Publication Bias in Meta-Analysis
Prevention, Assessment and Adjustments

Edited by

HANNAH R. ROTHSTEIN
Zicklin School of Business, Baruch College, USA

ALEXANDER J. SUTTON
University of Leicester, UK

MICHAEL BORENSTEIN
Biostat Inc, USA

John Wiley & Sons, Ltd
Publication Bias in Meta-Analysis
This book is dedicated to the memory of Richard Tweedie, who played a key role in planning this volume but, sadly, did not live to see it completed. This book is part of his legacy.
Contents

Preface ix
Acknowledgements xi
Notes on Contributors xiii

Chapter 1 Publication Bias in Meta-Analysis 1
Hannah R. Rothstein, Alexander J. Sutton and Michael Borenstein

Part A Publication bias in context 9

Chapter 2 Publication Bias: Recognizing the Problem, Understanding Its Origins and Scope, and Preventing Harm 11
Kay Dickersin

Chapter 3 Preventing Publication Bias: Registries and Prospective Meta-Analysis 35
Jesse A. Berlin and Davina Ghersi

Chapter 4 Grey Literature and Systematic Reviews 49
Sally Hopewell, Mike Clarke and Sue Mallett

Part B Statistical methods for assessing publication bias 73

Chapter 5 The Funnel Plot 75
Jonathan A.C. Sterne, Betsy Jane Becker and Matthias Egger

Chapter 6 Regression Methods to Detect Publication and Other Bias in Meta-Analysis 99
Jonathan A.C. Sterne and Matthias Egger

Chapter 7 Failsafe N or File-Drawer Number 111
Betsy Jane Becker

Chapter 8 The Trim and Fill Method 127
Sue Duval
CONTENTS

Chapter 9 Selection Method Approaches

Larry V. Hedges and Jack Vevea

Page 145

Chapter 10 Evidence Concerning the Consequences of Publication and Related Biases

Alexander J. Sutton

Page 175

Chapter 11 Software for Publication Bias

Michael Borenstein

Page 193

Part C Advanced and Emerging Approaches

Chapter 12 Bias in Meta-Analysis Induced by Incompletely Reported Studies

Alexander J. Sutton and Therese D. Pigott

Page 223

Chapter 13 Assessing the Evolution of Effect Sizes over Time

Thomas A. Trikalinos and John P.A. Ioannidis

Page 241

Chapter 14 Do Systematic Reviews Based on Individual Patient Data Offer a Means of Circumventing Biases Associated with Trial Publications?

Lesley Stewart, Jayne Tierney and Sarah Burdett

Page 261

Chapter 15 Differentiating Biases from Genuine Heterogeneity: Distinguishing Artifactual from Substantive Effects

John P.A. Ioannidis

Page 287

Chapter 16 Beyond Conventional Publication Bias: Other Determinants of Data Suppression

Scott D. Halpern and Jesse A. Berlin

Page 303

Appendices

Appendix A Data Sets

Page 321

Appendix B Annotated Bibliography

Hannah R. Rothstein and Ashley Busing

Page 331

Glossary

Page 347

Index

Page 353
Preface

Our goal in compiling this volume is to present a concise, yet detailed and readable account of publication bias – its origins, the problems it creates and the methods developed to address it. We believe that this book is the first to be wholly devoted to the topic, and hope that its appearance will increase awareness of the problem among researchers conducting primary studies and among editors as well as among systematic reviewers and meta-analysts. With luck, this will eventually lead to a reduction in the prevalence of publication bias through activities such as improved reporting of primary studies, widespread implementation of registries for trials and studies at their inception, changes in editorial practices, and the establishment of repositories for raw data. Additionally, we hope that it will encourage those carrying out systematic reviews and meta-analyses to conduct more thorough literature searches, and to routinely undertake assessments of publication bias as part of their data analyses. Hence, although this book is primarily written for those involved with evidence synthesis and decision-making, we believe that portions of it will, and should be, of interest to anyone involved with scientific research.

The authors who have contributed chapters to this book, as well as the reviewers of each of the chapters, are some of the world’s leading authorities on publication bias issues. In addition, they (and we, the editors) come from a variety of scientific disciplines including medicine, public health, education, psychology and statistics. We feel this is a great strength of the book, because different approaches to the prevention and assessment of, and potential adjustments for, publication biases have developed in different research areas, and researchers do not generally communicate across disciplines. Although specific chapters often, naturally, have an emphasis on the authors’ own discipline(s), we have worked hard to ensure that the book is as generic and relevant across disciplines as possible, in terms of both the issues it deals with and the language used to describe and discuss these issues. We are hopeful that the book will also find an interested audience in disciplines beyond those of the contributing authors (for example, we know that publication bias is starting to be addressed in areas of ‘pure science’ such as biology and in other social sciences such as economics). Indeed, we take great pride that the creation of the book has enabled us to tie together a literature which straddles numerous disciplines. The meetings which took place during the book’s development, as well as the writing of the chapters, initiated a process of cross-pollination of ideas between leading thinkers in the several fields represented here. This appears to be continuing, and we hope it will bear fruit in the future development of methods and applications presented here. We are deeply indebted to all of the authors for
their enthusiasm, creativity and diligence in producing chapters that push forward the boundaries of what is known, and what can be done about, publication bias in its various forms. We are also immensely grateful to the reviewers of each chapter, who (under tight time constraints) provided the authors and us with the thoughtful, detailed and constructive comments on early drafts that facilitated the production of the final versions contained here. The book simply would not have been as good without them. We apologize for stripping away some of their anonymity, but feel obligated to thank them by name. The chapter reviewers were: Keith Abrams, Doug Altman, Iain Chalmers, Harris Cooper, Julian Higgins, Jerard Kehoe, Satish Iyengar, David Jones, Trevor Sheldon, Anne Whitehead and David Wilson.

We have included several features designed to assist a cross-disciplinary, international audience in making its way through a cross-disciplinary, internationally authored book. First, we took note of the fact that authors sometimes used different terms for the same concept, and the same term for different concepts. (For example, where meta-analysts from the United States talk about coding of studies, those from the United Kingdom discuss data extraction. While those in health care reserve the term ‘effect size’ for standardized mean differences, social scientists use this term to refer to many indices of the size of a relationship.) Additionally, we recognized that some of the concepts and terms introduced by authors from a particular discipline would be unfamiliar to readers from other disciplines. We have therefore provided a glossary, which defines the key terms in each chapter. Second, although all authors clearly define all algebraic notation used, we have standardized the notation across chapters in order to facilitate understanding. A third feature which is intended to facilitate the book’s coherence, as well as its applicability to a wide audience, is the use of three common data sets from the disciplines of medicine, education and psychology, particularly (but not exclusively) in Part B of the book. A description of the data sets can be found in Appendix A. Finally, a website has been developed as a companion for this book (www.Meta-Analysis.com/publication-bias) where readers can access the example data sets electronically, and further relevant information will be made available. The editors plan to update the website with additional examples and with other relevant material over the coming months and years.

We appreciate the support and enthusiasm shown by the editorial staff at John Wiley & Sons who managed this project from its inception to its publication. In particular, we would like to thank Rob Calver, Kathryn Sharples, Wendy Hunter and Jane Shepherd and Simon Lightfoot. Thanks also go to Reena Godi at Integra, and to Richard Leigh for his expert and fastidious copyediting.

We sincerely hope you find this volume both interesting and useful.

Hannah Rothstein
Alex Sutton
Michael Borenstein
Acknowledgements

The creation of this book was supported in large part by the generous funding provided by the National Institute on Aging (NIA), one of the National Institutes for Health (NIH) in the United States.

Funding was provided under the following Small Business Innovation Research (SBIR) grants:

- Publication bias in meta analysis (AG20052)
- Combining data types in meta analysis (AG021360)

We would especially like to take this opportunity to thank Dr Sidney M. Stahl, programme official at NIA, for arranging the funding, as well as for his commitment to and support for this work.

We would also like to thank Steven Tarlow, Shirley Rudolph and Vivian Vargas at Biostat for their valuable help in completing the manuscript.
Notes on Contributors

Betsy Jane Becker has just joined the faculty of the College of Education at Florida State University, where she is a professor in the program in measurement and statistics. For the previous 21 years she was in the measurement and quantitative methods program at Michigan State University. Dr. Becker has published widely in the area of meta-analysis. She serves as co-convener of the Methods Training Group for the Campbell Collaboration and also is a member of the Technical Advisory Group for the What Works Clearinghouse, an effort to produce research syntheses of studies of educational interventions, supported by a contract from the US Department of Education. Dr. Becker is a member of the National Assessment of Educational Progress (NAEP) Design and Analysis Committee, and is associate editor of the journal Psychological Methods. In the past she has also served on the editorial board of the Journal of Educational and Behavioral Statistics and the Applications and Cases Section of the Journal of the American Statistical Association.

Jesse Berlin has been extensively involved in methodological work related to meta-analysis and publication bias since the late 1980s, and has written some of the pioneering articles in this field. Dr. Berlin is a co-convener of the Cochrane Collaboration’s Prospective Meta-analysis Methods Group. Dr. Berlin received the Thomas C. Chalmers, MD award at the 1997 Cochrane Colloquium for the best presentation addressing a methodological issue in research synthesis and meta-analysis. Dr. Berlin currently serves on the editorial board for Clinical Trials, the journal of the Society for Clinical Trials.

Michael Borenstein served as Director of Biostatistics at Hillside Hospital, Long Island Jewish Medical Center from 1980–2002, and as Associate Professor at Albert Einstein College of Medicine from 1992–2002. He has served on various review groups and advisory panels for the National Institutes of Health and as a member of the NIMH Data Safety Monitoring Board, and is an active member of the statistical advisory groups of the Cochrane and Campbell Collaborations. Since the mid-1990s, Dr Borenstein has lectured widely on meta-analysis. He is the PI on several NIH grants to develop software for meta-analysis and is the developer, with Larry Hedges, Julian Higgins, Hannah Rothstein and others, of Comprehensive Meta Analysis, a best-selling computer program for meta-analysis.

Sarah Burdett is a researcher in the Meta-analysis Group at the British MRC Clinical Trials Unit and has almost 10 years’ experience working on international collaborative projects. The group has published major IPD meta-analyses on ovarian, lung, bladder, cervical, and oesophageal cancer and in glioma and soft tissue
sarcoma. She is involved in the Cochrane Collaboration, and is a member of several Collaborative Review Groups including the IPD Meta-analysis Methods Group.

Ashley Busing is a doctoral candidate in Industrial and Organizational Psychology at the Department of Psychology, Weissman School of Arts and Sciences, Baruch College, City University of New York. Her research interests are in the areas of personality and goal-setting.

Mike Clarke has worked at the Clinical Trial Service Unit (CTSU) in Oxford since 1989 and is responsible for the collaborative overviews of cancer treatments coordinated by the CTSU. The largest of these investigates the treatment of operable breast cancer and has provided reliable estimates of the effects of treatments such as tamoxifen and chemotherapy. In April 1999 Professor Clarke became associate director (research) at the UK Cochrane Centre, with a special responsibility for the Centre’s work in identifying reports of randomized trials and conducting research into the control of bias in research synthesis. Since October 2002 he has been director of the Centre, which is responsible for providing training and support to Cochrane entities and members in the UK, Ireland and several other countries. He is involved in many other aspects of the work of the Cochrane Collaboration and was co-chair of the international Steering Group until October 2004. In addition to his experience in systematic reviews, Professor Clarke has considerable experience in the conduct of large-scale, multicentre randomized trials and is actively involved with trials in pre-eclampsia, subarachnoid haemorrhage, breast cancer and poisoning – each of which is the largest ever randomized trial in these conditions. He became Professor of Clinical Epidemiology at the University of Oxford in October 2004.

Kay Dickersin is the director of the United States Cochrane Center. Dr. Dickersin’s major research interests are related to randomized clinical trials, trials registers, meta-analysis, publication bias, women’s health and the development and utilization of methods for the evaluation of medical care and its effectiveness. She is co-author of ‘Publication bias in editorial decision making’ which was published in the *Journal of the American Medical Association* in 2002, as well as numerous other articles on publication bias.

Sue Duval earned her doctorate from the University of Colorado Health Sciences Center on the topics of meta-analysis and publication bias. Along with her co-author, Richard Tweedie (deceased), she developed the trim and fill method for publication bias. This work was published in *Biometrics* and the *Journal of the American Statistical Association* in 2000 and continues to receive much attention both from researchers and applied meta-analysts.

Matthias Egger recently co-edited the second edition of *Systematic Reviews in Health Care: Meta-analysis in Context*, which was published by BMJ Books in 2001, and has co-authored an influential series on meta-analysis in the *British Medical Journal*. Dr. Egger has been working on methodological aspects of systematic reviews and meta-analysis for several years. His current research interests include publication bias, language bias and related reporting biases, the impact of the methodological quality of individual trials, and meta-analysis of observational
epidemiological studies. His group developed a regression approach to quantifying and statistically testing for asymmetry in funnel plots. He is a convener of the Reporting Bias Methods Group of the Cochrane Collaboration.

Davina Ghersi is co-convener of the Prospective Meta-analysis Methods Group of the international Cochrane Collaboration. The role of the group is to provide guidance to members of the Collaboration on methodological issues related to the conduct of prospective meta-analyses. Dr. Ghersi is also director of the Systematic Review and Health Care Assessment Team, and research fellow at the NHMRC Clinical Trials Centre (CTC), University of Sydney.

Scott Halpern received his MD and PhD in epidemiology, and his Master of Bioethics from the University of Pennsylvania. His research focuses on several methodological and ethical issues regarding the design and conduct of randomized clinical trials. He is currently investigating whether the sponsorship of epidemiological studies of drug safety is associated with their statistical power to detect adverse events.

Larry Hedges is the Stella M. Rowley Distinguished Service Professor of Sociology, Psychology, and in the Harris Graduate School of Public Policy Studies at the University of Chicago, USA. He is a member of the National Academy of Education, a Fellow of the American Statistical Association and of the American Psychological Association. Dr. Hedges has been a leader in the development and application of non-parametric weight function models for publication bias. After the basic method was explicated in a 1992 paper by Hedges, he and Jack Vevea applied these methods to substantial data sets in papers from 1993 to 2000. They extended the methods to models including covariates and evaluated their small-sample properties in substantial simulation studies. In addition, Dr. Hedges, together with Ingram Olkin, co-authored one of the first textbooks on meta-analysis, *Statistical Methods for Meta-analysis*, and edited *The Handbook of Research Synthesis* together with Harris Cooper.

Sally Hopewell is a research scientist at the UK Cochrane Centre and is an active member of the Cochrane Collaboration. She has been at the Centre since 1999 and has recently been awarded a DPhil at the University of Oxford, and has been carrying out research into the effects of including grey literature and other unpublished literature in systematic reviews. Previously she worked as a paediatric nurse before undertaking an MSc in health care studies in 1997. Dr Hopewell is part of the methodology research team, at the UK Cochrane Centre, conducting empirical and descriptive research to improve the quality of Cochrane reviews and other evaluations of health care. Her research interests include the control of bias susceptibility in systematic reviews and she has published several methodology reviews on this subject. She is also a member of the Cochrane Methodology Review Group and is co-editor of the annual Cochrane Methods Groups Newsletter.

John Ioannidis is chair of the Department of Hygiene and Epidemiology at the University of Ioannina School of Medicine in Greece and is adjunct professor of Medicine at Tufts-New England Medical Center in Boston. His research interests
include evidence-based medicine, clinical and molecular epidemiology and methodological issues in medical research.

Sue Mallett is a medical statistician working at the Centre of Statistics in Medicine in Oxford. She has studied biochemistry and immunology at Oxford University, followed by a Diploma in Statistics from the Open University. Sue has worked in a variety of areas including drug resistance in HIV and more recently a research project on the characteristics of a typical Cochrane review and the inclusion of grey and unpublished literature at the UK Cochrane Centre. She is currently conducting methodology research on systematic reviews of the accuracy of diagnostic tests in cancer, with Doug Altman and Jon Deeks. Her current projects also include working on a systematic review of virtual colonoscopy and analysis of clinical data on the accuracy of diagnostic tests in cervical cancer. Sue is a contributing author to the Cochrane Diagnostic Reviewers’ Handbook.

Therese (Terri) Pigott’s research interests center on statistical methods for meta-analysis and statistical analyses with missing data. With Larry Hedges, she has recently published an article on power analysis in meta-analysis in *Psychological Methods*, and was the author of the chapter on missing data in the *Handbook of Research Synthesis*. She is currently on the editorial board of the *Journal of Educational Psychology, Psychological Methods*, and *Psychological Bulletin*.

Hannah Rothstein is co-chair of the Methods Group of the Campbell Collaboration, and a member of the Collaboration’s Steering Group. She is also a member of the Cochrane Collaboration’s reporting bias methods group. Dr. Rothstein has been first author of four published meta-analyses of employment selection methods and has written many articles on methodological issues in meta-analysis. She has authored a chapter on meta-analysis that appeared in *Measuring and Analyzing Behavior in Organizations*, and has completed a 25-year retrospective on the contributions of meta-analysis to the field of industrial and organizational psychology that appeared in *Validity Generalization: A Critical Review*. With Michael Borenstein, and others, she is the author of computer software for meta-analysis and power analysis.

Jonathan Sterne’s first degree was in Mathematics from the University of Oxford, and he obtained a MSc and PhD in Statistics from University College London. He has worked in the Department of Social Medicine at the University of Bristol, UK, since 1999. His research interests include meta-analysis and systematic reviews, statistical methods for epidemiology and health services research, and causal models. Particular current research interests include the epidemiology of bias in systematic reviews in medicine, systematic reviews of studies of diagnostic test accuracy, and systematic reviews of observational studies with results expressed as estimates of dose-response. He has written a number of meta-analysis software routines. With Betty Kirkwood, he is co-author of ‘Essential Medical Statistics’. He is a convener of the Reporting Bias Methods Group of the Cochrane Collaboration.

Lesley Stewart is head of the Meta-analysis Group at the British MRC Clinical Trials Unit in London. She has been responsible for designing and running individual patient data (IPD) meta-analyses and associated methodological research for more than 15 years. The group’s research portfolio is mostly in the cancer
field, having published major IPD meta-analyses in ovarian, lung, bladder, cervical, and oesophageal cancer and in glioma and soft tissue sarcoma, but recently has expanded into other healthcare areas including pre-eclampsia and prion disease. The methodological research done by the group has included a number of studies of potential bias in systematic reviews exploring how obtaining IPD can circumvent biases related to relying on information as presented in publications. Dr. Stewart, is a member of several Cochrane Collaborative Review Groups and is co-convener of the Cochrane IPD Meta-analysis Methods Group.

Alex Sutton has published extensively on meta-analysis methodology generally, and on publication bias specifically in recent years, including a major systematic review on the topic of the methodology that has been developed for meta-analysis. He currently has an active interest in the area of partially reported study information, which is currently under-researched. Dr. Sutton is co-author of a textbook on meta-analysis (Methods for Meta Analysis in Medical Research), which was published by Wiley in 2000.

Jayne Tierney is a researcher in the Meta-analysis Group at the British MRC Clinical Trials Unit and has more that 10 years’ experience working on international collaborative IPD meta-analyses and associated methodological projects. The group has published major IPD meta-analyses on ovarian, lung, bladder, cervical and oesophageal cancer and in glioma and soft tissue sarcoma. Dr. Tierney is involved in the Cochrane Collaboration, and is a member of several Collaborative Review Groups and is co-convener of the IPD Meta-analysis Methods group.

Thomas Trikalinos is assistant professor of Medicine at Tufts-New England Medical Center in Boston and a research associate at the Department of Hygiene and Epidemiology at the University of Ioannina School of Medicine in Greece. His research interests include empirical methodological evaluations and clinical and molecular epidemiology.

Jack Vevea received his PhD in measurement, evaluation, and statistical analysis from the University of Chicago in 1996. He is currently on the psychology faculty at the University of California at Santa Cruz. Dr. Vevea specializes in cognitive and quantitative psychology. His primary research interest is the development of new statistical methods in meta-analysis, with special emphasis on mixed-effects models and publication bias. He is also active in applied meta-analytic research. In the domain of cognitive psychology, he studies biases in memory for sensory stimuli.
CHAPTER 1

Publication Bias in Meta-Analysis

Hannah R. Rothstein
Department of Management, Zicklin School of Business, Baruch College, New York, USA

Alexander J. Sutton
Department of Health Sciences, University of Leicester, UK

Michael Borenstein
Biostat, Inc., USA

PUBLICATION BIAS AS A THREAT TO VALIDITY

Publication bias is the term for what occurs whenever the research that appears in the published literature is systematically unrepresentative of the population of completed studies. Simply put, when the research that is readily available differs in its results from the results of all the research that has been done in an area, readers and reviewers of that research are in danger of drawing the wrong conclusion about what that body of research shows. In some cases this can have dramatic consequences, as when an ineffective or dangerous treatment is falsely viewed as safe and effective. This can be illustrated by two events that received much media attention as this book was going to press in late 2004. These are the debate surrounding Merck’s recall of Vioxx, a popular arthritis drug (Merck maintained that it recalled Vioxx as soon as the data indicated the high prevalence of cardiovascular events among those who took Vioxx for more than 18 months, while media reports said that Merck hid adverse event evidence for years), and the use of selective serotonin reuptake inhibitor (SSRI) anti-depressants among adolescents (Elliott Spitzer, attorney general of New York State, filed a 2004 lawsuit against GlaxoSmithKline,
charging that they had concealed data about the lack of efficacy and about the increased likelihood of suicide associated with the use of Paxil for childhood and adolescent suicide). In most cases, the causes of publication bias will not be as clear, nor the consequences as serious as in these examples. Nevertheless these examples highlight why the topic is critically important.

Publication bias is a potential threat in all areas of research, including qualitative research, primary quantitative studies, narrative reviews, and quantitative reviews, that is, meta-analysis. Although publication bias has likely been around for as long as research has been conducted and reported, it has come to prominence in recent years largely with the introduction and widespread adoption of the use of systematic review and meta-analytic methods to summarize research. In part, this is because, as methods of reviewing have become more scientific and quantitative, the process of reviewing (and synthesizing) research has been increasingly seen as paralleling the process of primary research. Parallels to the threats to the validity of primary research have been uncovered at every step of the systematic review process (Cooper, 1998; Shadish et al., 2002). Furthermore, as methods of reviewing have become more systematic and quantitative, it has been possible to empirically demonstrate the existence of publication bias and to quantify its impact. Thus, a problem that was viewed hazily through the looking glass of traditional reviews came into sharp focus under the lens of meta-analysis.

In meta-analysis, publication bias is a particularly thorny issue because meta-analysis has been put forward as providing a more accurate appraisal of a research literature than is provided by traditional narrative reviews (Egger et al., 2000), but if the sample of studies retrieved for review is biased, then the validity of the results of a meta-analytic review, no matter how systematic and thorough in other respects, is threatened. This is not a hypothetical issue: evidence that publication bias has had an impact on meta-analyses has been firmly established by several lines of research (see Chapters 2 and 10 of this volume).

Since systematic reviews are promoted as providing a more objective appraisal of the evidence than traditional narrative reviews, and since systematic review and meta-analysis are now generally accepted in many disciplines as the preferred methodology for summarizing a literature, threats to their validity must be taken very seriously. Publication bias must be taken especially seriously, as it presents perhaps the greatest threat to the validity of this method. On the other hand, the vulnerability of systematic review and meta-analysis to publication bias is not an argument against their use, because such biases exist in the literature irrespective of whether systematic review or other methodology is used to summarize research findings. In fact, we suggest that the attention given to objectivity, transparency and reproducibility of findings in systematic reviews and meta-analyses has led to the first serious attempt to confront the problems that have always existed because of publication biases, and to ameliorate them. As demonstrated by this volume, there are now several tools available with which meta-analysts can assess the potential magnitude of bias caused by selective publication. When the potential for severe bias exists in a given analysis, this can now be identified, and appropriate cautionary statements about the meta-analytic results can be made. When potential bias can effectively be ruled out, or shown not to threaten the results and conclusions
of a meta-analysis, the validity and robustness of these results and conclusions are strengthened.

Publication bias was originally defined as the publication or non-publication of studies depending on the direction and statistical significance of the results, and the first systematic investigations of publication bias focused on this aspect of the problem. However, as readers will appreciate as they work through the book, there are numerous potential information suppression mechanisms that go well beyond the simple definition given above, including: language bias (selective inclusion of studies published in English); availability bias (selective inclusion of studies that are easily accessible to the researcher); cost bias (selective inclusion of studies that are available free or at low cost); familiarity bias (selective inclusion of studies only from one’s own discipline, and outcome bias (selective reporting by the author of a primary study of some outcomes but not others, depending on the direction and statistical significance of the results). All of these biases lead to the same consequence, namely that the literature located by a systematic reviewer will be unrepresentative of the population of completed studies; hence all present the same threat to a review’s validity. For this reason, it has been suggested that a single, broadly encompassing term, dissemination bias (Song et al., 2000), be used to refer to the problem. We agree with this sentiment, but the widespread and established use of the term publication bias has made us hesitant to tamper with, and potentially confuse, the current terminology. Readers should bear in mind that when they read ‘publication bias’ the broader but more cumbersome ‘publication bias and associated dissemination biases’ is implied.

ORGANIZATION OF THE BOOK

The book is split into three parts, and there are three appendices. Part A contains a set of chapters which together provide a non-technical introduction to publication bias and describe how it can be minimized in future research. Part B presents each of the currently available methods for assessing or adjusting for publication bias in a meta-analytic context; these chapters also illustrate each method using the data sets described in Appendix A. The chapters in Part C discuss several advanced and emerging issues that have not yet received much attention elsewhere in the literature. Finally, Appendix B is an annotated bibliography that provides illuminating further reading on publication bias; it is presented in chronological order to allow the reader to see how the field has developed over time. While we have attempted to compile and edit the book so that the chapters are integrated (with as much detailed cross-referencing of chapters as possible), we believe that each chapter can stand on its own. A more detailed outline of the contents of each section of the book is given below.

Outline of Part A

In Chapter 2, Kay Dickersin begins with a thoughtful review of the causes and origins of publication bias, after which she presents a comprehensive overview
of the history and findings of publication bias research. Her chapter concludes with some suggestions for minimizing publication bias in the future, which are elaborated upon in Chapter 3 by Jesse Berlin and Davina Ghersi. These authors propose two strategies which, if widely adopted, would go a long way towards alleviating publication bias in trials-based research areas. The first is prospective registration of clinical trials, which would create an ‘unbiased sampling frame for subsequent meta-analyses’. As Berlin and Ghersi point out, however, to avoid publication bias, this would need to be coupled with open access to the results of these trials. The second is prospective meta-analysis, whereby multiple groups of investigators conducting ongoing trials agree, prior to knowing the results of their studies, to combine their findings when the trials are complete. In a variant of this strategy, the meta-analysis is designed prospectively to standardize the instruments used to measure specific outcomes of interest across studies. In Chapter 4, Sally Hopewell, Mike Clarke and Sue Mallett describe how to minimize publication bias by attempting to locate and retrieve grey and unpublished literature. They also point out the problems associated with the retrieval and inclusion of this literature, namely that it is time-consuming and difficult, and that its methodological quality can be hard to assess. They conclude by suggesting criteria for weighing the potential benefits and costs of grey literature searches.

Outline of Part B

Despite the excellent suggestions made in Chapters 3 and 4, it is safe to say that publication bias will remain a problem in many disciplines for the foreseeable future. The second part of this book presents several statistical methods that have been developed to identify, quantify and assess the impact of publication bias on meta-analyses. Essentially three kinds of techniques have been developed to help analysts deal with publication bias in meta-analysis. One set of techniques is designed to detect publication bias. This set of techniques includes graphical diagnostics such as the funnel plot and explicit statistical tests for the statistical significance of publication bias. In Chapter 5, Jonathan Sterne, Betsy J. Becker and Matthias Egger define funnel plots and demonstrate how they can be used as a graphical tool to for the investigation of publication bias. Specific issues discussed in this chapter are the effects of choice of axes for these plots, and the need to consider explanations in addition to publication bias for funnel plot asymmetry. In Chapter 6, Jonathan Sterne and Matthias Egger describe and illustrate two statistical tests for funnel plot asymmetry, the Begg and Mazumdar (1994) non-parametric test based on the rank correlation between intervention effect estimates and their sampling variances, and the Egger et al. (1997) regression method, which tests for a linear association between the intervention effect and its standard error. Sterne and Egger also provide information about the power of these tests, and caution against their use when a meta-analysis contains only a small number of studies.

The second set of techniques is designed to assess the sensitivity of conclusions of an analysis to the possible presence of publication bias. Chapter 7, by Betsy J. Becker, describes and illustrates the first statistical method developed for the assessment of publication bias, file-drawer analysis, originally described by Robert
Rosenthal (1979). This method has been commonly referred to as the failsafe N, a term coined by Harris Cooper (1979). Becker also reviews other approaches to file-drawer analysis, including one that was intended to overcome some of the limitations of the original. Her conclusion is that all of these methods should be abandoned in favour of the more sophisticated methods described in the other chapters in this part of the book.

The third set of techniques is designed to adjust estimates for the possible effects of publication bias under some explicit model of publication selection. In Chapter 8, Sue Duval describes trim and fill, a method that she and the late Richard Tweedie developed to estimate and adjust for the number of missing studies (due to publication bias) in a meta-analysis. The trim and fill method is illustrated using a detailed worked example, in addition to its application to the three common data sets used throughout Part B. Chapter 9, by Larry Hedges and Jack Vevea, explicates the general selection model approach to the assessment of publication bias, and demonstrates how it is used to correct for bias. The authors show how their method, as well as that of John Copas, can be used to detect and correct for bias in the three common data sets used throughout the book. As the reader will see, trim and fill is relatively simple to implement and involves relatively little computation, while the Hedges–Vevea and Copas methods involve considerable computation.

In Chapter 10, Alex Sutton summarizes the results of empirical investigations that have been carried out to assess the extent of publication bias present in various scientific literatures, using the methods described earlier in Part B. He concludes on the basis of these results that publication bias assessment should become a routine part of every meta-analysis. In Chapter 11, Michael Borenstein discusses a number of computer programs that can be used to address publication bias, and shows how these would be used to apply the statistical procedures discussed throughout this volume. This chapter should be of great practical value for any researcher who wishes to investigate whether publication bias is likely to be a problem in his or her meta-analysis.

While Part B of the book is necessarily more technical than the other parts, we believe that it is generally accessible to the non-statistically minded reader. Particularly technical sections of these chapters, which can be skipped by those who are not interested in statistical fine points without loss of continuity, are identified with an asterisk.

Outline of Part C

The final part of the book describes advanced and emerging issues related to publication bias. Chapter 12, by Alex Sutton and Terri Pigott, provides a taxonomy of types of missing data. Sutton and Pigott describe and evaluate the application of standard missing-data imputation techniques to meta-analysis, and outline the need for the development of new methods in this area. Chapter 13, by Tom Trikalinos and John Ioannidis, considers how treatment effects in medicine evolve over time and the impact that selective publication may have on such evolution. In Chapter 14, Lesley Stewart, Jayne Tierney and Sarah Burdett discuss the advantages of obtaining individual participant data, rather than relying on published summary results, in
PUBLICATION BIAS IN META-ANALYSIS

combating publication bias. They suggest that high-quality individual participant data meta-analyses may offer a ‘gold standard’ for research synthesis, at least in the domain of randomized controlled trials. One of the difficulties in trying to diagnose whether publication bias is present in a meta-analysis data set is that the influence of other factors may mimic the appearance of publication bias. In Chapter 15, John Ioannidis considers how to attack the difficult task of disentangling such factors from true publication bias. In Chapter 16, Scott Halpern and Jesse Berlin reflect on data suppression that may occur for other reasons than those traditionally considered to cause publication bias. These factors include the financial, political, ideological and professional competing interests of investigators, research sponsors, journal editors and other parties. Notable events in the pharmaceutical industry, which we mentioned at the beginning of this chapter, and that received much attention as this book was being completed, suggest that these issues merit serious attention from research synthesists.

OUR MODEST PROPOSAL

We hope that reading this book will convince our audience that is imperative for every meta-analysis to include an analysis of publication bias and that this should be reported as a standard part of the results. We suggest that such reports focus on the practical impact of publication bias. To discuss the practical impact of publication bias it helps to consider three levels of impact, based on the concordance between (1) the results that are reported and (2) our best guess (informed by the results of our publication bias analyses) of what the results might look like if all relevant studies had been included. The impact of bias could be called ‘minimal’ when the two versions of the analysis would yield essentially similar estimates of the effect size. The impact could be considered ‘modest’ when the effect size would change substantially but the key finding (that the treatment is or is not effective) would remain in force. The impact could be labelled ‘severe’ when the basic conclusion of the analysis (for example, that the treatment is clinically useful, or that it is not) is called into question. The surveys on this topic, as reviewed by Sutton, in Chapter 10, suggest that publication bias exists in most published meta-analyses, but that the conclusions are nevertheless valid in most cases. In the meta-analyses surveyed so far, the impact of bias is minimal in approximately 50%, modest in about 45%, and severe in only 5% of the analyses surveyed. It also appears to be the case that the amount of bias varies substantially between fields of research. For example, we suspect that publication bias may be more likely in the social sciences, which are characterized by many small and isolated studies, than in medicine, where studies are more likely to be larger, better funded, and better publicized. The prevalence of bias will also likely vary with the experience and resources of the researchers conducting the meta-analysis. The bias cited in the surveys reviewed by Sutton is based primarily on meta-analyses from the Cochrane database, whose researchers are trained to do extensive searches, and which typically include some 30% more studies than meta-analyses on the same topic that appear in journals. Therefore, the bias cited in these surveys is probably less than the bias one would expect in other fields.
In cases where publication bias analyses suggest that severe bias may exist, this can serve as a warning to researchers and practitioners to regard the initial results cautiously, and to avoid potentially serious mistakes such as recommending an intervention or policy that could be useless or even harmful. Based on the existing state of knowledge in the field, we are hopeful that, in the majority of cases, the publication bias analysis will show that bias probably had little impact. This is also critically important information, as it allows us to have confidence that the meta-analysis is valid.

Finally, we note that it is important to address bias not only to ensure the integrity of the individual meta-analysis, but also to ensure the integrity of the field. When a meta-analysis is published that ignores the potential for bias and is later found to be incorrect, the perception is fostered among editors and researchers that meta-analyses cannot be trusted. By encouraging the prevention and assessment of, and adjustments for, publication bias, we hope to further the use and usefulness of meta-analysis.

REFERENCES

PART A

Publication Bias in Context