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PREFACE TO THE THIRD EDITION 

Why a third edition? The principal reason is to include more material from anal-
ysis, approximation theory, partial differential equations, and numerical analysis as 
needed for understanding modern computational methods that play such a vital role 
in the solution of boundary value problems. As I am not an expert in computational 
mathematics, it was essential to find a highly qualified coauthor. When I moved to 
San Diego in early 2008,1 was offered an office at the University of California, San 
Diego (UCSD), which, luckily, was next to the office of Michael Hoist. Here was the 
perfect coauthor, and it was my good fortune that he agreed to collaborate on the new 
edition! The most substantial change for the new third edition is a fairly extensive 
new chapter (Chapter 10), which covers the new material listed above. The sections 
of the new chapter are: 

10.1 Nonlinear Analysis Tools for Banach Spaces 
10.2 Best and Near-Best Approximation in Banach Spaces 
10.3 Overview ofSobolev and Besov Spaces 
10.4 Applications to Nonlinear Elliptic Equations 
10.5 Finite Element and Related Discretization Methods 
10.6 Iterative Methods for Discretized Linear Equations 
10.7 Methods for Nonlinear Equations 

To support the inclusion of this new chapter, and to help connect the presentation 
of the analysis material to standard references, we have added an additional final 

XI 
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section to four of the chapters that appeared in the second edition of the book. These 
completely new sections for the third edition are: 

2.6 Weak Derivatives and Sobolev Spaces 
4.8 The Hahn-Banach Theorem and Reflexive Banach Spaces 
5.9 The Banach-Schauder and Banach-Steinhaus Theorems 
8.5 The Lax-Milgram Theorem 

We have also added a final subsection on Lebesgue integration at the end of Chap-
ter 0, listing a few of the main concepts and results on Lebesgue integration in Kn. 
In addition, the titles of a few sections from the second edition have been changed 
slightly to more clearly bring out the material already contained in the sections, again 
to help connect the material in the sections to presentations of these topics appearing 
in standard references. The new section titles are: 

4.4 Contractions and the Banach Fixed-Point Theorem 
4.5 Hubert Spaces and the Projection Theorem 
4.7 Linear Functionals and the Riesz Representation Theorem 
9.1 Introduction and Basic Fixed-Point Techniques 

The bibliographies at the end of the chapters in the second edition have also been 
updated for the third edition, but we have likely left out many outstanding new books 
and papers that should have been included, and we apologize in advance for all such 
omissions. 

IVAR S T A K G O L D 

La Jolla, California 

November 2010 

When Ivar asked me to consider joining him on a third edition of his well-known 
and popular book, Green's Functions and Boundary-Value Problems, I was a bit in-
timidated; not only had it been a standard reference for me for many years, but it 
is also used as the main text for the first-year graduate applied analysis sequence in 
a number of applied mathematics doctoral programs around the country. However, 
I soon realized it was an opportunity for me to add the material that I feel is often 
missing from first-year graduate courses in modern applied mathematics, namely, ad-
ditional foundational material from analysis and approximation theory to support the 
design, development, and analysis of effective and reliable computational methods 
for partial differential equations. Although there are some wonderful books covering 
applied mathematics (such as Ivar's) and some equally strong books on numerical 
analysis, the bridge between them (built with linear functional analysis, approxima-
tion theory, and nonlinear analysis) is often mostly missing in these same books. 
There are a number of books devoted entirely to building this bridge; however, our 
goal for the third edition was to add just the right subset of this material so that a 
course based on this single book, combined with a course based on a strong graduate 
numerical analysis book, would provide a solid foundation for applied mathematics 
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students in our mathematics doctoral program and in our interdisciplinary Computa-
tional Science, Mathematics, and Engineering Graduate Program at UCSD. 

After spending substantial time with the second edition of the book over the last 
year, my appreciation for Ivar's original book has only grown. The second edition is 
a unique combination of modeling, real analysis, linear functional analysis and op-
erator theory, partial differential equations, integral equations, nonlinear functional 
analysis, and applications. The book manages to present the topics in a friendly, in-
formal way, and at the same time gives the real theorems, with real proofs, when they 
are called for. The changes that I recommended we make to the second edition (as 
Ivar outlined above) were mostly to draw out the existing structure of the book, and 
also to add in a few results from linear functional analysis to complete the material 
where it was needed to support the new final chapter of the book. Since those of 
us who have worked closely with the second edition are very familiar with exactly 
where to find particular topics, one of my goals for the third edition was to preserve 
as much of the second edition as possible, right down to theorem, equation, and ex-
ercise numbers within the sections of each chapter. This is why I have tried to fit all 
of the new material into new sections appearing at the end of existing chapters, and 
into the new final chapter appearing at the end of the book. The index to the second 
edition also provided finer-grained access to the book than did the table of contents; 
I always found this a very valuable part of the second edition, so I attempted to pre-
serve the entire second edition index as a subset of the third edition index. My hope 
is that as a consequence of our efforts, the third edition of the book will be viewed as 
a useful superset of the second edition, with new material on approximation theory 
and methods, together with some additional supporting analysis material. 

The third edition contains approximately 30% new material not found in the sec-
ond edition. The longest chapter is now the new final chapter (Chapter 10) on ap-
proximation theory and methods. We considered splitting it into two chapters, but 
it seems to hold together well as a single chapter. In addition to the new material 
in Chapter 10, we have added material to Chapters 2, 4, 5, and 8 as Ivar outlined 
above. Chapter 2 now contains an early introduction to Sobolev spaces based on 
weak differentiation, and Chapter 8 now includes the Lax-Milgram Theorem and 
some related tools. Chapters 4 and 5 now provide a gentle introduction to many of 
the central concepts and theorems in linear functional analysis and operator theory, as 
needed by most first-year graduate students working in applied analysis and applied 
partial differential equations. Some of the new material in Chapter 10 is a bit more 
advanced than some of the other sections of the book; however, this material builds 
only on (old and new) material found in Chapters 2, 4, 5, and 8, with the support of 
a few new paragraphs added to the end of Chapter 0 (on Lebesgue integration). The 
only exception is perhaps the last example in Section 10.4, chosen from mathemat-
ical physics to illustrate the combined use of several tools from nonlinear analysis 
and approximation theory; it requires a bit of familiarity with the notation used in 
differential geometry. 

A brief word about the numbering system used in third edition is in order, since 
we are departing substantially from the convention used in the previous two editions 
(as outlined in the preface to the first edition). The book is now divided into eleven 
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chapters (beginning with Chapter 0), with the inclusion of a new final chapter (Chap-
ter 10). Each chapter is divided into numbered sections, and equations are numbered 
by chapter, section, and equation within each section. For example, a reference to 
equation (8.5.2) is to the second numbered equation appearing in Section 5 of Chap-
ter 8. Similarly, all definitions, theorems, corollaries, lemmas, and the like, as well 
as exercises, are numbered using the same convention. This convention makes the 
third edition easier to navigate than the first two editions, with a simple glance at a 
typical page revealing precisely the section and chapter in which the page appears. 
However, it also preserves the numbering of items from the second edition; for ex-
ample, equation (5.2) of Chapter 8 in the second edition is numbered as (8.5.2) in 
the third edition. Note that some objects remain unnumbered if they were unnum-
bered in the first two editions (for example, a theorem that is not referred to later in 
the book). To simplify the presentation without losing the advantages of this num-
bering convention, we make three consistent exceptions: Figures are numbered only 
by chapter and figure within the chapter; examples and remarks are numbered only 
within the section; and the Bibliography continues to consist of a chapter-specific list 
of references immediately following the chapter, ordered alphabetically. Citations to 
references are now also numbered within the referring text; for example, a citation 
to reference [3] occurring within a chapter refers to the third reference appearing in 
the list of references at the end of the chapter. 

I would like to thank my family (Mai, Mason, and Makenna) for their patience 
during the last few months as I focused on the book. I would also like to thank 
the faculty in the Center for Computational Mathematics at UCSD, and in particular 
Randy Bank, Philip Gill, and Jim Bunch, for the support and encouragement they 
have given me over the last ten years. I am also indebted to the Center for Theoretical 
Biological Physics, the National Biomédical Computation Resource, the National 
Science Foundation, the National Institutes of Health, the Department of Energy, and 
the Department of Defense for their ongoing support of my research. I must express 
my appreciation for the interactions I have had with Randy Bank, Long Chen, Don 
Estep, Gabriel Nagy, Gantumur Tsogtgerel, and Jinchao Xu, as each played a role in 
the development of my understanding of much of the material I wrote for the book. 
I would also like to thank Ari Stern, Ryan Szypowski, Yunrong Zhu, and Jonny 
Serencsa for reading the new material carefully and catching mistakes. Finally, I 
am grateful to my friend and mentor Herb Keller, who greatly influenced my work 
over the last fifteen years, and this is reflected in the topics that I chose to include in 
the book. Herb was my postdoctoral advisor at Caltech from 1993 to 1997, and after 
retiring from Caltech around 2000, he moved to San Diego to join our research group 
at UCSD. We thoroughly enjoyed the years Herb was with us at the Center (attending 
the weekly seminars in his biking outfit, after biking down the coast from Leucadia). 
Unfortunately, Herb passed away just before Ivar joined our research group in 2008; 
otherwise, we might have had three authors on this new edition of the book. 

MICHAEL HOLST 

La Jolla, California 

November 2010 



PREFACE TO THE SECOND EDITION 

The field of applied mathematics has evolved considerably in the nearly twenty years 
since this book's first edition. To incorporate some of these changes, the publishers 
and I decided to undertake a second edition. Although many fine books on related 
subjects have appeared in recent years, we believe that the favorable reception ac-
corded the first edition— as measured by adoptions and reviews—justifies the effort 
involved in a new edition. 

My basic purpose is still to prepare the reader to use differential and integral equa-
tions to attack significant problems in the physical sciences, engineering, and applied 
mathematics. Throughout, I try to maintain a balance between sound mathematics 
and meaningful applications. The principal changes in the second edition are in the 
areas of modeling, Fourier analysis, fixed-point theorems, inverse problems, asymp-
totics, and nonlinear methods. The exercises, quite a few of which are new, are rarely 
routine and occasionally can even be considered extensions of the text. Let me now 
turn to a chapter-by-chapter list of the major changes. 

Chapter 0 [Preliminaries] has assumed a more important role. It is now the start-
ing point for a discussion of the relation among the four alternative formulations of 
physical problems: integral balance law, boundary value problem, weak form (also 
known as the principle of virtual work), and variational principle. I have also added 
new modeling examples in climatology, population dynamics, and fluid flow. 

XV 
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Chapter 1 [Green's functions: intuitive ideas] contains some revisions in exposi-
tion, particularly in regard to continuous dependence on the data. 

In Chapter 2 [The theory of distributions], the treatment of Fourier analysis has 
been extended to include Discrete and Fast transforms, band-limited functions, and 
the sampling theorem using the sine function. 

Chapter 3 [One-dimensional boundary value problems] now includes a more thor-
ough treatment of least-squares solutions and pseudo-inverses. The ideas are intro-
duced through a discussion of unbalanced systems (underdetermined or overdeter-
mined). 

Chapter 4 has been retitled "Hubert and Banach spaces," reflecting an increased 
emphasis on normed spaces at the expense of general metric spaces. The material on 
contractions is rewritten from this point of view with some new examples. 

Chapter 5 [Operator theory] is virtually unchanged. 
Chapter 6 [Integral equations] now includes a treatment of Tychonov regular-

ization for integral equations of the first kind, an important aspect of the study of 
ill-posed inverse problems. Some new examples of integral equations are presented 
and there is a short discussion of singular-value decomposition. Part of the material 
on integrodifferential equations has been deleted. 

Chapter 7 [Spectral theory of second-order differential operators] is basically un-
changed. 

In Chapter 8 [Partial differential equations], I have added a more comprehensive 
treatment of the spectral properties of the Laplacian, including a discussion of recent 
results on isospectral problems. The asymptotic behavior of the heat equation is 
examined. A brief introduction to the finite element method is incorporated in a 
slightly revised section on variational principles. 

Chapter 9 [Nonlinear problems] contains a new subsection comparing the three 
major fixed-point theorems: the Schauder theorem, the contraction theorem of Chap-
ter 4, and the theorem for order-preserving maps, which is used extensively in the 
remainder of Chapter 9.1 have also included a study of the phenomena of finite-time 
extinction and blow-up for nonlinear reaction-diffusion problems. 

There now remains the pleasant task of acknowledging my debt to the students 
and teachers who commented on the first edition and diplomatically muted their 
criticism! I am particularly grateful to my friends Stuart Antman of the University 
of Maryland, W. Edward Olmstead of Northwestern University, and David Colton 
and M. Zuhair Nashed of the University of Delaware, who generously provided me 
with ideas and encouragement. The new material in Chapter 9 owes much to my 
overseas collaborators, Catherine Bandle (University of Basel) and J. Ildefonso Diaz 
(Universidad Complutense, Madrid). The TEX preparation of the manuscript was in 
the highly skilled hands of Linda Kelly and Pamela Haverland. 

IVAR S T A K G O L D 

Newark, Delaware 

September 1997 



PREFACE TO THE FIRST EDITION 

As a result of graduate-level adoptions of my earlier two-volume book, Boundary 
Value Problems of Mathematical Physics, I received many constructive suggestions 
from users. One frequent recommendation was to consolidate and reorganize the 
topics into a single volume that could be covered in a one-year course. Another 
was to place additional emphasis on modeling and to choose examples from a wider 
variety of physical applications, particularly some emerging ones. In the meantime 
my own research interests had turned to nonlinear problems, so that, inescapably, 
some of these would also have to be included in any revision. The only way to 
incorporate these changes, as well as others, was to write a new book, whose main 
thrust, however, remains the systematic analysis of boundary value problems. Of 
course some topics had to be dropped and others curtailed, but I can only hope that 
your favorite ones are not among them. 

My book is aimed at graduate students in the physical sciences, engineering, and 
applied mathematics who have taken the typical "methods" course that includes vec-
tor analysis, elementary complex variables, and an introduction to Fourier series and 
boundary value problems. Why go beyond this? A glance at modern publications in 
science and engineering provides the answer. To the lament of some and the delight 
of others, much of this literature is deeply mathematical. I am referring not only to 
areas such as mechanics and electromagnetic theory that are traditionally mathemati-
cal but also to relative newcomers to mathematization, such as chemical engineering, 

XVII 
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materials science, soil mechanics, environmental engineering, biomédical engineer-
ing, and nuclear engineering. These fields give rise to challenging mathematical 
problems whose flavor can be sensed from the following short list of examples; in-
tegrodifferential equations of neutron transport theory, combined diffusion and re-
action in chemical and environmental engineering, phase transitions in metallurgy, 
free boundary problems for dams in soil mechanics, propagation of impulses along 
nerves in biology. It would be irresponsible and foolish to claim that readers of my 
book will become instantaneous experts in these fields, but they will be prepared to 
tackle many of the mathematical aspects of the relevant literature. 

Next, let me say a few words about the numbering system. The book is divided 
into ten chapters, and each chapter is divided into sections. Equations do not carry a 
chapter designation. A reference to, say, equation 4.32 is to the thirty-second num-
bered equation in Section 4 of the chapter you happen to be reading. The same 
system is used for figures and exercises, the latter being found at the end of sections. 
The exercises, by the way, are rarely routine and, on occasion, contain substantial 
extensions of the main text. Examples do not carry any section designation and are 
numbered consecutively within a section, even though there may be separate clus-
ters of examples within the same section. Some theorems have numbers and others 
do not; those that do are numbered in a sequence within a section— Theorem 1, 
Theorem 2, and so on. 

A brief description of the book's contents follows. No attempt is made to mention 
all topics covered; only the general thread of the development is indicated. 

Chapter 0 presents background material that consists principally of careful deriva-
tions of several of the equations of mathematical physics. Among them are the equa-
tions of heat conduction, of neutron transport, and of vibrations of rods. In the last-
named derivation an effort is made to show how the usual linear equations for beams 
and strings can be regarded as first approximations to nonlinear problems. There are 
also two short sections on modes of convergence and on Lebesgue integration. 

Many of the principal ideas related to boundary value problems are introduced on 
an intuitive level in Chapter 1. A boundary value problem (BVP, for short) consists of 
a differential equation Lu = f with boundary conditions of the form Bu = h. The 
pair (/, h) is known collectively as the data for the problem, and и is the response 
to be determined. Green's function is the response when / represents a concentrated 
unit source and h = 0. In terms of Green's function, the BVP with arbitrary data 
can be solved in a form that shows clearly the dependence of the solution on the 
data. Various examples are given, including some multidimensional ones, some in-
volving interface conditions, and some initial value problems. The useful notion of a 
well-posed problem is discussed, and a first look is taken at maximum principles for 
differential equations. 

Chapter 2 deals with the theory of distributions, which provides a rigorous math-
ematical framework for singular sources such as the point charges, dipoles, line 
charges, and surface layers of electrostatics. The notion of response to such sources 
is made precise by defining the distributional solution of a differential equation. The 
related concepts of weak solution, adjoint, and fundamental solution are also in-
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traduced. Fourier series and Fourier transforms are presented in both classical and 
distributional settings. 

Chapter 3 returns to a more detailed study of one-dimensional linear boundary 
value problems. To an equation of order p there are usually associated p independent 
boundary conditions involving derivatives of order less than p at the endpoints a and 
& of a bounded interval. If the corresponding BVP with 0 data has only the trivial 
solution, then the BVP with arbitrary data has one and only one solution which can 
be expressed in terms of Green's function. If, however, the BVP with 0 data has a 
nontrivial solution, certain solvability conditions must be satisfied for the BVP with 
arbitrary data to have a solution. These statements are formulated precisely in an 
alternative theorem, which recurs throughout the book in various forms. When the 
BVP with 0 data has a nontrivial solution, Green's function cannot be constructed 
in the ordinary way, but some of its properties can be salvaged by using a modified 
Green's function, defined in Section 5. 

Chapter 4 begins the study of Hubert spaces. A Hubert space is the proper set-
ting for many of the linear problems of applied analysis. Though its elements may 
be functions or abstract "vectors," a Hilbert space enjoys all the algebraic and ge-
ometric properties of ordinary Euclidean space. A Hilbert space is a linear space 
equipped with an inner product that induces a natural notion of distance between 
elements, thereby converting it into a metric space which is required to be com-
plete. Some of the important geometric properties of Hilbert spaces are developed, 
including the projection theorem and the existence of orthonormal bases for sepa-
rable spaces. Metric spaces can be useful quite apart from any linear structure. A 
contraction is a transformation on a metric space that uniformly reduces distances 
between pairs of points. A contraction on a complete metric space has a unique fixed 
point that can be calculated by iteration from any initial approximation. Examples 
demonstrate how to use these ideas to prove uniqueness and constructive existence 
for certain classes of nonlinear differential equations and integral equations. 

Chapter 5 examines the theory of linear operators on a separable Hilbert space, 
particularly integral and differential operators, the latter being unbounded operators. 
The principal problem of operator theory is the solution of the equation Au = / , 
where A is a linear operator and / an element of the space. A thorough discussion of 
this problem leads again to adjoint operators, solvability conditions, and alternative 
theorems. Additional insight is obtained by considering the inversion of the equation 
Au — Xu = / , which leads to the idea of the spectrum, a generalization of the more 
familiar concept of eigenvalue. For compact operators (which include most integral 
operators) the inversion problem is essentially solved by the Riesz-Schauder theory 
of Section 7. Section 8 relates the spectrum of symmetric operators to extremal 
principles for the Rayleigh quotient. Throughout, the theory is illustrated by specific 
examples. 

In Chapter 6 the general ideas of operator theory are specialized to integral equa-
tions. Integral equations are particularly important as alternative formulations of 
boundary value problems. Special emphasis is given to Fredholm equations with 
symmetric Hilbert-Schmidt kernels. For the corresponding class of operators, the 
nonzero eigenvalues and associated eigenfunctions can be characterized through sue-
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cessive extremal principles, and it is then possible to give a complete treatment of 
the inhomogeneous equation. The last section discusses the Ritz procedure for es-
timating eigenvalues, as well as other approximation methods for eigenvalues and 
eigenfunctions. There is also a brief introduction to integrodifferential operators in 
Exercises 5.3 to 5.8. 

Chapter 7 extends the Sturm-Liouville theory of second-order ordinary differen-
tial equations to the case of singular endpoints. It is shown, beginning with the 
regular case, how the necessarily discrete spectrum can be constructed from Green's 
function. A formal extension of this relationship to the singular case makes it pos-
sible to calculate the spectrum, which may now be partly continuous. The transi-
tion from regular to singular is analyzed rigorously for equations of the first order, 
but the Weyl classification for second-order equations is given without proof. The 
eigenfunction expansion in the singular case can lead to integral transforms such as 
Fourier, Hankel, Mellin, and Weber. It is shown how to use these transforms and their 
inversion formulas to solve partial differential equations in particular geometries by 
separation of variables. 

Although partial differential equations have appeared frequently as examples in 
earlier chapters, they are treated more systematically in Chapter 8. Examination of 
the Cauchy problem— the appropriate generalization of the initial value problem to 
higher dimensions— gives rise to a natural classification of partial differential equa-
tions into hyperbolic, parabolic, and elliptic types. The theory of characteristics for 
hyperbolic equations is introduced and applied to simple linear and nonlinear exam-
ples. In the second and third sections various methods (Green's functions, Laplace 
transforms, images, etc.) are used to solve BVPs for the wave equation, the heat 
equation, and Laplace's equation. The simple and double layers of potential theory 
make it possible to reduce the Dirichlet problem to an integral equation on the bound-
ary of the domain, thereby providing a rather weak existence proof. In Section 4 a 
stronger existence proof is given, using variational principles. Two-sided bounds 
for some functionals of physical interest, such as capacity and torsional rigidity, are 
obtained by introducing complementary principles. Another application involving 
level-line analysis is also given, and there is a very brief treatment of unilateral con-
straints and variational inequalities. 

Finally, in Chapter 9, a number of methods applicable to nonlinear problems are 
developed. Section 1 points out some of the features that distinguish nonlinear prob-
lems from linear ones and illustrates these differences through some simple exam-
ples. In Section 2 the principal qualitative results of branching theory (also known 
as bifurcation theory) are presented. The phenomenon of bifurcation is understood 
most easily in terms of the buckling of a rod under compressive thrust. As the thrust 
is increased beyond a certain critical value, the state of simple compression gives 
way to the buckled state with its appreciable transverse deflection. Section 3 shows 
how a variety of linear problems can be handled by perturbation theory (inhomoge-
neous problems, eigenvalue problems, change in boundary conditions, domain per-
turbations). These techniques, as well as monotone methods, are then adapted to the 
solution of nonlinear BVPs. The concluding section discusses the possible loss of 
stability of the basic steady state when an underlying parameter is allowed to vary. 
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CHAPTER 0 

PRELIMINARIES 

As its name and number indicate, this chapter contains background material having 
no precise place in the subsequent, systematic, mathematical development. Readers 
already familiar with some of the topics in the present chapter may nevertheless profit 
from a new presentation; they are particularly urged to read Sections 0.1, 0.5, and 
0.6 before proceeding to the later chapters. 

The principal purpose here is to give fairly careful derivations of some of the 
equations of mathematical physics which will be studied more extensively in the rest 
of the book. The attention paid to modeling in the present chapter could, regrettably, 
not be sustained in the subsequent ones. Readers who want to further explore aspects 
of modeling are encouraged to consult the books by Arts [4], Lin and Segel [19], 
Segel [28], Tayler [32], Keener [16], and Logan [20]. Extensive surveys in mathe-
matical physics, including modern geometric tools, can be found in the recent books 
of Hassani [13] and of Szekeres [31]. 

Even when agreement exists on the proper modeling of the physical problem, 
there are still a number of different possible mathematical descriptions. Although 
the four formulations we use can be shown to be more or less equivalent (see Sec-
tion 0.5), each has its distinct advantages. The first, and closest in spirit to the un-
derlying physical law, is the so-called integral balance written for a field quantity 
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2 0 PRELIMINARIES 

of interest, such as mass, energy, charge, or momentum. The integral balance is 
formulated over an arbitrary subregion (control region) of the region in space-time 
where the physical process takes place. In the absence of external inputs, the integral 
balance becomes a conservation law. The second formulation requires additional 
regularity assumptions for the inputs and the field quantity; the integral balance can 
then be transformed into a partial differential equation (PDE) governing the local 
behavior of the field quantity. Constitutive relations as well as boundary and initial 
conditions supplement the PDE to yield an initial boundary value problem (BVP), 
which, under normal circumstances, will have one and only one solution. When 
there is doubt as to the range of validity of the PDE, it is often helpful to return to 
the integral balance for inspiration and verification. 

The third formulation is called the weak form of the BVP (also known, in spe-
cial contexts, as the variational equation or the principle of virtual work). In many 
ways this is the most powerful mathematical formulation, as it lends itself to the use 
of modern techniques of functional analysis and also forms the basis for many nu-
merical methods. As the term variational equation suggests, the weak form is often 
related to a variational principle (the fourth formulation), such as a principle of min-
imum energy. The vanishing of the first variation of the functional being minimized 
is then just the variational equation or weak form of the BVP. 

In Section 0.5 we show, for a simple example, how these various formulations are 
interconnected. In Sections 0.1 through 0.4 we develop integral balances of energy, 
mass, and momentum in various physical contexts and show how they lead to the 
respective BVPs. 

The chapter ends with two sections (0.6 and 0.7) of a mathematical nature. Sec-
tion 0.6 reviews fundamental ideas of convergence and norm which are widely used 
in the rest of the book. Section 0.7 presents a short treatment of Lebesgue integration. 
Although only a few essential properties of the Lebesgue integral will be needed, it 
seemed worthwhile to spend a few pages explaining its construction. These limited 
goals made it convenient to use Tonnelli's approach (as described, for instance, in 
Shilov [29]). Another recent approach due to Lax [18] involves defining L1 as the 
completion of C(K) in the Ll norm, where К is a ball in Rn. In this approach, 
measure is a derived concept. 

A few words about terminology are in order. Rn stands for n-dimensional Eu-
clidean space. The definitions below are given for K3 but are easily modified for Kn. 
A point in R3 is identified by its position vector x = (χχ,Χ2, хз), where χχ, χη,, хз 
are Cartesian coordinates; |x| = (xf + x\ + Xg)1/2, where the nonnegative square 
root is understood; dx stands for a volume element dx\ dx2 ахз. In later chapters 
the distinguishing notation for vectors is dropped. 

An open ball of radius a, centered at the origin, is the set of points x such that 
|x| < a. The set |x| ^ a is a closed ball, and the set |x| = a is a sphere. In R2 

the words disk and circle are often substituted for ball and sphere, respectively. An 
open set Ω has the property that whenever x e Ω, so does some sufficiently small 
ball with center at x. A point x belongs to the boundary Г of an open set Ω if x is 
not in Ω but if every open ball centered at x contains a point of Ω. The closure Ω of 
Ω is the union of Ω and Г. These ideas are best illustrated by an egg with a very thin 
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shell. The interior of the egg is an open set Ω, the shell is Γ, and the egg with shell 
is Ω. An open set Ω is connected if each pair of points in Ω can be connected by a 
curve lying entirely in Ω. A domain is an open connected set. Thus an open ball is a 
domain, but the union of two disjoint open balls is not. 

In the definition of the function spaces below, there are some distinctions which 
are best understood through examples: (a) the function l/x is continuous on 0 < x ^ 
1 but cannot be extended continuously to 0 ^ x ^ 1; (b) the function \/x(l — x) is 
continuous on 0 < x ^ 1 with a continuous derivative on 0 < x < 1 which cannot 
be extended continuously to 0 ^ x ^ 1. 

Definition. Let il be a domain in Ш71. Then Ck(il) is the set of functions / (x ) with 
continuous derivatives of order 0, 1,2, ... ,k on il. (The derivative of order 0 of f 
is understood to be f itself) Ck(Ù) is the set of functions f(x) G Ck(iï.) each of 
whose derivatives of order 0, 1,2, ..., к can be extended continuously to Ω. 

The sets C°(fl) and C°(Cl) are usually written C(Q) and C(O), respectively. 
If Ω is the open interval a < x < b in R, we usually prefer the notation Ck(a, b) 

for Ск(П) and Ck[a, b] for Ck{Û). Thus the function 

y/x(l-x) e C f O . l l n C ^ O . l ) but g C ^ O . l ] . 

We shall encounter other function spaces in the sequel (such as the space of piecewise 
continuous functions, Lp spaces, and Sobolev spaces) with definitions given at the 
appropriate time. 

The symbol = means "set equal to." It is occasionally used to define a new 
expression. For instance, in writing D = dS/dx we are defining D as dS/dx, which, 
in turn, is presumably known from earlier discussion. 

The terms 
inf/(x), sup/(x) 

stand for the infimum (greatest lower bound) and supremum (least upper bound) of 
the real-valued function / on Ω. For instance, if Ω is the open ball in Rn with radius 
a and center at the origin, and / (x) = |x|, then 

inf/(x) = 0, sup/(x) = a, 
χ € Ω χ £ Ω 

even though the supremum is not attained for any element x in Ω. 

0.1 HEAT CONDUCTION 

Consider heat conduction taking place during a time interval (0, Γ) in a medium, 
possibly inhomogeneous, occupying the three-dimensional domain Ω with boundary 
Γ. There are thus four independent variables X\, Χ2, Хз, t, which we write as (x, t) 
since it is convenient to distinguish the time variable from the space variables. The 
basic domain in space-time is the Cartesian product of Ω and (0, T), written as 
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Ω χ (0, Τ). We now take an energy balance, not over Ω x (0, T), but over a subset 
of the form R x (t,t + h), where R is an arbitrary portion of Ω and (t, t + h)is an 
arbitrary interval contained in (0, Γ). We need flexibility in the choice of the subset 
R x (t,t + h) so that we can obtain sufficient information for our purposes. We 
postulate that only heat energy plays a significant role in the energy budget. The 
terms which contribute to the heat balance are (a) the change in the heat content of R 
from time t to time t + h, caused by a change in temperature, (b) the heat generated 
by sources, called body sources, in R x (t,t + h), and (c) the heat flowing in or out 
through the boundary В of R over the time interval (t, t + h). All of these terms are 
measured in appropriate units of heat, say calories. The body sources may stem, for 
instance, from a chemical reaction liberating heat (positive source) or absorbing heat 
(negative source or sink). Body sources can be of three types: distributed, impulsive, 
or concentrated. A distributed source is characterized by a density p(x, t) measured 
in calories/cm sec, and can generate a finite amount of heat only by acting in a finite 
volume over a finite time interval. An impulsive source is instantaneous in time and 
generates a finite amount of heat over an infinitesimal time interval. Concentrated 
sources are localized in space at points, curves, or surfaces and generate a finite 
amount of heat over regions of infinitesimal volume. 

Whatever the type of source, a heat balance for R x (t,t + h) gives, in calories, 

rise in heat content 
(0.1.1) 

= heat generated by body sources — outflow of heat through B. 

With En{t) representing the heat content of R at time t, the left side of (0.1.1) 
becomes ER(t + h) — ER(Î). Assuming no impulsive sources, we can divide (0.1.1) 
by h and take the limit as h —> 0 to obtain, for any t in (0, T), 

d-^ = PR{t)-QB{t) №), (0.1.2) 
at \ sec / 

where PR(Î) is the rate of heat generation in R and Qe(t) is the rate of outflow 
through B. Next, we exclude concentrated sources by expressing PR and ER in 
terms of densities p(x, t) and e(x, t) defined on Ω x (0, T): 

PR(t) = [ p(x, t) dx, ER(t) = [ e(x, t) dx, 
JR JR 

where e is measured in cal/cm3 and p in cal/cm3 sec. 
The rate of outflow QB is expressed in terms of a heat flux vector J(x, t) defined 

on Ω x (0, Г). The amount of heat flowing per unit time across a surface element of 
area dS with unit normal n is given by J · n dS, so that 

QB(t)= f 3-ndS, (0.1.3) 
JB 

where n is the outward normal to B. Use of the divergence theorem on this term 
transforms (0.1.2) to 

'de L , d i v J - p ) dx = 0, 0 < i < T . (0.1.4) 
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If (0.1.4) held only for a particular region R, little information could be extracted, 
but instead we know that it is true for every subregion R of Ω. We claim that this 
implies that the integrand vanishes at every x and t (assuming that the integrand is a 
continuous function of x and t). Indeed, suppose that the integrand were positive at 
x, t\ we can then surround x by a sufficiently small region R in which the integrand 
is positive, thereby violating (0.1.4). We therefore conclude that 

de 
— + d i v J = p , (x, i) i n f ix (0, Γ). (0.1.5) 

There are too many unknowns in (0.1.5), but both e and J are related to the tempera-
ture tt(x, f) through the following constitutive relations: 

1. When a homogeneous material element of volume rfx is raised from the tem-
perature и to the temperature и + du, its heat content is raised by С du dx, 
where С is the specific heat of the material measured in calories per degree 
per cm3. Note that С depends on the material and may also depend on u. 

2. Fourier's law of heat conduction for a homogeneous material: 

J = -fcgradu, (0.1.6) 

where к is the thermal conductivity (which may depend on u) and has units of 
cal per sec per cm3 per degree. Thus, the heat flowing across an element of 
surface per unit time is 

du 
J · n dS = —k grad и ■ n dS — —k—- dS, 

on 

where the minus sign is consistent with the fact that heat flows in the direction 
of decreasing temperature. Note that if we also wanted to include convection, 
we would have to modify (0.1.6)—see the remarks below. 

Since our medium may be inhomogeneous, both С and к may depend on x as 
well as u. Then 

de du 
— = C-— and div J = —div(fc grad u), 
dt dt v B ' 

so that (0.1.5) becomes the usual equation of heat conduction: 

du 
С— - div(fc grad u) = p, (x, t) e fi x (0, T). (0.1.7) 

If С and к are constants, the equation reduces to 

du P 
— - о Д и = - , (0.1.8) 
dt С 
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where a = к/С is the thermal diffusivity in cm2/sec, and Δ = div grad is the Lapla-
cian operator whose form in Cartesian coordinates is 

д2 д2 д2 

дх\ дх\ дх\ 

REMARKS 
1. The term div J in (0.1.5) stems from the outflow-inflow of heat through the 

boundary of a test region—the third term in (0.1.1 )—but is now expressed as a 
point function. We regard div J as representing redistribution of heat through 
whatever mechanisms are available for that purpose. If the only such mech-
anism is heat conduction, then Fourier's law applies: J = — к grad u. If the 
medium is a fluid moving with velocity v(x, t), then J = — к grad и + Cuv, 
which incorporates convection. Then div J = —div (k grad u) + div (Cuv); 
if the fluid is incompressible, div v = 0 [see (0.2.9) with constant p and p = 0] 
and 

div J = —div(/c grad u) + v · grad it, 

so that (0.1.7) becomes 

Ou 
С— div(fc grad u) + v · grad и = p. (0.1.9) 

2. Suppose that we consider (0.1.8) for a medium covering all of R3, with p = 0, 
and with initial temperature positive over a small part of M3 and vanishing 
elsewhere. Then, we shall see in Chapter 8 that u(x, t) > 0 for all of R3 when 
t > 0. Of course, u(x,t) will be small for large |x|, but nevertheless there 
is something disturbing about our model since a localized initial temperature 
propagates with infinite velocity to give a positive temperature everywhere for 
t > 0. (See, however, the article by Day [8], who gives a spirited defense of 
Fourier's law.) One possible remedy is to modify Fourier's law (0.1.6) to 

J + T — = -k grad u, 

with r a relaxation time. This leads to an equation of the form 

d2u du 
£W+m-bAu = 0> 

where ε and 6 are positive constants. The new equation for и has finite propa-
gation velocity, so that a localized initial temperature is only felt within some 
bounded region which depends on t. Since ε <C 1, the effect is noticeable only 
for small times. 

3. If the production term p is prescribed as a function of x and t, (0.1.8) is a 
linear equation [and so is (0.1.7) if С and к do not depend on u]. There are 


