FLUID MECHANICS,
HEAT TRANSFER, AND
MASS TRANSFER
Practice of Science is Engineering
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>ix</td>
</tr>
<tr>
<td>PREFACE</td>
<td>xi</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>xiii</td>
</tr>
<tr>
<td>ABOUT THE AUTHOR</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xxv</td>
</tr>
</tbody>
</table>

SECTION I FLUID MECHANICS

1 Fluid Mechanics Basics | 3 |
2 Fluid Flow | 21 |
3 Piping, Seals, and Valves | 35 |
4 Flow Measurement | 59 |
5 Pumps, Ejectors, Blowers, and Compressors | 101 |
6 Mixing | 163 |
7 Two-Phase Flow Systems | 195 |

SECTION II HEAT TRANSFER

8 Dimensionless Numbers, Temperature Measurement, and Conduction Heat Transfer | 225 |
CONTENTS

SECTION III MASS TRANSFER

15 Mass Transfer Basics 455
16 Mass Transfer Equipment 475
17 Absorption, Distillation, and Extraction 527
18 Crystallization, Air–Water Operations, Drying, Adsorption, Membrane Separations, and Other Mass Transfer Processes 613

INDEX 717
Professor K. S. N. Raju has presented the technical community with an interesting, valuable, and unique book on the practice of chemical engineering in the broad areas of fluid mechanics, heat transfer, and mass transfer. Based upon his five decades of experience as an educator, researcher, and consultant, Professor Raju has chosen to adopt the question–answer format.

Consider, for example, an engineer faced with the analysis and design of a fired heater. This book on chemical engineering practice immediately answers design questions such as how the tubes are arranged in the furnace and how many rows are usually provided and also the rationale for the optimum design choice. In addition, the book introduces the theoretical background of radiant heat transfer by explaining concepts such as emissivity and absorptivity and key design relationships like the Stefan–Boltzmann equation and Kirchoff’s law. Finally, this thorough book presents and resolves operational issues, for example, hot spots, high-temperature creep, corrosion, and tube life. Professor Raju’s book equips the practicing engineer with the tools to design a fired heater as well as to diagnose and resolve operational problems.

Radiant Heat Transfer is one of the eight chapters in the section on Heat Transfer, which cover the theory and application of heat transfer in the process industries. In addition to Heat Transfer, the book has two other sections, Fluid Mechanics and Mass Transfer. Each section introduces the theoretical background, describes the applications and equipment, and anticipates and resolves operational issues. The Mass Transfer section introduces underlying concepts (phase equilibria, mass transfer coefficients, correlations involving dimensionless numbers, polymorphic structures), describes applications (absorption, distillation, crystallization, adsorption), and equipment (tray and packed columns, crystallizers, dryers, and membrane modules), and anticipates and resolves operational issues (column flooding, liquid inclusion in crystals). It will be difficult to find an area in the chemical process industries not covered in this comprehensive book!

While this book is wide in scope, it is also quite detailed. As an example, an engineer who drills down into the chapter on crystallization will learn about the factors that restrict the productivity and purity of crystals (agglomeration, liquid impurities inside and outside the crystals, cavitation).

Professor Raju has structured his book in the question–answer format, which he feels stimulates interest in the subject matter and focuses attention on specific topics. I completely agree. As I read the book, I found that it precisely explained concepts and applications in areas where I have some expertise, and also sparked my interest and gave me new understanding in subjects outside my specialization.

The style, structure, preciseness, and clarity of Professor Raju’s book are a reflection of his five decades of experience as an educator, researcher, and consultant. As an educator, he has taught graduate and undergraduate students, created and delivered on-site courses for industry, and developed and nurtured new chemical engineering departments. He has published over 90 papers in international journals. His consultancy has covered the chemical, petroleum, petrochemical, and fertilizer industries and government organizations. Professor Raju’s students report that his teaching style was always practical, focusing on solving real-world problems rather than just teaching a concept; he invariably used examples from his extensive
experience to help students understand chemical engineering problems. That practical teaching style is clearly evident in this book.

Fluid Mechanics, Heat Transfer, and Mass Transfer: Chemical Engineering Practice is intended as a text book to undergraduate and graduate students and a reference book for practicing engineers in the chemical process industries. I plan to keep a copy handy as a reference to understand and resolve new technical issues I am confronted with.

PAUL M. MATHIAS

Fluor Corporation
Irvine, California
PREFACE

The book is intended for use by students at undergraduate and graduate levels, faculty in Chemical Engineering Departments across the world, working and consulting engineers in areas such as petroleum refineries, petrochemical, gas processing and fertilizer plants, design organizations, food and pharmaceutical processing, environmental engineering, and the like. The book is also useful to mechanical engineering students and faculty.

The book is written with emphasis on practice with brief theoretical concepts in the form of Questions and Answers, bridging the two areas of theory and practice with respect to the core areas of chemical engineering.

The author considers that the question–answer approach adopted stimulates interest in the subject matter and focuses attention to specific topics in a better and concise manner than running matter given in normal text and reference books.

The approach was used by the author in the classroom for several years, spanning a period of over four decades. Feedback from faculty, students, alumni, and practicing engineers in several institutions/organizations appreciated this approach when the author used this approach during continuing education and training courses, besides classroom instruction. This prompted the author to embark upon writing this book.

The book is an attempt to bridge the gap between theory and practice in a balanced manner, so that it will be easy for students and academics to get a grasp of practice and industry personnel to understand theoretical concepts necessary to appreciate the genesis involved in practice.

At the teaching level, the book is suitable for different courses involving fluid mechanics, heat transfer, mass transfer, and membrane technology as well as design courses at both undergraduate and graduate levels. The author considers it to be useful in design project work by students and others. It can be used as a textbook and/or a reference book.

In the market, there is no such book in these areas linking theory with broad practical aspects and to this effect it is original in nature with almost no competitors on the subject. It avoids referring to several text and reference books, to get information on specific topics/content.

The vast literature available in the form of articles in chemical engineering magazines, monographs, and manufacturers literature has been used in its preparation along with the active interaction of the author with practicing world over a period spanning nearly five decades.

To summarize, features include emphasis on practical aspects in the learning process for students and faculty and ease and convenience in the use of the theoretical and practical aspects of the subject in the practice of professional engineers.

Question–answer approach focuses on individual topics in a more effective way than the normally used running matter in textbooks. Adds to learning process, creating better interest among students, faculty, and others for whom time factor is important.

Involves the core areas of chemical engineering and fulfills the need for a single source, avoiding the requirement of using several books, articles, and other sources for the topics covered in the book.

The core areas of fluid mechanics, heat transfer, mass transfer, and membrane processes are covered in the book in a balanced way, avoiding making the book bulky and unwieldy in its use.

Most parts of the book are easily understandable by those who are not experts in the field. For example, it covers types on pumps, valves, process equipment, membranes, and areas of their use, their merits, and drawbacks and selection in a simple way.
No author of any book, other than those written as purely research publications or biographies, can claim the contents of their books as original contributions by them. To this extent, the author admits that the book is a collection and compilation of the material available in literature with the interpretations and comments by the author and acknowledges the individuals and groups of pioneers who contributed to the evolution of the subject matter over centuries. The author wishes to dedicate the book to all such pioneers who contributed to the evolution of chemical engineering as a profession.

K. S. N. RAJU
ACKNOWLEDGMENTS

The author wishes to acknowledge the help, assistance, and encouragement received from many organizations, which include, specifically, American Institute of Chemical Engineers and John Wiley for accepting the book for publication. Equipment manufacturers, who include Swenson Technology, Spirax Sarco, Alfa Laval, Sulzer, Koch-Knight, Koch-Glitsch, Pace Engineering, and other industrial organizations. Acknowledgments are due to professional bodies such as Gas Processors Suppliers Association, Hydraulic Institute, Cheresources, Society of Automotive Engineers, American Conference of Governmental Industrial Hygienists, Tubular Exchanger Manufacturers Association, and American Membrane Technology Association whose literature is of help in making the book toward realizing the goal of making it practice-oriented.

Encouragement and support received from Sri K. V. Vishnu Raju, Chairman, Sri Vishnu Educational Society, Faculty, Associates, Alumni, and Students from Panjab University, B. V. R. Institute of Technology, B. S. University of Technology, Libya, and several other institutions provided the necessary motivation to write the book, which the author wishes to acknowledge.

Comments from several individuals, who include Dr. J. M. Alford, Chairman of AIChE New Books Committee, Peer Reviewers, Academic and Industry Professionals, and scores of others, have been valuable and the author duly acknowledges their inputs.

Involvement and review of the content of the book by Dr. Paul M. Mathias of Fluor Corporation, who happened to be one of the authors to *Perry’s Chemical Engineers’ Handbook*, has been particularly valuable. He has been very considerate in offering valuable suggestions and comments during the process of preparation of the book. He readily agreed to write Foreword for the book unhesitatingly. The author is very much indebted to him.

Ms. Haeja Han of AIChE, Bob Esposito, Michael Leventhal, and Rosalyn Farkas of John Wiley, Sanchari Sil and Joseph Varghese of Thomson Digital and others at AIChE and John Wiley have been very helpful in processing the contents of the book and making it more presentable. Special appreciation is due to all of them. The author duly acknowledges the help received from D. V. S. S. Prasad of Shanna Technologies (India) Private Limited, Srinivas Vadla and their Associates in Graphics Work.

Patience and tolerance by my wife Bangaramma, computer and other inputs by my son Prasad, daughter Anuradha, granddaughter Suhasa, and daughter-in-law Usha have made me to accomplish my work and they deserve my appreciation.

K. S. N. RAJU
ABOUT THE AUTHOR

The author is a Retired Professor of Chemical Engineering with involvement in Chemical Engineering Education and Research covering graduate and undergraduate students for 50 years. Published over 90 papers and articles in International magazines and journals. Supervised Graduate Research at Doctoral and Post Doctoral levels. Acted as Reviewer for publications in International Journals and Magazines in Engineering, including the prestigious assignment by Applied Mechanics Reviews of American Institute of Mechanical Engineers for 3 years.

Delivered invited lectures on Plate Heat Exchangers at NATO Advanced Institute along with highly distinguished speakers at International level. This material appeared in the book form by Hemisphere Publishing Corporation, Washington D.C.

Gave Onsite Courses in industry, covering refineries, gas processing, petrochemical, and fertilizer plants with practice-oriented approach. Delivered lectures on several areas of chemical engineering to trainees and practicing engineers in petroleum and petrochemical industry and at International forums.

Involved in active interaction with industry taking up projects and executing them with the induction of graduate students on-site in selected industries.

Has been responsible for developing Chemical Engineering Departments at Panjab University, Chandigarh, India, B. S. University of Technology, Libya, and B. V. R. Institute of Technology, Andhra Pradesh, India.

Received B.Sc. (Honors) Degree in Chemical Engineering from Andhra University in 1958, M.Tech from I.I.T., Kharagpur in 1959, and Ph.D. from Panjab University in 1971.

Contact Details:
Professor K. S. N. Raju
Jubilee Hills, Hyderabad 500 033, India
Email: k_snraju@hotmail.com
LIST OF FIGURES

Fluid Mechanics

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Shear rate versus shear stress diagrams for Newtonian and non-Newtonian fluids.</td>
</tr>
<tr>
<td>1.2</td>
<td>Classification of viscometers.</td>
</tr>
<tr>
<td>1.3</td>
<td>Rotating disk and parallel plate viscometers.</td>
</tr>
<tr>
<td>1.4</td>
<td>Cup and bob coaxial viscometers.</td>
</tr>
<tr>
<td>1.5</td>
<td>Cambridge moving piston viscometer.</td>
</tr>
<tr>
<td>1.6</td>
<td>Cone and plate viscometers.</td>
</tr>
<tr>
<td>1.7</td>
<td>Tube viscometers.</td>
</tr>
<tr>
<td>1.8</td>
<td>Mercury barometer.</td>
</tr>
<tr>
<td>1.9</td>
<td>Aneroid barograph.</td>
</tr>
<tr>
<td>1.10</td>
<td>Different types of manometers.</td>
</tr>
<tr>
<td>1.11</td>
<td>Two-liquid manometer.</td>
</tr>
<tr>
<td>1.12</td>
<td>Bourdon tube pressure gauge.</td>
</tr>
<tr>
<td>1.13</td>
<td>Helical Bourdon tube.</td>
</tr>
<tr>
<td>1.14</td>
<td>Basic metallic bellows.</td>
</tr>
<tr>
<td>1.15</td>
<td>Capsule device for measurement of differential pressure.</td>
</tr>
<tr>
<td>1.16</td>
<td>Float-type level measurement.</td>
</tr>
<tr>
<td>1.17</td>
<td>Liquid level measurement in an open tank.</td>
</tr>
<tr>
<td>1.18</td>
<td>Ultrasonic level measurement.</td>
</tr>
<tr>
<td>1.19</td>
<td>Liquid level measurement.</td>
</tr>
<tr>
<td>1.20</td>
<td>Inaccuracies in level measurements for foaming liquids.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Changeover of laminar flow into turbulent eddies.</td>
</tr>
<tr>
<td>2.2</td>
<td>Velocity profiles for laminar and turbulent flows.</td>
</tr>
<tr>
<td>2.3</td>
<td>Reynolds number demonstration experiment.</td>
</tr>
<tr>
<td>2.4</td>
<td>Equivalent diameter for annulus.</td>
</tr>
<tr>
<td>2.5</td>
<td>Development of boundary layer.</td>
</tr>
<tr>
<td>2.6</td>
<td>Drag coefficients for different shaped objects. Note: All objects have the same projected (frontal) area.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7</td>
<td>Drag coefficients for spheres, disks, and cylinders.</td>
</tr>
<tr>
<td>2.8</td>
<td>Vortex street phenomenon.</td>
</tr>
<tr>
<td>2.9</td>
<td>Oil damper to cushion valve closure.</td>
</tr>
<tr>
<td>2.10</td>
<td>Air gap cushions shock waves when valve is suddenly closed.</td>
</tr>
<tr>
<td>3.1</td>
<td>D’Arcy friction factors as function of (\text{Re}).</td>
</tr>
<tr>
<td>3.2</td>
<td>Tee entry arrangements.</td>
</tr>
<tr>
<td>3.3</td>
<td>Losses on fluid entry into a pipe for different entry configurations.</td>
</tr>
<tr>
<td>3.4</td>
<td>Strainer.</td>
</tr>
<tr>
<td>3.5</td>
<td>Important types of valves.</td>
</tr>
<tr>
<td>3.6</td>
<td>Gate valve.</td>
</tr>
<tr>
<td>3.7</td>
<td>Globe valve.</td>
</tr>
<tr>
<td>3.8</td>
<td>Ball valve. (Courtesy: Vaishnavi Engineering.)</td>
</tr>
<tr>
<td>3.9</td>
<td>Diaphragm valve.</td>
</tr>
<tr>
<td>3.10</td>
<td>Butterfly valve.</td>
</tr>
<tr>
<td>3.11</td>
<td>Swing check valve.</td>
</tr>
<tr>
<td>3.12</td>
<td>Ball check valves.</td>
</tr>
<tr>
<td>3.13</td>
<td>Lift check valve.</td>
</tr>
<tr>
<td>3.14</td>
<td>Symbols for some common types of valves.</td>
</tr>
<tr>
<td>3.15</td>
<td>Relief valve.</td>
</tr>
<tr>
<td>3.16</td>
<td>Different types of valves for solids flow.</td>
</tr>
<tr>
<td>3.17</td>
<td>Collapse of a bubble. (Source: Samson AG, Frankfurt.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Turndown ratios.</td>
</tr>
<tr>
<td>4.2</td>
<td>Meter installations for gas and liquid flows.</td>
</tr>
<tr>
<td>4.3</td>
<td>Vena contracta.</td>
</tr>
<tr>
<td>4.4</td>
<td>Types of orifice plates. (a) Sharp-edged, (b) thick plate, and (c) thick plate with curved radius.</td>
</tr>
<tr>
<td>4.5</td>
<td>Sharp-edged orifice meter showing flow pattern with flange taps.</td>
</tr>
</tbody>
</table>
4.6 Pressure tap location alternatives. 63
4.7 Flow straighteners. 63
4.8 Different types of orifice plates. 64
4.9 Orifices for viscous flows. 65
4.10 Venturi meter. 67
4.11 Effect of Reynolds numbers on different flow meters. 67
4.12 Flow nozzle. 68
4.13 Pressure losses for different head flow meters as function of β-ratio. 69
4.14 Elbow flow meter. 70
4.15 Segmental-wedge V-element flow meter. 71
4.16 V-cone flow meter. 71
4.17 Pitot tube arrangements for flow measurement. 72
4.18 Annubar. 73
4.19 Rotameter showing different types of float designs. 74
4.20 Purge flow meter design. 76
4.21 Rotameter installed in a bypass line around an orifice plate in the main line. 77
4.22 Paddle wheel flow meter. 80
4.23 Propeller flow meter. 81
4.24 Transit time flow meter. 81
4.25 Doppler flow meter. 82
4.26 Elements of an electromagnetic flow meter. 84
4.27 Magnetic flow meter and its components. 84
4.28 Single straight tube Coriolis mass flow meter. 86
4.29 Single U-tube Coriolis mass flow meter. 86
4.30 Double U-tube Coriolis mass flow meter designs. 87
4.31 Nutating disk positive displacement flow meter. 89
4.32 Rotating vane positive displacement flow meter. 90
4.33 Oscillating piston positive displacement flow meter. 91
4.34 Single piston reciprocating positive displacement flow meter. 91
4.35 Piston and diaphragm positive displacement metering pumps. 92
4.36 Oval gear lobe flow meter. 93
4.37 Target meter. 94
4.38 Major components in a vortex shedding flow meter. 94
4.39 Vortex shedding flow meters. Note: Different shapes of shedders are used in the designs for getting the desired flow rate measurements. 95
4.40 Rectangular and triangular types of weirs. 99

5.1 Pump classification. 102
5.2 Classification of kinetic pumps. (Source: Hydraulic Institute.) 102
5.3 Classification of positive displacement pumps. (Source: Hydraulic Institute.) 103
5.4 Centrifugal pump showing important parameters. (Source: www.cheresources.com.) 104

5.5 Open, semiopen, and enclosed impellers. 105
5.6 Double suction to a centrifugal pump. 105
5.7 Suction head and suction lift for a centrifugal pump. 106
5.8 Bubble formation, collapse, and metal damage. (Source: www.cheresources.com.) 113
5.9 Potential cavitation damage areas in the eye of pump impeller. 113
5.10 Typical blade damage due to cavitation of a mixed flow pump. 115
5.11 Heat exchanger tube damage at the entrance area into the tube due to cavitation. 116
5.12 Illustrative diagram for cavitation conditions. 117
5.13 Pump suction side problems. 118
5.14 Pump suction through a sump. 119
5.15 Pump performance curve and system curve illustrated. 121
5.16 Pump performance curves. 121
5.17 Effect of impeller size on capacity versus head developed for a centrifugal pump. 122
5.18 Two pumps draining liquid from a tank. 123
5.19 Performance curves for centrifugal pumps operating in parallel. (Courtesy: GPSA Engineering Data Book, 12th ed.) 124
5.20 Performance curves for centrifugal pumps operating in series. (Courtesy: GPSA Engineering Data Book, 12th ed.) 124
5.21 Minimum flow bypass. 124
5.22 Valve action for a double-acting reciprocating piston pump. 128
5.23 Discharge curves for different reciprocating flow configurations. 128
5.24 Sliding vane rotary pump. 130
5.25 Gear pumps. 131
5.26 Rotary screw pump. 133
5.27 Rotary lobe pumps. 135
5.28 Air-operated double diaphragm pump. 136
5.29 Airlift pump. 139
5.30 Peristaltic pump. 140
5.31 Liquid ring vacuum pump. 142
5.32 Rotary claw pump. 144
5.33 Steam jet ejector. 148
5.34 Two-stage ejector system. 148
5.35 Condensate drain leg layouts. 149
5.36 Types of fans. 154
5.37 Types of compressors. (Courtesy: GPSA Engineering Data Book, 12th ed.) 155
5.38 Centrifugal compressor operating curve. 159
5.39 Illustration of operable range for the compressor with surge-free conditions. 160
6.1 Power number as a function of Reynolds number for different turbine impellers. 166
6.2 A basic stirred tank design showing a lower radial impeller and an upper axial impeller housed in a draft tube (not to scale). Four equally spaced baffles are standard.

6.3 Multistage agitator with baffles and sparger for gas–liquid reactors.

6.4 Turbine and propeller mixers.

6.5 Marine, saw-toothed, and perforated propellers.

6.6 Flat plate impeller with sawtooth edges.

6.7 Different types of turbine impellers.

6.8 Gate and leaf impellers.

6.9 Draft tube agitator.

6.10 Incorporating floating solids into liquids.

6.11 Side-entry propeller mixers used for blending liquids.

6.12 Double arm kneader.

6.13 Helical ribbon impeller.

6.14 Helical coil and anchor mixers.

6.15 Impeller selection.

6.16 Tee and injection mixers.

6.17 An in-line static mixer.

6.18 Ribbon blender and a double cone mixer.

6.19 Solids mixer.

6.20 Static mixer.

6.21 Viscosity ranges for different types of mixers.

7.2 Annular droplet or mist flows.

7.3 Two-phase flow patterns in a vertical evaporator tube.

7.4 Flow pattern as a function of fraction of air in air–water flow in a vertical pipe.

7.5 Flow patterns in gas/vapor–liquid flows in horizontal pipes.

7.6 Stratified and wavy flows.

7.7 Flow patterns for two-phase flow in horizontal pipes.

7.8 Six regimes of fluidization identified with increasing gas superficial velocities: (a) fixed bed; (b) particulate fluidization; (c) bubbling fluidization; (d) slugging fluidization; (e) turbulent regime.

7.9 Particle diameter versus gas velocity, showing minimum fluidization velocity for good fluidization and total carryover bands.

7.10 Recirculating fluidized bed concept. The draft tube operates as a dilute phase pneumatic transport tube.

7.11 Pressure drop in a fluid–solid bed as a function of fluid superficial velocity.

7.12 Typical fluid bed catalytic cracking unit.

7.13 Fluid catalytic cracking unit with a two-stage regenerator (UOP).

7.14 Pneumatic conveyance: negative system.

7.15 Pneumatic conveyor: positive system.

7.16 Blind tee and blind bend with arrows showing impact points.

7.17 The regimes of flow for settling slurries in horizontal pipelines.

7.18 Schematic representation of the boundaries between the flow regimes for settling slurries in horizontal pipelines.

Heat Transfer

8.1 Illustration for triple point.

8.2 Internal construction of a typical thermocouple.

8.3 Simple thermocouple circuit.

8.4 Resistance—temperature curve of a thermistor.

8.5 (a) Effect of temperature change on a bimetallic strip. (b) Bimetallic strip thermometer.

8.6 Vapor pressure thermometer.

8.7 Vapor pressure curve for methyl chloride.

8.8 Approximate ranges of thermal conductivities of materials at normal temperatures and pressures.

8.9 Multilayer slab.

8.10 Multilayer hollow cylinder.

8.11 Multilayer hollow sphere.

8.12 Heat transfer shape factors.
10.1 Double pipe (hairpin) heat exchanger with annuli connected in series and inner pipes connected in parallel. 273
10.2 TEMA designations for shell and tube heat exchangers. 274
10.3 1–1 Fixed tube sheet shell and tube heat exchanger with baffles. 275
10.4 Pull-through 1–2 floating head heat exchanger with baffles (TEMA S). 275
10.5 2–4 Floating head heat exchanger with baffles. 276
10.6 U-bundle heat exchanger with baffles. 276
10.7 Pull-through floating head heat exchanger, suitable for kettle reboilers (TEMA T). 276
10.8 Flow arrangement for two heat exchangers in series. 277
10.9 Grooves are made in the tube sheet for increased jointing between tube and tube sheet. 280
10.10 Different tube-to-tube joints. 281
10.11 Different types of expansion joints. 281
10.12 Illustration showing shell expansion joint. 281
10.13 Double tube sheet design. 281
10.14 Typical pass partitions for two to eight tube passes. 282
10.15 Types of tube pitch. 285
10.16 Shell side flow patterns in triangular pitch. 285
10.17 Vapor bubbles rising through boiling liquid inside a heat exchanger with square tube pitch. 286
10.18 Photograph of a cutaway of a baffled shell and tube heat exchanger. 287
10.19 Different arrangements for segmental baffles. 288
10.20 Segmental baffles. 288
10.21 Disk and doughnut baffle. 288
10.22 Orifice baffle. 288
10.23 Rod baffles. 289
10.24 Baffle cut. 289
10.25 Effect of small and large baffle cuts. 290
10.26 Large clearance between baffle and tube. 290
10.27 Baffle cut orientations. 291
10.28 Leaking paths for flow bypassing the tube matrix. Both through baffle clearances between the tube matrix and the shell. 291
10.29 Seal strips reduce bypassing around tube bundle. 292
10.30 Helixchanger heat exchanger. 293
10.31 Use of impingement baffle. 294
10.32 Rotating helical coil tube insert. 295
10.33 Twisted tape tube insert. 295
10.34 Wire mesh insert. 295
10.35 Idealized fouling curve. 300
10.36 Temperature profiles for countercurrent flow. 314
10.37 Temperature profiles for cocurrent flow. 314
10.38 Comparison of E and J shells for flow directions. 315
10.39 Temperature profiles for a 1–2 heat exchanger. 315
10.40 LMTD correction factors, \(F \), for a 1–2 heat exchanger. 316
10.41 LMTD correction factors, \(F \), for a 2–4 heat exchanger. 317
10.42 Heat exchanger effectiveness for countercurrent flow. 323
10.43 Heat exchanger effectiveness for cocurrent flow. 324
11.1 Illustration showing condensate backup. 332
11.2 Condensate removal system for a reboiler. 333
11.3 Annular and stratified flows inside horizontal condensers. 334
11.4 (a) Horizontal once-through reboiler with shell side boiling. (b) Horizontal recirculating reboiler with shell side boiling. 337
11.5 Horizontal reboilers. 338
11.6 (a) Vertical single pass, once-through with tube side boiling. (b) Vertical, recirculating with shell side boiling. 338
11.7 Recirculating baffled bottoms reboiler system. 338
11.8 Column internal reboiler. 340
11.9 Kettle reboiler. 340
11.10 Vertical thermosiphon reboiler. 341
11.11 Two reboilers in parallel. 344
11.12 Two reboilers in series. 344
11.13 New reboiler installed at an upper section of the column. 345
11.14 Quick selection guide for reboilers. 347
11.15 Evaporator selection guide. 349
11.16 Energy-efficient evaporation systems. 350
11.17 Short tube vertical calandria-type evaporator. 350
11.18 Swenson rising film evaporator unit. (Courtesy: Swenson Technology, Inc.) 353
11.19 Swenson falling film evaporation unit. (Courtesy: Swenson Technology, Inc.) 354
11.20 Tube showing falling liquid film. 355
11.21 Vertical forced circulation evaporator. 356
11.22 Mechanical vapor recompression evaporation system. 359
11.23 Double effect evaporator with forward feed operation. 362
11.24 Backward feed operation for a double effect evaporator. 363
11.25 Duhring plot for sodium chloride solutions. 366
11.26 Different types of entrainment separators. 369
11.27 Barometric condenser. 369
12.1 Typical vapor compression refrigeration cycle. 372
12.2 Cascade refrigeration cycle. 372
12.3 Comparison of a steam turbine and a heat pump. 375
12.4 Heat pump as applied to evaporation. 376
12.5 Distillation column with a separate refrigerant circuit. 376
12.6 Distillation column using process fluid as a refrigerant. 376
12.7 Heat tracer over a pipe carrying a fluid. 378
12.8 Heating coils. 379
12.9 Jackets with nozzles to admit heat transfer fluids. 380
12.10 Dimple jacket vessel. (Source: www.reimec.co.za.) 380
12.11 Dimple jacket cross section. (Courtesy: Santosh Singh (process.santosh@googlemail.com).) 380
12.12 Half-pipe jacket angles. (Courtesy: Santosh Singh (process.santosh@googlemail.com).) 381
12.13 Jacketed vessel with a half-pipe jacket. (Source: www.reimec.co.za.) 381
12.14 Half-pipe coil dimensions. (Courtesy: Santosh Singh (process.santosh@googlemail.com).) 382
12.15 Conventional jacket with baffles. (Courtesy: Santosh Singh (process.santosh@googlemail.com).) 383
12.16 Constant flux heat transfer jacket. 384
12.17 An inverted bucket steam trap. (Courtesy: Spirax Sarco.) 386
12.18 Ball float trap with (a) air cock and (b) thermostatic air vent. (Courtesy: Spirax Sarco.) 387
12.19 Liquid expansion steam trap. (Courtesy: Spirax Sarco.) 387
12.20 Balanced pressure steam trap. (Courtesy: Spirax Sarco.) 388
12.21 Bimetallic element made out of two laminated dissimilar metal strips. (Courtesy: Spirax Sarco.) 388
12.22 Operation of a bimetallic steam trap with a two-leaf element. (Courtesy: Spirax Sarco.) 389
12.23 Multicross elements as used in the Spirax Sarco SM range of bimetallic steam traps. (Courtesy: Spirax Sarco.) 389
12.24 Operation of a thermodynamic steam trap. (Courtesy: Spirax Sarco.) 390

13.1 L-footed tension wound aluminum fin. 398
13.2 Embedded fin. 399
13.3 Extruded fin. 399
13.4 Double L-footed fin. 399
13.5 Extended axial finned tube. 400
13.6 Continuous circular fins on a tube. 400
13.7 Serrated fins. 400
13.8 Air-cooled heat exchanger. 402
13.9 Construction of a typical plate heat exchanger. (Courtesy: Alfa Laval.) 403
13.10 Flow patterns in a plate heat exchanger. 404
13.11 Gaskets for a plate exchanger. 405
13.12 Ring and field gaskets to prevent intermixing of the fluids. 405
13.13 Conventional heat transfer plates and channel combinations. 406
13.14 Asymmetric heat transfer plates and channel combinations. 407
13.15 Flow patterns. 408
13.16 Single PHE handling three process streams. 408
13.17 Spiral heat exchanger. (Courtesy: Alfa Laval.) 415
13.18 Scraped surface heat exchanger. 416
13.19 Heat pipes. 417
13.20 Flat plate type heat pipe. 418
13.21 Micro-heat pipe operation. 418
13.22 Variable conductance heat pipe. 418
13.23 Capillary pumped heat pipe. 419
13.24 Heat pipe performance curves. 419
13.25 Typical heat pipe wick configurations and structures. 420
13.26 Heat pipe heat sink for power transistors. 420
13.6 Continuous circular fins on a tube. 400
13.7 Serrated fins. 400
13.8 Air-cooled heat exchanger. 402
13.9 Construction of a typical plate heat exchanger. (Courtesy: Alfa Laval.) 403
13.10 Flow patterns in a plate heat exchanger. 404
13.11 Gaskets for a plate exchanger. 405
13.12 Ring and field gaskets to prevent intermixing of the fluids. 405
13.13 Conventional heat transfer plates and channel combinations. 406
13.14 Asymmetric heat transfer plates and channel combinations. 407
13.15 Flow patterns. 408
13.16 Single PHE handling three process streams. 408
13.17 Spiral heat exchanger. (Courtesy: Alfa Laval.) 415
13.18 Scraped surface heat exchanger. 416
13.19 Heat pipes. 417
13.20 Flat plate type heat pipe. 418
13.21 Micro-heat pipe operation. 418
13.22 Variable conductance heat pipe. 418
13.23 Capillary pumped heat pipe. 419
13.24 Heat pipe performance curves. 419
13.25 Typical heat pipe wick configurations and structures. 420
13.26 Heat pipe heat sink for power transistors. 420

13.1 Emissivity ranges of different materials. 426
13.2 Tube arrangements in small cylindrical fired heaters. 428
13.3 Fired heater with vertical radiant tubes and side view of top section. 430
13.4 A cabin heater with horizontal tubes and a rectangular firebox. 431
13.5 Large box-type cabin heater showing three separate radiant sections. 431
13.6 Absorption efficiency of the tube banks. 435
13.7 Partial pressure of CO₂ + H₂O in flue gases. 436
13.8 Gas emissivity as a function of gas temperature. (Lobo WE, Evans JE. Heat transfer in radiant section of petroleum heaters. Transactions of the American Institute of Chemical Engineers 1939;35:743.) 436
13.9 Overall radiant exchange factor F. (Lobo WE, Evans JE. Heat transfer in radiant section of petroleum heaters. Transactions of the American Institute of Chemical Engineers 1939;35:743.) 437
13.10 Convective heater with flue gas recirculation. 442
13.11 Dimpled tube. 443
13.12 Premix gas burner. 444
13.13 Regenerative two-bed oxidizer. 451
13.14 Sankey diagram. 452
Mass Transfer

15.1 One-dimensional diffusion. 459
15.2 Concentration driving force. 460
15.3 Laminar hydrodynamic and concentration boundary layers for a flat plate. 464
15.4 Simplified diagram illustrating two-film theory. 465
15.5 Schematic representation of the situation at the interface. 466
15.6 Rising gas bubble in liquid. 466
15.7 Gas–liquid contacting. 466
15.8 Shapes of bubbles. 471
15.9 Bubble collapse and droplet formation phenomena. 472

16.1 Schematic diagram for a spray column. 476
16.2 Details of Venturi scrubbers. 476
16.3 Typical bubble cap design. 477
16.4 Types of valves used on valve trays. 478
16.5 Sieve tray indicating different parameters. 478
16.6 Types of flows on distillation trays. 480
16.7 Picket weir. 481
16.8 Generalized performance diagram for cross-flow trays. 482
16.9 Tray performance versus throughput. 482
16.10 O’Connell correlation for the estimation of overall column efficiency. 483
16.11 Murphree tray efficiencies illustrated. 484
16.12 Weir height. 489
16.13 Downcomer and active areas illustrated. 492
16.14 Flooding correlation for cross-flow trays (sieve, valve, and bubble cap trays). 492
16.15 Packed column. 493
16.16 Angle of wettability. 495
16.17 Some common types of random packings. (Courtesy: Koch Knight LLC for permission to use FLEXISADDLE™.) 497
16.18 Different structured packings (Mellapak). (Courtesy: Copyright © Sulzer Chemtech Ltd.) 499
16.19 Structured packing assembled to fit into a given column diameter. (Courtesy: Copyright © Sulzer Chemtech Ltd.) 500
16.20 Honeycomb packings. 500
16.21 Ceramic structured packing. (Courtesy: Koch Knight LLC for permission to use FLEXERAMIC® TYPE 28 Packing.) 500
16.22 Typical arrangement of horizontal expanded metal sheets with opposing angles. 500
16.23 Stacked packing to support dumped packing. 503
16.24 Vapor injection support plate. (Source: Saint Gobain Norpro.) 503
16.25 Schematic of vapor injection grid. 503

16.26 Trough and weir type distributor. (Courtesy: Kotch-Glitsch, LP.) 504
16.27 Orifice plate liquid distributor. 505
16.28 Perforated tube type distributor. 505
16.29 Spray nozzle type liquid distributor. (Courtesy: Copyright © Sulzer Chemtech Ltd.) 506
16.30 Multipan liquid distributor. 506
16.31 Wall wiper liquid redistributor. (Source: Norton.) 508
16.32 Generalized pressure drop and flooding correlation for packed columns. 511
16.33 Practices of location of bottom feed or reboiler return lines. 515
16.34 Forces acting on a liquid droplet suspended in a gas stream. 516
16.35 Typical droplet size distribution from entrainment. 516
16.36 Important dimensions of vertical and horizontal knockout drums. 518
16.37 Typical gas/vapor–liquid separators. (Courtesy: Pace Engineering.) 519
16.38 Typical gas/vapor–liquid separators. (Courtesy: Pace Engineering.) 520
16.39 Vapor–liquid separator for different cases. 520
16.40 Cross section of vane element mist extractor showing corrugated plates with liquid drainage traps. 521
16.41 Gas–Liquid separators. (Courtesy: Copyright © Sulzer Chemtech Ltd.) 522
16.42 Coalescer plate pack orientations. 524
16.43 Typical coalescer designs. 524
16.44 Three-phase horizontal coalescer. 524

17.1 Absorption equilibrium diagrams for SO₂–water system at different temperatures. 534
17.2 Equilibrium curve and operating line for absorption systems without heat effects. 536
17.3 Equilibrium curve and operating line for absorption with heat effects. 536
17.4 Limiting operating line for systems involving heat effects. 536
17.5 Graphical determination of number of trays for absorbers. 536
17.6 Tray column design for strippers. 537
17.7 Colburn diagram for estimation of NOG. 540
17.8 T–x–y diagram for benzene–toluene system at 1 atm. 548
17.9 Equilibrium diagram for benzene–toluene system at 1 atm. 548
17.10 Effect of relative volatility on x–y diagrams. 548
17.11 Relative positions of EFV, ASTM, and TBP curves on a plot of percent distilled versus temperature. 550
17.12 Inverted batch distillation. 551
17.13 Equilibrium flash vaporization. 552
17.14 Operation of a simple distillation unit showing different parts. 552
17.15 Optimum column pressure. 553
17.16 Optimum reflux ratio. 554
17.17 McCabe–Thiele construction for number of theoretical trays. 555
17.18 Flow chart for multistage separations. 556
17.19 Enthalpy–concentration method for number of trays for binary distillation at a given reflux ratio. 557
17.20 Batch fractionation at constant reflux ratio (for four theoretical trays). 557
17.21 Batch fractionation at constant distillate composition (for four theoretical trays). 558
17.22 Instrumentation for constant vaporization rate and constant overhead composition in batch distillation. 558
17.23 Batch, continuous, and semicontinuous processes for separation of \(n \)-hexane, \(n \)-heptane, and \(n \)-octane mixtures. 559
17.24 Gilliland correlation on log–log coordinates. 561
17.25 Gilliland correlation as a function of reflux ratio. 562
17.26 Erbar–Maddox correlation for number of theoretical trays. 562
17.27 \(T-x-y \) and \(x-y \) diagrams for isopropyl ether–isopropyl alcohol system at 101.3 kPa pressure. 564
17.28 \(T-x-y \) and \(x-y \) diagrams for carbon disulfide–water system at 101.3 kPa pressure. 564
17.29 \(T-x-y \) and \(x-y \) diagrams for acetone–chloroform system at 101.3 kPa pressure. 565
17.30 \(T-x-y \) and \(x-y \) diagrams for water–1-butanol system at 101.3 kPa. Note: The diagrams are based on NRTL equation. 565
17.31 Pressure swing distillation for a minimum boiling binary azetrope that is sensitive to changes to pressure. 566
17.32 A common heteroazeotropic distillation scheme with distillate decanter. 566
17.33 Two-column system for extractive distillation. 568
17.34 Extractive distillation process for separation of \(C_4 \) hydrocarbons. 569
17.35 Centrifugal type molecular distillation still. 574
17.36 Details of a divided wall column (Montz). 575
17.37 Different arrangements for separation of a three-component mixture. 576
17.38 Remixing in the conventional direct distillation sequence. 576
17.39 Feed preheater duty versus bottoms composition. 583
17.40 Level control for reflux drum. 584
17.41 Bypassing and flooding the condenser illustrated. 585
17.42 Equilateral triangular diagram. 588
17.43 Binodal and spinodal curves illustrated. Solid curve represents binodal curve. Dotted curve represents the spinal curve. Five tie lines (dashed lines) for the system, water–methanol–benzene (estimated) and plait point are also shown. 588
17.44 Triangular diagrams for Type I and Type II liquid–liquid equilibria. 589
17.45 Ternary equilibria for Type I system. \(1 \)-Hexene (A)–tetramethylene sulfone (B)–benzene (C) at 50°C. (a) Equilateral triangular plot, (b) right angled triangular plot, and (c) rectangular coordinate plot (Janecke Diagram, solvent-free coordinates). 590
17.46 Ternary equilibria for Type II system. Hexane (A)–aniline (B)–methylcyclopentane (C) at 34.5°C. (a) Equilateral triangular plot, (b) right-angled triangular plot, and (c) rectangular coordinate plot (Janecke and solvent-free coordinates). 590
17.47 Single-stage extraction. 591
17.48 Multistage extraction with cross-flow. 592
17.49 Multistage extraction with counterflow. 592
17.50 Pressure–temperature diagram for a pure compound. 595
17.51 Simplified flow diagram for a supercritical solvent extraction process. 598
17.52 Settling chambers of different designs. 600
17.53 Combination of mixer–settler unit. 600
17.54 (a) Two-compartment mixing system and (b) drop in weir box system. 601
17.55 Pulse column. 603
17.56 Karr extraction column. 603
17.57 Scheibel column. 604
17.58 Rotating disk column. 604
17.59 Batch solid–liquid extractor. 609
17.60 Batch solid–liquid extractor (horizontal). 609
17.61 Thickener type countercurrent leaching equipment. 609
17.62 Hildebrand extractor. 610
17.63 Bollman extractor. 610
17.64 Rotocell extractor. 610
17.65 Pachuca tank. 611
17.66 Percolator type extractor for extraction of oils from oil seeds. 611
17.67 Diffuser for leaching process. 611
18.1 Depiction of supersaturation, metastable, and unsaturation zones in a crystallization process. 615
18.2 Crystal growth rate versus solution mixing velocity. 618
18.3 Cooling crystallizer. 621
18.4 Forced circulation crystallizer. (Courtesy: Swenson Technology, Inc.) 623
18.5 Direct contact refrigeration DTB crystallizer. 624
18.6 Surface-cooled baffled crystallizer using external heat exchanger surface to generate supersaturation by cooling. 625
18.7 Oslo type crystallizer. 626
18.8 Generalized melt crystallization process with a wash column. 627
18.9 Adiabatic process. 632
18.10 Illustration for obtaining wet bulb temperature. 633
18.11 Humidity chart. 633
18.12 Hygrometer using metal–wood laminate. 634
18.13 Sling hygrometer. 635
18.14 Vapor-compression cooling-based dehumidification process. 635
18.15 Spray humidification. 636
18.16 Packed bed humidifier. 636
18.17 Tubular humidifier. 636
18.18 Atmospheric and natural draft cooling towers. 637
18.19 Induced draft cooling tower. 638
18.20 Cooling tower performance curves. 643
18.21 Types of moisture content. 645
18.22 Equilibrium moisture content curves for different types of solids. 646
18.23 Water activity versus moisture content for different types of foods. 647
18.24 Movement of moisture during drying of porous materials. 648
18.25 Typical drying rate curve for constant drying conditions. 649
18.26 Examples of normalized drying rate curves for some typical materials. 650
18.27 Tray dryer. 654
18.28 Three-stage conveyor dryer. 655
18.29 Simplified diagram of a direct heat rotary dryer. 656
18.30 Principle of operation of a spouted bed dryer. 658
18.31 Pneumatic dryer. 659
18.32 Spray dryer. 662
18.33 Phase diagram of water. 667
18.34 Main components of a batch freeze dryer. 667
18.35 Types of pores on adsorbents. 673
18.36 A and X type zeolites. 674
18.37 Pressure swing adsorption for the dehydration of air. 676
18.38 Temperature swing adsorption. 676
18.39 Chromatographic unit. 679
18.40 Classification of analytical chromatographic systems. 679
18.41 IUPAC classification of gas adsorption isotherms. 681
18.42 Adsorption column mass transfer zone and idealized breakthrough zone. 683
18.43 Ion exchange process in solid ion exchange resin. 684
18.44 Symmetrical and asymmetrical membranes. 686
18.45 Liquid membrane. 687
18.46 Classification of membranes. 687
18.47 Asymmetric composite membrane. 688
18.48 Hollow fiber module (vertical). 690
18.49 Hollow fiber module (horizontal). 690
18.50 Hollow fiber membrane module. 691
18.51 Schematic of a spiral wound membrane module. 691
18.52 Plate and frame module. 692
18.53 Schematic diagram of flows inside a multichannel membrane element operating in cross-flow mode. 692
18.54 Cut section view of a typical membrane module. 692
18.55 Flow disruption around spacer netting to promote turbulence. 695
18.56 Range of pore diameters used in reverse osmosis, ultrafiltration, microfiltration, and conventional filtration. 695
18.57 Osmosis and reverse osmosis. 696
18.58 RO cascade to produce high-quality permeate. 699
18.59 Pervaporation and vapor permeation processes. 700
18.60 Polymer-enhanced ultrafiltration flow diagram. 703
18.61 Dead-end filtration and cross-flow filtration. 704
18.62 General transport mechanisms for gas permeation through porous and dense gas separation membranes. 707
18.63 Electrodialysis. 708
18.64 Illustration of the three operating modes for foam separating columns. 714
18.65 Froth flotation cell. 714
LIST OF TABLES

Fluid Mechanics

1.1 Rheological Characteristics of Non-Newtonian Fluids 8
1.2 Viscosity Conversions 11
1.3 Modern Level Measuring Methods and Their Applications 19
1.4 Problems and Possible Solutions in Pressure and Level Measurements 20

3.1 Values of Roughness for Different Materials 37
3.2 Loss Coefficients for Some Pipe Fittings 38
3.3 Design Velocities for Different Applications 46
3.4 Maximum Hydrocarbon Flow Velocities to Avoid Static Electricity Problems 46
3.5 Recommended Equivalent Lengths of Valves and Fittings 57
3.6 Causes and Consequences of Operational Deviations of Piping Systems 57

4.1 Comparison of Head Flow Meters 70
4.2 Summary of Plus and Minus Points of Different Types of Flow Meters 98
4.3 Summary of Flow Measurement Problems 98

5.1 Capacities, Heads Developed, and Efficiencies of Different Types of Pumps 110
5.2 Additional Requirements for Different Pump Options 126
5.3 Symptoms and Possible Causes for Centrifugal Pump Problems 127
5.4 Comparison of Capacities, Heads, and Efficiencies for Positive Displacement Pumps 130
5.5 Comparison between Centrifugal and Positive Displacement Pumps 137
5.6 Comparison of Magnetic Drive and Canned Motor Pumps 138
5.7 Pressures Obtainable with Different Vacuum Producing Equipment 142
5.8 Troubleshooting Guidelines for Steam Jet Ejectors 153
5.9 Pressures and Capacities Obtainable for Vacuum Equipment 153
5.10 Summary of Characteristics of Different Types of Compressors 157
5.11 Compression Ratio Versus Efficiency 159
5.12 Summary of Centrifugal Compressor Problems 160
5.13 Summary of Reciprocating Compressor Problems 161

6.1 Power Numbers for Different Impeller Designs 166
6.2 Examples of Mixing Processes Based on Mixing Intensity Scales 167
6.3 Mixing Intensity Versus Impeller Tip Speed 167
6.4 Agitation Achievable for Different Fluid Velocities 168
6.5 Power Requirements for Baffled Vessels 169
6.6 Power Input and Impeller Tip Speeds for Baffled Tanks 172
6.7 Advantages and Disadvantages of Selected Liquid Mixers 177
6.8 Impellers Used for Different Liquid Viscosity Ranges 183
6.9 Solids Mixer Selection for Different Applications 190
16.5 Drum Pressure Versus K-Values 521
16.6 Comparison of Different Media for Droplet Capture 525
16.7 Recommended Residence Times for Gas–Liquid and Liquid–Liquid Separators 526
17.1 HETP Values for Preliminary Packed Column Design 541
17.2 Comparison of Control Systems for Emergency Releases 542
17.3 Deviations from Raoult’s Law as Related to Molecular Interactions 545
17.4 Classification of Molecules Based on Their Hydrogen Bonding Nature 545
17.5 Comparison of Batch, Continuous, and Semicontinuous Distillation Processes 559
17.6 Number of Trays Used Between Side-Draw Products 560
17.7 Ewell, Harrison, and Berg Classification for Entrainers 563
17.8 Examples of Solvents Used in Different Extractive Distillation Processes 568
17.9 Salt Effect on Vapor–Liquid Equilibria for Ethanol–Water System 569
17.10 Examples of Reactive Distillation Processes 571
17.11 Comparison Between Extraction and Distillation 585
17.12 Critical Properties of Different Solvents used for Supercritical Extractions 597
17.13 General Features of Liquid–Liquid Extraction Equipment 607
18.1 Choice of Operating Mechanism for a Crystallizer 620
18.2 Comparison of Layer and Suspension Crystallization Processes 628
18.3 Differences Between Melt and Solution Crystallization 628
18.4 Troubleshooting of Crystallizer Operation 631
18.5 Temperature Approach Versus Relative Tower Size 637
18.6 Critical Moisture Content for Different Materials 648
18.7 Criteria for Classification of Dryers 653
18.8 Some Materials Dried in Flash Dryers 660
18.9 Droplet and Product Sizes (μm) Obtainable for Different Atomizers 664
18.10 Effect of Different Variables on the Operation of Spray Dryer 665
18.11 Characteristics and Features of Kneader Dryers 666
18.12 Applications of Different Types of Dryers 670
18.13 Differences Between Physical Adsorption and Chemisorption 671
18.14 Structures and Applications of Different Molecular Sieves 675
18.15 Applications of Type X Molecular Sieves 675
18.16 Applications of Some Commercially Used Adsorbents 675
18.17 Types of Ion Exchange Processes 683
18.18 Comparison of Membrane Element Configurations 693
18.19 Different Types of Membrane Modules and their Characteristics 693
18.20 Examples of Membrane Processes in Separation of Gas Mixtures 694
18.21 Fouling and Pretreatment Techniques 698
18.22 Applications of Reverse Osmosis 698
18.23 Applications of Ultrafiltration 702
18.24 Advantages and Disadvantages of Different Types of Membranes for Applications to Reverse Osmosis and Ultrafiltration 704
18.25 Summary of Size Ranges of Materials Separated by Different Membrane Processes 709
18.26 Classification and Principles of Major Bubble Separation Techniques 712
18.27 Some Applications of Floatation 715