This page intentionally left blank
BIOMARKERS
This page intentionally left blank
The cover art is called “Biofluid” and represents biological fluid with visible signs of biomarkers. Created by Dr. Ina Schuppe-Koistinen using watercolors, Dr. Schuppe-Koistinen is a senior principal scientist and molecular toxicologist at AstraZeneca, Sweden. Additional science watercolors by Dr. Schuppe-Koistinen can be found at http://www.inasakvareller.se

Copyright © 2010 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

 p. ; cm.
 Includes bibliographical references and index.
 ISBN 978-0-470-45224-0 (hardback)
 1. Biochemical markers. I. Vaidya, Vishal S. II. Bonventre, Joseph V.
 QH438.4.B55B555 2010
616.075--dc22

Printed in the United States of America.
To:
My parents, Sudhakar and Suhasini; my wife, Alka; and my sons, Ariv and Rian.

Vishal Vaidya

To:
My wife, Kristie; my daughter, Joanna; my son, Andrew; my son-in-law, Brian; and my grandson, Daniel.

Joseph Bonventre
This page intentionally left blank
CONTENTS

Preface xxii
Contributors xxv

Biomarkers: An Evolutionary Perspective 1
 Michael A. Ferguson and Vishal S. Vaidya
 References 4

SECTION I: TOOLS FOR BIOMARKER DISCOVERY 5

2 Genomics 7
 Weida Tong and Donna L. Mendrick
 Introduction 7
 Evaluation of the Technology 8
 Clinical Applications 10
 Bioinformatics Challenges 12
 Applications to Drug Toxicology, Medicine, and
 Environmental Health 14
 Improve Understanding of Basic Cellular Architecture and Function 15
 Mechanism of Toxicity and Disease 16
 Algorithmic Models to Predict Toxicity or Disease 17
 Strengths, Weaknesses, and the Road Forward 18
 Conclusion 20
 Summary Points 20
 Disclaimer 20
 References 20

3 Proteomics for Biomarker Discovery 25
 Timothy D. Veenstra
 Introduction 25
Contents

Tissue or Biofluid 26
Technology 28
 Protein Identification Using Mass Spectrometry 29
 Sample Preparation 30
 Protein Quantitation 33
Examples of Biomarker Discovery and Evaluation 35
Challenges in Proteomic Biomarker Discovery 38
The Road Forward: Targeted Verification and Validation 39
Conclusion 43
Summary Points 44
Acknowledgments 44
References 44

4 Metabolic Profiling for Biomarker Discovery 47
Hector C. Keun

Introduction: What is Metabolic Profiling? 47
Analytical Strategies for Metabolic Profiling 50
Data Pre-Processing, Analysis, and Pattern Recognition 54
Preclinical Toxicology: Models for Pathological Biomarker Discovery 56
Disease Biomarker Discovery Using Metabolic Profiling 58
 Inborn Errors of Metabolism 58
 Neuroscience 59
 Cancer 59
 Infectious Disease 61
 Metabolic Syndrome: Insulin Resistance, Cardiovascular Disease, and Hypertension 61
Environmental Health and Metabolic Profiling 62
Conclusion: Strengths, Weaknesses, and the Way Forward for Metabolic Profiling in Biomarker Discovery 63
Summary Points 64
References 64

5 The Bittersweet Promise of Glycobiology 75
Padmaparna Chaudhuri, Rania Harfouche, and Shiladitya Sengupta

Introduction 75
Glycosylation in Pathological States 75
 Congenital Disorders of Glycosylation (CDG) 75
 Glycomics of Immune Disorders 76
 Glycomics in Cancer 77
 Other Acquired Diseases 79
Glycans in Therapeutics and as Therapeutic Targets 79
Tools to Analyze the Glycome 80
CONTENTS

Analytical 80
Chemical 81
Microarray 82
Molecular 83
Strengths, Weaknesses, and the Road Forward 84
Conclusion 84
Summary Points 84
References 85

SECTION II: BIOMARKERS OF INJURY/DISEASE 89

6 Biomarkers of Alzheimer’s and Parkinson’s Disease 91

Walter Maetzler and Daniela Berg

Definition and Prevalence of Alzheimer’s and Parkinson’s Disease 91
Alzheimer’s Disease 91
Parkinson’s Disease 92
Pathophysiology and Mechanisms 92
Alzheimer’s Disease 92
Genetic Aspects 93
Pathology 93
Pathophysiological Mechanisms 94
Parkinson’s Disease 95
Genetic Aspects 95
Pathology 96
Pathophysiological Mechanisms 96
Concluding Remarks to Pathological and Pathophysiological Aspects 97

Current Means for Diagnosis/Prognosis of the Diseases and Their Limitations 98
Alzheimer’s Disease 98
Clinical Markers 98
Genetic Markers 98
In Vivo Markers from Pathology 98
Pathophysiological Mechanisms 100
Further Diagnostic Assessments 100

Parkinson’s Disease 100
Clinical Markers 101
Genetic Markers 101
In Vivo Markers from Pathology 101
Pathophysiological Mechanisms 102
Further Diagnostic Assessments 102

Novel Biomarkers 102
Alzheimer’s Disease 102
7 Biomarkers of Cardiac Injury

Anthony S. McLean and Stephen J. Huang

Introduction 119
Definition and Prevalence 119
Pathophysiology and Mechanisms 123
Diagnosis 125
Biomarkers of Cardiac Injury 126
Inflammatory Markers of Cardiac Disease 127
C-Reactive Protein (CRP) 127
Interleukins (IL) 129
Tumor Necrosis Factor (TNF) and Fas 129
CD40 Ligand 130
Matrix Metalloproteinases (MMPs) 130
Myeloperoxidase (MPO) 131
Markers for Myocardial Cell Injury 131
Creatine Kinase-Myocardial Band (CK-MB) 131
Troponins (cTn) 132
Heart-Type Fatty Acid Binding Protein (H-FABP) 134
Markers for Cardiac Stress 134
B-Type Natriuretic Peptide (BNP) and N-Terminal ProBNP (NT-ProBNP) 134
Adrenomedullin (ADM) 137
ST2 138
Multimarker Approach? 138
Conclusion 139
Summary Points 139
References 140

8 Lung Injury Biomarkers 157

Urmila P. Kodavanti

Introduction 157
Causes of Lung Injury 158
Morphological and Cellular Targets of Lung Injury 159
Airway and Mucosa 159
Alveolar Macrophage 161
The Surfactant Covering Alveolar Epithelial Cells 161
Alveolar Epithelium, Interstitium, and Capillary Endothelium 162
Pathobiologic Processes Involved in Lung Injuries and Diseases 162
Airway Epithelial Damage, Mucus Hypersecretion, and Goblet Cell Hyperplasia 162
Airway Inflammation in Asthma 164
Airway Inflammation in Bronchitis and Chronic Obstructive Pulmonary Disease 164
Airway Fibrosis, Bronchoconstriction, and Hyperresponsiveness 165
Alveolar Epithelial, Capillary Endothelial, and Terminal Bronchiolar Injuries 166
Pulmonary Edema 166
Neutrophilic Inflammation, Alveolar Apoptosis, and Emphysema 167
Pulmonary Fibrosis and Granuloma 167
Alveolar Phospholipidosis 169
Pulmonary Surfactant and Surfactant Protein Abnormalities 169
Sampling Techniques for Biomarker Analysis 170
Induced Sputum 170
Bronchoscopy and Lung Biopsy 171
Bronchoalveolar Lavage for Analysis of Biomarkers of Lung Injury 171
Biomarker Assessments and Their Involvement in Lung Injury and Disease 172
Lung Injury Biomarkers in Bronchoalveolar Lavage Fluid (BALF) and Sputum 174
Total Protein and Albumin 174
Lactate Dehydrogenase Activity 175
γ-Glutamyl Transferase Activity 175
N-acetyl Glucosaminidase Activity 175
Cells in Bronchoalveolar Lavage Fluid as Biomarkers of Lung Inflammation 176
Cytokines and Chemokines in Sputum and Bronchoalveolar Lavage Fluid 177
Biomarkers of Oxidative Stress in Bronchoalveolar Lavage
CONTENTS

Fluid, Sputum, Lung, and Plasma	177
Ascorbate	178
Glutathione	179
Extracellular Superoxide Dismutase	179
Ferritin, Lectoferrin, Transferrin, and Iron-Binding Capacities	180
4-Hydroxynonenal	180
F(2)-Isoprostanes	180
Exhaled Nitric Oxide	181
Heme Oxygenase-1	181
Asymmetric and Symmetric Dimethyl Arginine	182
Surfactant Proteins in Bronchoalveolar Lavage Fluid and Plasma	182
Matrix Metalloproteases as Biomarkers of Lung Injury	183
Collagen and Elastin Fragments as Biomarkers of Lung Injury	184
Circulating Lung-Cell-Specific Proteins as Biomarkers	184
Blood Coagulation and Thrombosis Markers in Lung Injuries	185
Novel Approaches for Biomarker Identification	185
Acknowledgments	187
Disclaimer	187
References	187

9 Translational Biomarkers of Acute Drug-Induced Liver Injury: The Current State, Gaps, and Future Opportunities 203

Josef S. Ozer, William J. Reagan, Shelli Schomaker, Joe Palandra, Mike Baratta, and Shashi Ramaiah

Intrinsic and Idiosyncratic Drug-Induced Liver Injury: Terminologies and Background 203

Histological Manifestations of Liver Injury 204

- Hepatic Steatosis/Fatty Liver and Steatohepatitis 204
- Cholestatic Liver Injury 204

Common Mechanisms of Acute Liver Injury 205

- Mechanistic Manifestations of DILI 205

Processes of Hepatocyte Cell Death 205

- The Role of Immune Responses in Liver Injury 206
- Metabolic Idiosyncrasy in Liver Injury 206
- Underlying Inflammation Mechanisms with Liver Injury 207
- Mitochondrial Oxidant Stress and Dysfunction 207
- Inhibition of Tissue Repair Response 208
- Disruption of Calcium Homeostasis and Cell Membrane Damage in Liver 208
- Disruption of Cytoskeleton in Liver Injury 208

Traditional Preclinical and Clinical Biomarkers of Drug-Induced Liver Injury 209

Gaps in Traditional Hepatic Biomarkers 209

Considerations to Predict Acute Liver Injury: Anatomy and Time-Course 210
New and Emerging Serum Enzyme Biomarkers of Liver Injury 212
Discovery and Application of Purine Nucleoside Phosphorylase (PNP), Paraxonase (PON-1), and Malate Dehydrogenase (MDH) as Hepatic Biomarkers 212
PON1 Is a Functional Marker of Chronic Liver Injury 213
Malate Dehydrogenase (MDH) Activity Is a Candidate Biomarker of DILI-1 214
Biomarker Qualification by the Predictive Safety Testing Consortium (PSTC) 214
ALT Isozymes: ALT1 and ALT2 214
 Historical Background of ALT Biology 214
 Gene Expression of ALT Isoforms 216
 The Localization of ALT Protein in Tissues 216
ALT Protein Levels in Serum 217
Current Knowledge on Biology of ALT 217
Does Metabolic Syndrome Illicit a Conflicting ALT Signal for DILI? 218
Anorexia Shows Metabolic Indicators of Liver Injury Including Subtle ALT Elevations 218
Biomarkers of Biliary Injury 219
Authors' Opinion on Future Biomarkers of Liver Injury, Novel Approaches, and Platforms 219
 Reactive Oxygen Species (ROS) as Potential Markers for Liver Injury Mechanisms 219
 Inflammation Markers as Potential Indicators of Liver Injury 220
 Novel Hepatocellular Leakage Enzymes as Early Biomarkers of Symptomatic Change 221
 Hepatic Regeneration Markers to Supplement Injury Biomarkers 222
Unification of Diagnostic Metrics of Liver Fibrosis 222
Analytical Biomarker Platforms to Assay Serum Biomarkers of Liver Injury 223
 Mass Spectrometry Technologies Can Fill Gaps to Detect Biomarkers When Antibody Approaches are Limited 223
 An Overview of Mass Spectrometry Technologies 224
 Mass Spectrometry Technologies to Potentially Detect Biomarkers and Rare Protein Antigens of Injury 224
 Improved Tagging Techniques for Mass Spectrometry Detection of Proteins 224
 High-Throughput Chromatography Enhances the Downstream Detection of Rare Serum Proteins by Mass Spectrometry 225
 Mass Spectrometry Approaches to Distinguish Novel Biomarkers of Renal and Liver Injury 226
 Mass Spectrometry Approaches to Detect Novel Serum Biomarkers of Liver Injury 226
Conclusion 226
Acknowledgments 227
Summary Points 227
References 227

10 Biomarkers of Acute Kidney Injury 237
Frank Dieterle and Frank D. Sistare

Introduction 237
Definition and Prevalence of Acute Kidney Injury 237
Pathophysiology and Mechanisms 238
Current Standards for Diagnosing Acute Kidney Injury 242

Novel Kidney Safety Biomarkers 244

Kidney Function Biomarkers 245
Serum Cystatin C 245

Functional Biomarkers 246
Urinary Total Protein 246
Urinary Albumin 247
Urinary β2-Microglobulin 248
Urinary Cystatin C 249

Leakage Markers 250
Urinary GST-α and GST-μ/π 250
Urinary NAG 251

Expression Markers 251
Urinary Kim-1 251
Urinary Clusterin 253
Urinary NGAL 253
Urinary Osteoactivin 255
Urinary Osteopontin 255
Urinary L-FABP 256
Urinary Trefoil Factor 3 257

Immune Markers 257
Urinary IL-18 257

Newest Technologies and Achievements Around Kidney Safety Biomarkers 258
Assays and Technologies 258
Consortia Achieving the First Regulatory Qualification of Kidney Safety Biomarkers 260
Conclusion 261
Summary Points 263
References 263

11 In Search of Biomarkers for Drug-Induced Vascular Injury 281
James R. Turk

History and Background of DIVI 281
Overview 281
CONTENTS

Types of Compounds Implicated 282
Descriptive Pathology of Drug-Induced Vascular Injury 283
 Vascular Anatomy 283
 Rat 284
 Dog 284
 Primate 285
 Spontaneous Lesions in Preclinical Species 285
 Comparison with Human Vasculitides 285
Progress in Biomarker and Model Development for Drug-Induced Vascular Injury 286
 Alpha-1-Acid Glycoprotein 286
 Calprotectin (S100A9/A8) 286
 Caveolin-1 286
 Circulating Endothelial Cells/Particles 288
 Complement Component 3 288
 Connective Tissue Growth Factor (CTGF) 288
 C-Reactive Protein (CRP) 289
 Endothelin-1 289
 Fibrinogen 289
 GRO/CINC-1 289
 Haptoglobin 289
 Metallothionein-1 (MT-1) 290
 Monocyte Chemotactic Protein-1 (MCP-1) 290
 Neutrophil Gelatinase-Associated Lipocalin (NGAL) 290
 Osteopontin (OPN) 290
 Smooth Muscle Actin 291
 Thrombospondin-1 (TSP-1) 291
 Tissue Inhibitor of Metalloproteinases-1 (TIMP-1) 291
 Tissue Plasminogen Activator (tPA) 291
 Vascular Cell Adhesion Molecule 1 (VCAM-1) 291
 Vascular Endothelial Growth Factor (VEGF) 292
 Von Willebrand Factor 292
Conclusion 292
References 292

12 Biomarkers of Immunotoxicity 307
Rodney R. Dietert 307

Introduction 307
History of the Use of Biomarkers in Immunotoxicity Assessment 308
 Establishing the Testing Paradigm 308
 A “Challenging” Issue for Immune Biomarkers 308
Targets of Immunotoxicity 309
CONTENTS

Diseases of Primary Concern 310
 Increased Susceptibility to Infections and Tumors 310
 Chronic Diseases and Conditions Based on Immune Dysfunction 310
Developmental Immunotoxicity: Increased Vulnerability in Early Life 313
Differential Exposure-Outcomes Between Genders 314
A Disease-Based Approach to Immune Biomarker Selection 314
Toxicogenomic and In Vitro Approaches 315
Conclusion 316
Summary Points 316
Acknowledgments 317
References 317

13 Biomarkers in Obstetric Medicine 323
 Manish Maski, Sarosh Rana, and S. Ananth Karumanchi

Aneuploidies-Trisomies 21, 18, and 13 323
 Alpha Fetoprotein 323
 Human Chorionic Gonadotropin 324
 Pregnancy-Associated Plasma Protein-A 324
 Unconjugated Estriol 325
 Inhibin A 325
 Detection of Trisomy 21 325
 Detection of Trisomy 18 327
 Detection of Trisomy 13 327
 Amniocentesis and Chorionic Villi Sampling 334
 Other Novel Markers for Aneuploidy Screening 334
Preeclampsia and Fetal Growth Restriction 335
 Vascular Endothelial Growth Factor 335
 Placental Growth Factor 336
 VEGF Receptors 337
 VEGFR1/Flt1 (Fms-Like Tyrosine Kinase 1) 337
 Endoglin 338
 Role of Angiogenic Factors in the Pathogenesis of Preeclampsia 338
 The Ability of Angiogenic Proteins to Predict Preeclampsia 339
 Other Potential Biomarkers for the Prediction of Preeclampsia 340
 Angiogenic Factors and Intrauterine Growth Restriction 341
Preterm Labor and Other Pregnancy Complications 342
 Preterm Labor 342
 Abruption 343
 Gestational Diabetes 343
Summary Points 344
References 344
14 Biomarkers in Cancer 355
Roopali Roy, Christine M. Coticchia, Jiang Yang, and Marsha A. Moses

Introduction 355
Cancer Biomarker Discovery Strategies 356
Cancer Biomarkers 357
Breast Cancer 357
Prostate Cancer 362
Ovarian Cancer 364
Pancreatic Cancer 367
Conclusion 369
Summary Points 370
Acknowledgments 370
References 370

15 Biomarkers of HIV 381
Lewis Kaufman and Michael J. Ross

Introduction 381
Novel Biomarkers 382
Host Genetic Determinants of Susceptibility to HIV Infection 382
Chemokines/Chemokine Receptors 382
CCR5 Variants 384
CCR2-64I Variant 385
SDF1-3'A Variant 385
Other Chemokine Polymorphisms 385
Human Leukocyte Antigens 386
HLA Heterozygosity Protects Against Progression to AIDS 386
Protective HLA Alleles 386
HLA Alleles Associated with Rapid Progression to AIDS 387
Other Host Genetic Factors Associated with HIV-Related Outcomes 387
Host Factors Associated with Non-Opportunistic HIV-Related Diseases 387
HIV-Associated Nephropathy 387
HIV-Associated Dementia 388
Clinical Markers 389
CD4+ T-Cell Depletion 389
Plasma Viral Load 389
Combination of Viral Load, CD4+ Count, and Proviral DNA Levels 390
Generalized Immune Activation 390
Conclusion 391
Summary Points 393
References 393
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 Biomarkers of In Vitro Drug-Induced Mitochondrial Dysfunction</td>
<td>401</td>
</tr>
<tr>
<td>James A. Dykens and Yvonne Will</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>401</td>
</tr>
<tr>
<td>Magnitude of the Problem</td>
<td>402</td>
</tr>
<tr>
<td>Mitochondrial Physiology</td>
<td>403</td>
</tr>
<tr>
<td>Drug-Induced Mitochondrial Dysfunction (DIMD) Has Been Overlooked</td>
<td>406</td>
</tr>
<tr>
<td>Novel Methods to Detect Mitochondrial Dysfunction In Vitro</td>
<td>407</td>
</tr>
<tr>
<td>An Emerging Model of Idiosyncratic Drug Toxicity</td>
<td>409</td>
</tr>
<tr>
<td>Mitochondrial Diseases</td>
<td>411</td>
</tr>
<tr>
<td>Potential Biomarkers of Mitochondrial Dysfunction</td>
<td>413</td>
</tr>
<tr>
<td>Animal Models</td>
<td>416</td>
</tr>
<tr>
<td>Summary Points</td>
<td>417</td>
</tr>
<tr>
<td>References</td>
<td>417</td>
</tr>
</tbody>
</table>

SECTION III: TECHNOLOGY FOR BIOMARKER DETECTION	423
17 Immunoassay-Based Technologies for the Measurement of Biological	425
Materials Used for Biomarkers Discovery and Translational Research	
Vincent Ricchiuti	
Introduction	425
Immunoassay and Immunochemistry	426
Background	426
Basic Principles	426
Radioimmunoassays	427
Overview	427
Principle of Radioimmunoassay	428
Enzyme-Linked Immunosorbent Assay and Enzyme Immunoassay	431
Overview	431
Principle of Enzyme Immunoassay	432
Fluorescent and Chemiluminescent Immunoassays	433
Fluorescent Immunoassays	433
Heterogeneous Fluorescent Immunoassays	433
Homogenous Fluorescent Immunoassays	433
Fluorescence Polarization Immunoassay (FPIA)	434
Chemiluminescent Immunoassays	435
Multiplexing Using Antibody Array and Bead Immunoassays	436
Planar Protein Array Formats	437
Suspension or Bead-Based Arrays	440
Example of Multiplexing Technology	440
Simultaneous Multi-Analyte Detection	441
Introduction	441
Multiple Bead Particle Technology	441
18 Nanoscale Techniques for Biomarker Quantification

Madhukar Varshney and Harold G. Craighead

Introduction 457
Nanoscale Sensing Techniques for Biomarker Quantification 458
Optical Detection 459
 Bio-Barcode Assay-Based Sensors 459
 Quantum Dots-Based Sensors 461
 Dye-Doped Nanoparticles-Based Sensors 464
 Surface Enhanced Raman Spectroscopy-Based Sensors 465
 Dynamic Light Scattering 468
Mechanical Detection 470
 Nanomechanical Cantilever-Based Sensors 470
Electrical Detection 473
 Field Effect Transistor-Based Sensors 473
 Liposomes-Based Sensors 475
Magnetic Detection 478
 Giant Magnetoresistance-Based Sensors 478
Future Trends 482
Conclusion 483
Summary Points 484
References 485

19 Immunodiagnostics with a Focus on Lateral Flow Point-of-Care Devices

Roy R. Mondesire, Glen M. Ford, Hannie F. Ford, and Stephen C. Mefferd

Introduction 495
Antibodies in Immunoassays 496
 Structure and Function of Antibodies 497
 Kinetics of Antibody-Antigen Reactions 499
CONTENTS

Polyclonal Antibodies 500
Hybridoma Technology 500
Rapid Manual and Rapid Automated Immunoassays 501
Elements of Immunoassays: Soluble Labels and Detection 502
Homogeneous Enzyme Immunoassays 503
Signal Measurement Methods 504
 Colorimetry 504
 Fluorometry 504
 Time-Resolved Fluorescence 505
 Luminescence 505
Principles of Binding 505
Non-Specific Interactions in Immunoassays 506
Colloidal and Particle Immunoassays 506
 Flow-Through Assays 506
 Particle Capture 506
 Fluorochrome-Dyed Microspheres 506
Point-of-Care Lateral-Flow Assay Technology 507
 Introduction to Traditional Lateral Flow Tests 507
 Nucleic Acid Detection and Lateral Flow 510
 Principle of the Lateral-Flow Procedure for Nucleic Acid Detection 511
 Haptenized Primers 511
 Haptenized Detection Probes 512
 Molecular Detection of Chlamydia Trachomatis—A Major Agent of Sexually Transmitted Infections 512
 Pathogenic Bacteria Detection with Bacteriophage 512
Sensitivity of Lateral-Flow Technology 513
Summary Points 513
Useful Information for Future Trends 513
 Emerging Technologies 513
References 514

SECTION IV: HOT TOPICS IN BIOMARKER RESEARCH 517

20 Biomarkers for Environmental Exposure 519

 Introduction 519
 Need for Biomarkers to Support Environmental Risk Assessment 520
Considerations for the Use of Biomarkers in Environmental Risk Assessment 522
Applications 524
 Biomonitoring Studies 524
 Interpretation of Biomonitoring Data 527
Clinical Study Design in Biomarker Research

Orfeas Liangos and Bertrand L. Jaber

Overview of Clinical Study Design
 Case Study
 Case Series
 Cross-Sectional Study
 Case Control Study/Nested Case Control Study
 Cohort Study
 Experimental Studies
 Uncontrolled Trial
 Controlled Trial
 Blinded/Un-blinded Design
 Parallel Two-Arm/Multiple-Arm and Crossover Design

Biomarkers in Observational Studies
 Biomarkers for Disease Detection and Diagnosis
 Biomarkers for Disease Monitoring
 Biomarkers for Disease Prognostication

Biomarkers in Interventional Studies
 Biomarkers for Treatment Response
 Biomarkers for Monitoring Toxicity

Conclusion
Summary Points
References

Statistical Issues in Biomarker Research

Daniel Holder and Matthew Schipper

The Role of Statistics in Biomarker Discovery, Development, and Qualification
Types of Biomarkers
Stages of Development
Kidney Project Background
Statistical Methods/Metrics for Assessing Biomarker Performance
 Sensitivity, Specificity, and Receiver-Operator Characteristic Curves
Assessing Whether a Marker Adds Value to Other Markers 569
Errors in the Reference Standard 572
Planning Human Clinical Trials 575
Prognostic Biomarkers and Other Topics 577
Biases in Biomarker Studies 578
Discussion 578
Summary Points 579
Acknowledgments 580
References 580

23 **Regulatory Perspective for Biomarker Qualification from the U.S. FDA** 581

Federico Goodsaid

Overview 581
Regulatory Paths in Biomarker Evaluation and Qualification 583
Evidentiary Recommendations 586
Harmonization 586
Summary Points 587
References 587

24 **The European Medicines Agency Approach** 589

Marisa Papaluca Amati and Spiros Vamvakas

Introduction 589
European Medicines Agency and Biomarkers: Briefing Meetings and Scientific Advice 590
New Procedure for the Qualification of Novel Methodologies 592
Current Status 594

Index 595
PREFACE

A biomarker is defined as a characteristic that can be objectively measured and evaluated as an indicator of normal biologic or pathogenic processes of pharmacological responses to a therapeutic intervention. Examples of biomarkers are proteins; lipids; genomic, metabolomic, or proteomic patterns; imaging patterns; electrical signals; and cells present on a urinalysis.

In medicine, disease processes are heterogeneous in their pathophysiology and clinical presentation, making diagnosis and prognosis challenging. In drug development, biomarkers are critical at a variety of stages of the process, with the need for informative determination of efficacy and toxicity that spans the preclinical-clinical spectrum. In commenting on a major initiative of the FDA that focuses on biomarkers, Janet Woodcock, MD, deputy commissioner for operations and head of FDA's Critical Path Initiative, said, "Most researchers agree that a new generation of predictive biomarkers would dramatically improve the efficiency of product development, help identify safety problems before a product is on the market (and even before it is tested in humans), and facilitate the development of new types of clinical trials that will produce better data faster." The FDA has provided guidance that a biomarker can be considered "valid" if 1) it is measured in an analytical test system with well-established performance characteristics, and 2) there is an established scientific framework or body of evidence that elucidates the physiologic, pharmacologic, toxicologic, or clinical significance of the test result.

We need better biomarkers to predict clinical efficacy and toxicity in preclinical studies, diagnose disease earlier, predict outcome in a patient with disease, and identify who will respond to an intervention and whether the intervention is working. In addition, better biomarkers will permit better stratification of patients for clinical trials and potentially lead to definition of new therapeutic targets. A good predictive biomarker will have a significant effect on evaluation of potential therapies because it will enable the identification of subgroups of patients who will have a high incidence of injury and hence reduce the number of patients needed to study in order to test potential therapeutic strategies. A clinically useful new biomarker will improve the sensitivity and specificity for the detection of and characterization of disease. It is also likely that some of these biomarkers will be useful to monitor severity and progression of disease.
Translational biomarkers that can be measured in blood or urine in both experimental animals and man are of particular interest. Biomarkers that have been well studied and characterized as very sensitive biomarkers of injury in animals, if they function similarly in man, may make it possible to monitor safety and efficacy in clinical trials when the ability to obtain kidney tissue is severely constrained and when the severity of the injury early on is insufficient to result in obvious alterations in clinical state.

Given the importance to the clinical, pharmaceutical, and regulatory communities motivated by more specific and timely diagnoses, early intervention, and safer therapies, there has been a great deal of activity devoted to discovery and "fit for purpose" qualification of various potential biomarkers in a number of diseases that affect many different organs.

In this book we have tried to capture the excitement and potential of biomarkers over a wide variety of applications spanning medical diagnostics to safety monitoring in therapeutic and environmental exposures. The early chapters are devoted to individual treatments of applicability of genomics, proteomics, glycomics, and metabolomics to this rapidly evolving field of biomarker discovery. The next set of chapters takes specific organs or disease processes and considers in depth the state of the biomarker art in this specific area. Individual chapters are devoted to Alzheimer's and Parkinson's disease, cardiac injury, lung injury, drug-induced liver injury, acute kidney injury, drug-induced vascular injury, immunotoxicity, and obstetric medicine. These are followed by chapters discussing biomarkers in cancer, HIV, and drug-induced mitochondrial dysfunction. The book then moves to a more technical perspective incorporating chapters on immunoassay-based technologies, nanoscale techniques, and lateral flow immunodiagnostics at point of care. Chapters on environmental exposure, clinical trial design, and statistical issues in biomarker analysis then follow. The last two chapters deal with the regulatory perspectives of the FDA and the European Medicines Agency.

The chapters are written by leaders in their respective fields and we are very grateful to them for their comprehensive chapters. We hope that the readers will agree with us that the material in this book is timely and will go far to advance the field of biomarker research and facilitate the development of new drugs that are safe, add new biological targets to our therapeutic armamentarium, and ensure environmental safety.

Joseph V. Bonventre, MD, PhD and Vishal S. Vaidya, PhD
Brigham and Women's Hospital, Harvard Medical School

References
CONTRIBUTORS

Marisa Papaluca Amati, The European Agency for the Evaluation of Medicinal Products, London, United Kingdom

Mike Baratta, Pharmacokinetics, Dynamics, and Metabolism, Pfizer, Andover, Massachusetts

Daniela Berg, Center of Neurology, Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany

Joseph V. Bonventre, Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard Institutes of Medicine, Boston, Massachusetts

Pamaparna Chaudhuri, Brigham & Women’s Hospital, Harvard-MIT Division of Health Sciences & Technology, Cambridge, Massachusetts

Christine Coticchia, Program in Vascular Biology and Department of Surgery, Karp Family Research Building, Children’s Hospital Boston and Harvard Medical School, Boston, Massachusetts

Harold G. Craighead, School of Applied and Engineering Physics, Cornell University, Ithaca, New York

Frank Dieterle, Novartis Institutes of Biomedical Research, Translational Sciences, Basel, Switzerland

Rodney R. Dietert, Department of Microbiology and Immunology, Cornell University, Ithaca, New York

James A. Dykens, Pfizer, Drug Safety R&D, Sandwich, United Kingdom

Michael A. Ferguson, Division of Nephrology, Children’s Hospital, Boston, Massachusetts
Glen M. Ford, BioAssay Works, LLC, Ijamsville, Maryland

Hannie F. Ford, BioAssay Works, LLC, Ijamsville, Maryland

Jane E. Gallagher, Environmental Public Health Division, National Health and Environmental Effects Laboratory, U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina

Federico Goodsaid, Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland

Rania Harfouche, Brigham & Women’s Hospital, Harvard-MIT Division of Health Sciences & Technology, Cambridge, Massachusetts

Daniel Holder, Merck Research Laboratories, West Point, Pennsylvania

Stephen J. Huang, Department of Intensive Care Medicine, Nepean Hospital, University of Sydney, Sydney, New South Wales, Australia

Elaine A. Cohen Hubal, National Center for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina

Bertrand L. Jaber, Division of Nephrology, Department of Medicine, St. Elizabeth’s Medical Center, Boston, Massachusetts

S. Ananth Karumanchi, Beth Israel Deaconess Medical Center, Boston, Massachusetts

Hector C. Keun, Department of Biomolecular Medicine, Faculty of Medicine, Imperial College London, South Kensington, London, United Kingdom

Urmila P. Kodavanti, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina

Orfeas Liangos, Division of Nephrology, Department of Medicine, St. Elizabeth’s Medical Center, Boston, Massachusetts

Walter Maetzler, Center of Neurology, Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany

Manish Maski, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts

Anthony S. McLean, Department of Intensive Care Medicine, Nepean Hospital, University of Sydney, Sydney, New South Wales, Australia

Stephen C. Mefferd, BioAssay Works, LLC, Ijamsville, Maryland
Donna L. Mendrick, Division of Systems Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas

Roy R. Mondesire, RoMonics, LLC, Boulder, Colorado

Marsha A. Moses, Program in Vascular Biology and Department of Surgery, Karp Family Research Building, Children’s Hospital Boston and Harvard Medical School, Boston Massachusetts

Josef S. Ozer, Pharmacokinetics, Dynamics, and Metabolism, PGRD, Pfizer St. Louis Laboratories, Chesterfield, Missouri

Joe Palandra, Pfizer Biotech, Pharmacokinetics, Dynamics, and Metabolism, Andover, Massachusetts

Shashi Ramaiah, Pfizer Global Research and Development, Drug Safety Research and Development, St. Louis, Missouri

Sarosh Rana, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts

William J. Reagan, Pfizer Biotech, Drug Safety Research and Development, Andover, Massachusetts

Vincent Ricchiuti, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts

Roopali Roy, Program in Vascular Biology and Department of Surgery, Karp Family Research Building, Children’s Hospital Boston and Harvard Medical School, Boston, Massachusetts

Michael J. Ross, Division of Nephrology, Mount Sinai School of Medicine, New York, New York

Matthew Schipper, Innovative Analytics, Kalamazoo, Michigan

Sheili Schomaker, Drug Safety Research and Development, Pfizer, Groton Pfizer Groton/New London Laboratories, Groton, Connecticut

Shiladitya Sengupta, Brigham and Women’s Hospital, Harvard-MIT Division of Health Sciences & Technology, Cambridge, Massachusetts

Frank D. Sistare, Merck & Co, Inc., Laboratory Sciences and Investigative Toxicology, Westpoint, Pennsylvania

Weida Tong, Division of Systems Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas

James R. Turk, Amgen, Inc., Thousand Oaks, California
Vishal S. Vaidya, Laboratory of Kidney Toxicology and Regeneration, Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard Institutes of Medicine, Boston, Massachusetts

Spiros Vamvakas, The European Agency for the Evaluation of Medicinal Products, London, United Kingdom

Madhukar Varshney, School of Applied and Engineering Physics, Cornell University, Ithaca, New York

Timothy D. Veenstra, Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, Maryland

Yvonne Will, Pfizer, Compound Safety Prediction, Groton Connecticut