source: M. Porretta, P. Nepa, G. Manara, F. Giannetti, M. Dohler, B. Allen, A. H. Aghvami, A Novel Single Base Station Location Technique for Microcellular Wireless Networks: Description and Validation by a Deterministic Propagation Model, *IEEE Trans. Veh. Tech.*, Vol 53, No 5, pp 1553–1560, Sept, 2004 © IEEE. 227

6.26 Performance of the location technique: 16-building Manhattan environment with BS located at the centre of the scenario. (a) Location error map and (b) location error distribution. The mean value of the location error is 31 m and the standard deviation is 40 m. Source: M. Porretta, P. Nepa, G. Manara, F. Giannetti, M. Dohler, B. Allen, A. H. Aghvami, A Novel Single Base Station Location Technique for Microcellular Wireless Networks: Description and Validation by a Deterministic Propagation Model, *IEEE Trans. Veh. Tech.*, Vol 53, No 5, pp 1553–1560, Sept, 2004 © IEEE.

6.27 Performance of the location technique: 16-building Manhattan environment with BS located on the corner of a building. (a) Location error map and (b) location error distribution. The mean value of the location error is 54 m and the standard deviation is 68 m. Source: M. Porretta, P. Nepa, G. Manara, F. Giannetti, M. Dohler, B. Allen, A. H. Aghvami, A Novel Single Base Station Location Technique for Microcellular Wireless Networks: Description and Validation by a Deterministic Propagation Model, *IEEE Trans. Veh. Tech.*, Vol 53, No 5, pp 1553–1560, Sept, 2004 © IEEE.

6.28 Frequency reuse scheme.

6.29 Switched beam receiver structure.

6.30 IRIDIUM satellite system.