This Page Intentionally Left Blank
Innovative Processing and Manufacturing of Advanced Ceramics and Composites
This Page Intentionally Left Blank
Contents

Preface ix
Introduction xi

SYNTHESIS AND PROCESSING BY THE SPARK PLASMA METHOD

Simulation of Contact Resistances Influence on Temperature Distribution during SPS Experiments
A. Cincotti, A. M. Locci, R. Orrù, and G. Cao 3

Spark-Plasma-Sintering (SPS) Processsing of High Strength Transparent MgAl2O4 Spinel Polycrystals
Koji Morita, Byung-Nam Kim, Hidehiro Yoshida, and Keijiro Hiraga 19

Consolidation of Carbon with Amorphous-Graphite Transformation by SPS
Naoki Toyofuku, Megumi Nishimoto, Kazuki Arayama, Yasuhiro Kodera, Manshi Ohyanagi, and Zuhair A. Munir 31

Spark Plasma Sintering of Nanostructured Ceramic Materials with Potential Magnetoelectricity
C. Correas, R. Jiménez, T. Hungría, H. Amorín, J. Ricote, E. Vila, M. Algueró, A. Castro, and J. Galy 41

Sintering and Properties of Nanometric Functional Oxides
Dat V. Quach, Sangtae Kim, Manfred Martin, and Zuhair A. Munir 55

Spark Plasma Sintering Mechanisms in Si3N4-Based Materials
M. Belmonte, J. Gonzalez-Julian, P. Miranzo, and M.I. Osendi 63

Consolidation of SiC with BN through MA-SPS Method
Yasuhiro Kodera, Naoki Toyofuku, Rycusuke Shirai, Manshi Ohyanagi, and Zuhair A. Munir 71
Fabrication of Dense Zr-, Hf- and Ta-Based Ultra High Temperature Ceramics by Combining Self-Propagating High-Temperature Synthesis and Spark Plasma Sintering
Roberta Licheri, Roberto Orrù, Clara Musa, Antonio Mario Locci, and Giacomo Cao

NOVEL, GREEN, AND STRATEGIC PROCESSING

Microwave Sintering of Mullite and Mullite-Zirconia Composites
Subhadip Bodhak, Susmita Bose, and Amit Bandyopadhyay

Idle Time and Gelation Behavior in Gelcasting Process of PSZ in Acrylamide System
Nasim Sahraei Khangah and Mohammad-Ali Faghihi-Sani

Characterization of the Mesoporous Amorphous Silica in the Fresh Water Sponge Cauxi
Ralf Keding, Martin Jensen, and Yuanzheng Yue

Novel Chemistry-Modification Approach for Synthesis of SiAlON from Fly Ash
J. P. Kelly, J. R. Varner, W. M. Carty, and V. R. Amarakoon

Patterning of Closed Pores Utilizing the Superplastically Foaming Method
A. Kishimoto, Y. Nishino, and H. Hayashi

The Research of Materials Life Cycle Assessment
ZuoRen Nie, Feng Gao, XianZheng Gong, ZhiHong Wang, and TieYong Zuo

Modeling Dual and MgO Saturated EAF Slag Chemistry
Kyei-Sing Kwong, James Bennett, Rick Krabbe, Art Petty, and Hugh Thomas

ADVANCED POWDER PROCESSING

Aqueous Processing of TiC Preforms for Advanced Cermet Preparation
R. Bradley Collier and Kevin P. Plucknet

The Effect of Precipitator Types on the Synthesis of La$_2$Zr$_2$O$_7$ Powders by Chemical Coprecipitation Method
Jing Wang, Shuxin Bai, Hong Zhang, and Changrui Zhang

The Study of Preparation of Blue V-Zircon Pigment by Using Zircon and Sulphuric Acid
M. Riahi and M.A. Faghihi Sani
Preface

With continued discoveries and innovations, the field of materials synthesis and processing remains as it has been for many decades, a vibrant and fertile area for research and development. It comes, therefore, as no surprise that every Pac Rim conference has had considerable emphasis on this topic with many symposia devoted to various aspects of this field.

This Ceramic Transactions volume represents selected papers based on presentations in four symposia during the 8th Pacific Rim Conference on Ceramic and Glass Technology, held in Vancouver, British Columbia, May 31-June 5, 2009. The symposia and their organizers are:

Synthesis and Processing of Materials by the Spark Plasma Method, organized by Zuhair A. Munir, University of California-Davis, USA, Manshi Ohyanagi, Ryukoku University, Japan, Enrique J. Lavernia, University of California-Davis, USA, Masao Tokita, SPS SYNTEx INC, Japan, and Javier E. Garay, University of California-Riverside, USA.

Innovative Processing and Manufacturing, organized by Tatsuki Ohji, National Institute of Advanced Industrial Science and Technology (AIST), Japan, Juergen G. Heinrich, Clausthal University of Technology, Germany, Dongliang Jiang, Shanghai Institute of Ceramics, China, Takashi Goto, Tohoku University, Japan, Richard D. Sisson, Jr., Worcester Polytechnic Institute, MA, USA, and Junichi Tatami, Yokohama National University, Japan.

Advanced Powder Processing and Manufacturing Technologies, organized by Koji Watari, National Institute of Advanced Industrial Science and Technology (AIST), Japan, George V. Franks, University of Melbourne, Australia, Jianfeng Yang, Xi’an Jiaotong University, China. Guo-Jun Zhang, Shanghai Institute of Ceramics, China, Yoshio Sakka, National Institute for Materials Science, Japan, Junichi Tatami, Yokohama National University, Japan, Satoshi Tanaka, Nagaoka University of Technology, Japan, Hae Jin Hwang, Inha University, Korea, Lennart Bergstrom, Stockholm University, Sweden, Christopher B. DiAntonio, Sandia National Laboratories, USA, and Yuji Hotta, National Institute of Advanced Industrial Science and Technology (AIST), Japan.
We are grateful for the help of all of our co-organizers and for the support of the Pac Rim organizers and the American Ceramic Society. We want to especially acknowledge the help of Mr. Gregory Geiger of the Society. We also acknowledge the financial support from SPS SYNTEX, Inc. of Japan to the symposium on the Synthesis and Processing of Materials by the Spark Plasma Method.

ZUAIR A. MUNIR, University of California-Davis, USA
TATSUKI OHJI, National Institute of Advanced Industrial Science and Technology (AIST), Japan
YUJI HOTTA, National Institute of Advanced Industrial Science and Technology (AIST), Japan
Introduction

The 8th Pacific Rim Conference on Ceramic and Glass Technology (PACRIM 8), was the eighth in a series of international conferences that provided a forum for presentations and information exchange on the latest emerging ceramic and glass technologies. The conference series began in 1993 and has been organized in USA, Korea, Japan, China, and Canada. PACRIM 8 was held in Vancouver, British Columbia, Canada, May 31–June 5, 2009 and was organized and sponsored by The American Ceramic Society. Over the years, PACRIM conferences have established a strong reputation for the state-of-the-art presentations and information exchange on the latest emerging ceramic and glass technologies. They have facilitated global dialogue and discussion with leading world experts.

The technical program of PACRIM 8 covered wide ranging topics and identified global challenges and opportunities for various ceramic technologies. The goal of the program was also to generate important discussion on where the particular field is heading on a global scale. It provided a forum for knowledge sharing and to make new contacts with peers from different continents.

The program also consisted of meetings of the International Commission on Glass (ICG), and the Glass and Optical Materials and Basic Science divisions of The American Ceramic Society. In addition, the International Fulrath Symposium on the role of new ceramic technologies for sustainable society was also held. The technical program consisted of more than 900 presentations from 41 different countries. A selected group of peer reviewed papers have been compiled into seven volumes of The American Ceramic Society’s Ceramic Transactions series (Volumes 212-218) as outlined below:

- **Innovative Processing and Manufacturing of Advanced Ceramics and Composites, Ceramic Transactions, Vol. 212**, Zuhair Munir, Tatsuki Ohji, and Koji Watari, Editors; Mrityunjay Singh, Volume Editor

 Topics in this volume include Synthesis and Processing by the Spark Plasma
Advances in Polymer Derived Ceramics and Composites, Ceramic Transactions, Vol. 213, Paolo Colombo and Rishi Raj, Editors; Mrityunjay Singh, Volume Editor
This volume includes papers on polymer derived fibers, composites, functionally graded materials, coatings, nanowires, porous components, membranes, and more.

Nanostructured Materials and Systems, Ceramic Transactions, Vol. 214, Sanjay Mathur and Hao Shen, Editors; Mrityunjay Singh, Volume Editor
Includes papers on the latest developments related to synthesis, processing and manufacturing technologies of nanoscale materials and systems including one-dimensional nanostructures, nanoparticle-based composites, electrospinning of nanofibers, functional thin films, ceramic membranes, bioactive materials and self-assembled functional nanostructures and nanodevices.

Includes papers on design, processing and application of a wide variety of materials ranging from SiC SiAlON, ZrO2 fiber reinforced composites; thermal/environmental barrier coatings; functionally gradient materials; and geopolymers.

Advances in Multifunctional Materials and Systems, Ceramic Transactions, Vol. 216, Jun Akedo, Hitoshi Ohsato, and Takeshi Shimada, Editors; Mrityunjay Singh, Volume Editor
Topics dealing with advanced electroceramics including multilayer capacitors; ferroelectric memory devices; ferrite circulators and isolators; varistors; piezoelectrics; and microwave dielectrics are included.

Ceramics for Environmental and Energy Systems, Ceramic Transactions, Vol. 217, Aldo Boccaccini, James Marra, Fatih Dogan, and Hua-Tay Lin, Editors; Mrityunjay Singh, Volume Editor
This volume includes selected papers from four symposia: Glasses and Ceramics for Nuclear and Hazardous Waste Treatment; Solid Oxide Fuel Cells and Hydrogen Technology; Ceramics for Electric Energy Generation, Storage, and Distribution; and Photocatalytic Materials.

Advances in Bioceramics and Biotechnologies, Ceramic Transactions, Vol. 218; Roger Narayan and Joanna McKittrick, Editors; Mrityunjay Singh, Volume Editor
Includes selected papers from two cutting edge symposia: Nano-Biotechnology and Ceramics in Biomedical Applications and Advances in Biomineralized Ceramics, Bioceramics, and Bioinspiried Designs.

I would like to express my sincere thanks to Greg Geiger, Technical Content Manager of The American Ceramic Society for his hard work and tireless efforts in
the publication of this series. I would also like to thank all the contributors, editors, and reviewers for their efforts.

MRITYUNJAY SINGH
Volume Editor and Chairman, PACRIM-8
Ohio Aerospace Institute
Cleveland, OH (USA)
Synthesis and Processing by the Spark Plasma Method
SIMULATION OF CONTACT RESISTANCES INFLUENCE ON TEMPERATURE DISTRIBUTION DURING SPS EXPERIMENTS

A. Cincotti1, A.M. Locci1,* R. Orrù1, G. Cao1,2,*

1Dipartimento di Ingegneria Chimica e Materiali, Unità di Ricerca del Consorzio Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali (INSTM), Unità di Ricerca del Consiglio Nazionale delle Ricerche (CNR), Università degli Studi di Cagliari, Piazza d’Armi, 09123 Cagliari, Italy
2CRS4 – Centro di Ricerca, Sviluppo e Studi Superiori in Sardegna, Parco Scientifico e Tecnologico, POLARIS, Edificio 1, 09010 PULA (CA), Italy

* Authors to whom correspondence should be addressed

ABSTRACT

The behavior of the Spark Plasma Sintering/Synthesis (SPS) apparatus, which represents an effective tool for sintering/synthesizing advanced materials, is simulated in this work. A step-by-step heuristic procedure is proposed since several, concomitant physico-chemical phenomena, for example heat transfer and generation, electric current transport, and stress-strain mechanics along with chemical transformation and sintering, take place during SPS processes. In this work we consider the SPS behavior of specific sample configurations characterized by the absence of powders. This approach permits to determine the electric and thermal resistances experimentally evidenced in the horizontal contacts between stainless steel electrodes and graphite spacers as functions of temperature and applied mechanical load. Horizontal contact resistances between graphite elements are experimentally found to be negligible and, accordingly, they are not modeled. Model reliability is tested by comparing numerical simulations with experimental data obtained at operating conditions far from those adopted during fitting procedure of unknown parameters. The proposed model can be successfully compared from a quantitative point of view to the measured temperature, voltage once rms current, geometry are taken into account.

INTRODUCTION

SPS is an effective process for the sintering/synthesis of advanced materials like ceramics, metals, polymers and semiconductors.1 Basically, it consists in heating up the powder sample shaped into a die inserted between two water cooled electrodes (rams) by means of a pulsed electric DC forced to pass through, while uniaxially pressing the system in order to facilitate sintering processes and guarantee electric circuit closure.

In the technical literature, SPS is considered a thermo efficient sintering process since highly dense products in relatively short times are attainable.1,4 A volumic heating rate due to joule effect, in contrast to the conductive heat transport applied in conventional sintering systems, permits a quick temperature rise able to enhance the mass transport mechanisms responsible for sintering phenomena, thus improving consolidation rate and minimizing grain coarsening. The latter aspect leads to improved mechanical, physical and optical properties of final sintered products.2

While an updated review of modeling approaches adopted to simulate the behavior of SPS apparatus is reported elsewhere1, a reliable mathematical model of SPS can be obtained in our view by separately analyzing an increasing complex system behavior in the framework of a step by step procedure, where physico-chemical phenomena, previously excluded, are gradually introduced along with their unknown model parameters. This approach allows one to independently fit the complete set of unknown parameters of the comprehensive SPS model, thus avoiding the masking effect given by the various phenomena involved in the whole process. In this work, the first step of this ideal approach is carried out by taking into account heat transfer phenomena, and current distribution. In particular,
the evaluation of the predominant electric and thermal contact resistances is carried out by comparing model results with experimental data obtained when appropriate samples characterized by the absence of powders are used. Specifically, explicit dependence of horizontal electric and thermal contact resistances on applied load and local temperature is obtained.

EXPERIMENTAL SECTION

A SPS apparatus 515S model (Sumitomo Heavy Industries Ltd., Japan) is used for the experimental runs. The power supply is a DC pulse generator which is reported to provide a maximum current and voltage equal to 1500 A and 10 V, respectively, while the mechanical load applied through an hydraulic system can be varied between 3 and 50 kN. Specifically, current pulses of 3.3 ms fixed duration are generated. Operator is free to select the pulse sequence, i.e. number of ON pulses (from 1 to 99) vs. number of OFF pulses (from 1 to 9) that represent periods of time with zero current. Typically, a 12/2 sequence is adopted (as prescribed by Sumitomo). This choice corresponds to the repetition of a sequence of 12 ON pulses followed by 2 OFF pulses for a total sequence period of 46.2 ms (i.e. 3.3x14 ms). It should be mentioned that no specifications are available regarding the measured current and voltage, i.e. average or rms values. Referring to Figure 1, the sample is inserted into a die placed between two plungers that are not in direct contact with the stainless steel rams, but spacers are typically inserted in between. From the electric point of view, the end parts of the rams are connected to an electric generator through copper bars and wires. Spacers, plungers and die are made of AT101-grade graphite (ATAL, Italy) which guarantees relatively high electric and thermal conductivities, i.e. lower power dissipation, higher heat transfer to powder specimen, and quicker cooling step. The use of graphite limits the attainable pressure level to a value less than 100 MPa, while the vacuum chamber permits to avoid chemical oxidation of graphitic elements. As it may be seen in Figure 1, the vacuum chamber is made of two coaxial cylinders both jacketed with cooling water circulation. A vacuum level down to 10 Pa is attainable with the SPS 515S model. Rams are made of stainless steel (AISI 304) and cooling water flows through them, as depicted in Figure 1, where the corresponding horizontal section a-a of the water circuit is also shown.

Figure 1: Schematic representation of SPS experimental set-up (not in scale).
A new data acquisition system has been designed and installed for independently measuring instantaneous (pulsed) values of electric current and voltage, from which calculating average and rms values. In particular, referring to Figure 1, an open loop Hall effect current transducer has been used (LEM HAX 2500-S, nominal primary current 2500 A rms, maximum primary current 5500 A, bandwidth 25 kHz, accuracy 1 % at nominal current) along with a voltage isolation amplifier (DATAFORTH DSCA41-09, Input range -40 to + 40 V, bandwidth 3 kHz, accuracy 0.03 % of full scale). The latter one is connected to the copper bars right close to the stainless steel electrodes. The output signals of these transducers are fed to a data acquisition board (200 kS/s, 12-Bit, 16 Analog Input Multifunction, National Instruments) connected to a PC, where a specifically designed Labview (National Instruments) virtual instrument is installed. This data acquisition system is able to collect instantaneously current and voltage measurements and calculate the corresponding average and rms values (sampling time $\tau = 0.5$ s), along with all the other variables typically measured in SPS processes (i.e. time, temperature, displacement, load, and gas pressure).

Specific sample configurations characterized by the absence of powders are considered in this work. In particular, we used the graphite cylindrical samples reported in Table I, along with the size of upper and lower stainless steel electrodes provided with SPS 515S model. Graphite samples have been inserted between rams during experimental runs. It should be noted that sample IV consists of two big spacers, two small spacers and one monolithic block in order to avoid vertical contact resistances, mimicking two plungers slid into a die.

MODELLING SECTION

Due to heat losses by radiation from lateral surfaces as well as heat removal by cooling water in axial direction, along with variations of cross sections, a 2D model for the energy balance of SPS technique is proposed, while radial symmetry is considered. Vertical symmetry cannot be assumed due to different heights of stainless steel electrodes and the corresponding cooling circuits. Although isotropic materials are considered, temperature variation in radial and axial directions induces spatial gradients of thermophysical properties like electric and thermal conductivities and coefficient of thermal expansion.

The energy balance in cylindrical coordinates (r,z) related to the stainless steel rams as well as the graphite samples depicted in Figure 1 and Table I is given by:

$$\rho_{\text{Stainless Steel}} C_{\text{p},j} \frac{\partial T}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(r k_{\text{Stainless Steel}} \frac{\partial T}{\partial r} \right) + \frac{1}{\rho_{\text{Stainless Steel}}} \left[\frac{\partial T}{\partial z} \phi + \left(\frac{\partial T}{\partial z} \right)^2 \right] ; \quad i = \left\{ \text{Stainless Steel} \right\}$$

with the initial condition $T = T_0$ at $t=0$, while boundary conditions are reported in Figures 2 and 3. The meaning of the other symbols is reported in the Nomenclature Section. Only contact resistances at stainless steel-graphite interfaces are considered, with a local joule heat (q_e) due to electric contact resistance, which has been equally split between the materials at the interface (i.e. $f = 0.5$ is considered when solving the model). The following steady-state conduction model:

$$\frac{1}{r} \frac{\partial}{\partial r} \left(\frac{1}{\rho_{\text{Stainless Steel}}} r \frac{\partial \varphi}{\partial r} \right) + \frac{1}{\rho_{\text{Graphite}}} \frac{\partial \varphi}{\partial z} = 0 \quad ; \quad i = \left\{ \text{Stainless Steel} \right\}$$

coupled with the boundary conditions reported in Figures 2 and 3, is adopted for describing the electrical behavior inside the SPS system. Only contact resistances at stainless steel-graphite interfaces are considered, while equipotential conditions for electrode surfaces in contact with copper bars (cf.
Simulation of Contact Resistances Influence on Temperature Distribution

Figure 1) have been adopted. The resistive portion of the rms voltage (φ) is given by the equation $\varphi = R \, I_{RMS}$, where resistance is determined from the measured average voltage and electric current ($R = V/\bar{I}$). The pseudo isostatic equilibrium model adopted to simulate the mechanical behavior of SPS systems is reported elsewhere10 for sake of brevity.

Table I: Samples configurations and dimensions (not in scale) of graphite and stainless steel elements of the SPS system investigated.

<table>
<thead>
<tr>
<th>I (two big spacers)</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>8 cm x 8 cm</td>
<td>8 cm x 8 cm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>III (two big spacers + two small spacers + one plunger)</th>
<th>IV (two big spacers + two small spacers + one monolithic die & plungers ensemble)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2 cm x 2 cm</td>
<td>1.45 cm x 1.45 cm</td>
</tr>
<tr>
<td>3 cm x 3 cm</td>
<td>0.75 cm x 0.75 cm</td>
</tr>
<tr>
<td>3 cm</td>
<td>3 cm</td>
</tr>
<tr>
<td>3 cm</td>
<td>3 cm</td>
</tr>
<tr>
<td>26 cm</td>
<td>16.4 cm</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>8 cm</td>
<td>8 cm</td>
</tr>
</tbody>
</table>

The resulting system of differential-algebraic-integral equations has been solved by FEM numerical technique. In particular, the commercial software COMSOL MULTIPHYSICS® 3.2 has been adopted (numbers of DOF and elements equal to about 25000 and 3000, respectively). Parameters used for computations are reported in Table II and Figure 4. In particular, heat transfer coefficient (h) is calculated as discussed elsewhere while heat graphite thermal conductivity determination deserves a comment, since different data are reported in the literature. In this work, $k_c(T)$ is evaluated by averaging the temperature dependences given by the two different references available in the literature consistent with the only value (100 W m-1 °C-1 at 25 °C) provided by ATAL vendor for the graphite AT101. The only unknown model parameters remain therefore thermal and electric conductances, C_T and C_E, at the horizontal contacts between stainless steel electrodes and graphite spacers (cf. see
Simulation of Contact Resistances Influence on Temperature Distribution

boundary conditions in Figures 2-3). The determination of the dependence of these two parameters on temperature and applied mechanical load is described in the following section.

\[-k_n \nabla T \cdot \vec{n} = h(T - T_0) \]

heat loss by cooling water

\[\nabla \phi \cdot \vec{n} = 0 \]

no current external to circuit

\[\frac{\partial T}{\partial r} = 0 \]

radial symmetry

\[\frac{\partial \phi}{\partial r} = 0 \]

RESULTS AND DISCUSSION

In what follows, the results related to the comparison between experimental data and model results will be illustrated by considering both the fitting procedure adopted to evaluate the unknown parameters and the prediction capability of the proposed SPS apparatus model.

Figure 5 reports the direct comparison between temperature and voltage temporal profiles when sample I and sample II are used under the same operating conditions, i.e. a rectangular profile of rms current (amplitude 1200 A, 35 min duration) at 12/2 pulse sequence, and an initial mechanical load equal to 3 kN. It clearly follows that horizontal contact resistances between graphite elements can be neglected. Figure 6 reports the same comparison when a graphite foil (0.13 mm thick, Alfa Aesar) is inserted at the contacts of sample I with stainless steel electrodes.

Figure 2: Initial and boundary conditions (except those involving contacts resistances) for the energy balance and steady-state electric conduction model equation (not in scale).
The experimental runs are repeated several times as reported in Figures 5 and 6 in order to appreciate the reproducibility level obtainable with SPS systems. Since significant differences are found in terms of both temperature and voltage temporal profiles, it is apparent that both thermal and electric contact resistances between graphite and stainless steel elements need to be taken into account. Indeed, according to Madhusadana, conducting interstitial or filler material inserted in the gaps left by actual solid-solid point contact, increases the real surface of contact between interfacing elements, thus reducing constriction resistances. Therefore, in our case the presence of graphite foil reduces the relevant horizontal contact resistances, so that lower temperature and voltage temporal profiles are obtained. Presumably, machined graphite parts used in this work possess a lower surface roughness than that of stainless steel electrodes provided with the SPS 515S model. It is worth noting that, in order to experimentally highlight the presence of thermal and electric contact resistances in horizontal position, the lowest applicable mechanical load and the higher nominal contact surface among the available samples (cf. Table I) have been used.

According to Madhusadana and Babu et al., thermal and electric constriction conductances are related to temperature and applied mechanical load as follows:

$$C_r(T,P) = \alpha_r k_{Horn} (P/H_{Horn})^{\alpha_r} \quad (3)$$
Simulation of Contact Resistances Influence on Temperature Distribution

\[C_e(T, P) = \alpha_e \sigma_{el,\text{Harm}} \left(\frac{P}{H_{\text{Harm}}} \right)^{P_e} \]

where \(P (=F/S) \) represents the mechanical pressure uniformly applied at the contact surface area \(S \) between graphite and stainless steel.

Table II: Model parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{p,c})</td>
<td>see Figure 4</td>
<td>11</td>
</tr>
<tr>
<td>(C_{p,ss})</td>
<td>see Figure 4</td>
<td>12</td>
</tr>
<tr>
<td>(E_g)</td>
<td>1.1 (10^4) [N mm(^{-2})]</td>
<td>ATAL vendor</td>
</tr>
<tr>
<td>(E_{ss})</td>
<td>19.3 (10^4) [N mm(^{-2})]</td>
<td>13</td>
</tr>
<tr>
<td>(f)</td>
<td>0.5</td>
<td>9</td>
</tr>
<tr>
<td>(h)</td>
<td>4725 [W m(^{-2}) K(^{-1})]</td>
<td>This work</td>
</tr>
<tr>
<td>(H_g)</td>
<td>3.5 (10^8) [Pa]</td>
<td>ATAL vendor</td>
</tr>
<tr>
<td>(H_{ss})</td>
<td>1.92 (10^9) [Pa]</td>
<td>14</td>
</tr>
<tr>
<td>(k_g)</td>
<td>see Figure 4</td>
<td>ATAL vendor; 12; 15</td>
</tr>
<tr>
<td>(k_{ss})</td>
<td>see Figure 4</td>
<td>16</td>
</tr>
<tr>
<td>(T_0)</td>
<td>298.15 [K]</td>
<td>This work</td>
</tr>
<tr>
<td>(\alpha_G)</td>
<td>see Figure 4</td>
<td>17</td>
</tr>
<tr>
<td>(\alpha_{ss})</td>
<td>see Figure 4</td>
<td>13</td>
</tr>
<tr>
<td>(\eta_g)</td>
<td>0.85</td>
<td>6; 8; 9; 18</td>
</tr>
<tr>
<td>(\eta_{ss})</td>
<td>0.4</td>
<td>19</td>
</tr>
<tr>
<td>(\nu)</td>
<td>5.67 (10^{-8}) [W m(^{-2}) K(^{-4})]</td>
<td>20</td>
</tr>
<tr>
<td>(\rho_g)</td>
<td>1750 [kg m(^{-3})]</td>
<td>ATAL vendor</td>
</tr>
<tr>
<td>(\rho_{ss})</td>
<td>8000 [kg m(^{-3})]</td>
<td>12</td>
</tr>
<tr>
<td>(\rho_{el,ss})</td>
<td>see Figure 4</td>
<td>ATAL vendor</td>
</tr>
<tr>
<td>(\nu_{el,ss})</td>
<td>see Figure 4</td>
<td>12</td>
</tr>
<tr>
<td>(\nu_g)</td>
<td>0.33</td>
<td>This work</td>
</tr>
<tr>
<td>(\nu_{ss})</td>
<td>0.29</td>
<td>13</td>
</tr>
</tbody>
</table>

The parameters \(k_{\text{Harm}} \) and \(\sigma_{el,\text{Harm}} \) take into account the temperature dependence of contact conductances, and are expressed as follows using the harmonic mean of the individual thermal and electric conductivities of graphite and stainless steel:

\[k_{\text{Harm}}(T) = \frac{2 k_g(T) k_{ss}(T)}{k_g(T) + k_{ss}(T)} \]

\[\sigma_{el,\text{Harm}}(T) = \frac{2 \sigma_{e,G}(T) \sigma_{e,ss}(T)}{\sigma_{e,G}(T) + \sigma_{e,ss}(T)} \]
Figure 4: Thermophysical properties of AT 101 (ATAL) graphite: heat capacity a), electrical resistivity b), thermal conductivity c), and coefficient of thermal expansion d), and AISI 304 stainless steel: heat capacity e), electrical resistivity f), thermal conductivity g), and coefficient of thermal expansion h). Dots represent experimental data taken from the literature as specified in Table II, while lines are the corresponding fitting curves adopted for the numerical simulation.