GUIDELINES FOR
Fire Protection in Chemical, Petrochemical, and Hydrocarbon Processing Facilities

Center for Chemical Process Safety
of the
American Institute of Chemical Engineers
3 Park Avenue, New York, NY 10016-5991
GUIDELINES FOR
Fire Protection in Chemical,
Petrochemical, and Hydrocarbon
Processing Facilities
GUIDELINES FOR
Fire Protection in Chemical, Petrochemical, and Hydrocarbon Processing Facilities

Center for Chemical Process Safety
of the
American Institute of Chemical Engineers
3 Park Avenue, New York, NY 10016-5991
CONTENTS

Preface xv
Acknowledgments xvii
Acronyms xix

1 Introduction
1.1. Scope 2
1.2. Who Will Benefit from This Guideline? 3
 1.2.2. Examples 5
1.3. Relation to Other CCPS Guidelines and Resources 5

2 Management Overview
2.1. Management Commitment 7
2.2. Integration with Other Management Systems 8
2.3. Balancing Protection 8
2.4. Cost-Benefit 9
3

Fire Protection Strategy

3.1. Key Factors in a Fire Protection Strategy
 3.1.1. Acceptable Loss 11
 3.1.2. Cost of Fires 13
 3.1.3. Insurance Coverage 14
 3.1.4. Installed Systems versus Emergency Response 16
 3.1.5. Prescriptive versus Performance-Based Design 18

3.2. Developing a Fire Protection Strategy 20

3.3. Integration with Other Management Systems 21

3.4. Integration with the Lifecycle of a Facility 23
 3.4.1. Design 24
 3.4.2. Construction and Commissioning 26
 3.4.3. Operations 28
 3.4.4. Decommissioning 28

4

Overview of Fire Prevention Elements

4.1. Audit Program 30
 4.1.1. The Audit Process 30
 4.1.2. Qualifications and Staffing 31
 4.1.3. Frequency of Audits 31
 4.1.4. Application to Fire Protection 32

4.2. Layout and Spacing 32

4.3. Control of Ignition Sources 33
 4.3.1. Electrical Area Classification 33
 4.3.2. Personal Ignition Sources 33
 4.3.3. Hot Work 34
 4.3.4. Static Electricity 35

4.4. Employee Training 36

4.5. Housekeeping 37
 4.5.1. Housekeeping Program 37
 4.5.2. Process Area Housekeeping 38
 4.5.3. Dust Control 39
 4.5.4. Inappropriate Storage and Handling 39
 4.5.5. Housekeeping and Equipment 40
 4.5.6. Cleaning Materials 40
5

Fire Hazard Analysis

5.1. Hazardous Chemicals and Processes

5.2. Recognize What You Want to Understand

5.3. Identification of Inventories

5.4. Define Fire Scenarios

5.5. Calculate Potential Fire Hazard

5.6. Flash Fires

5.7. Fireballs

5.8. Liquid or Pool Fires

5.5.1. Ignition and Combustion

5.5.2. Heat Transfer

5.5.3. Fire Growth and Heat Release

5.5.4. Solid Materials

5.5.5. Enclosure Effects

5.5.7. Ignition and Combustion

5.6. Flash Fires

5.7. Fireballs

5.8. Liquid or Pool Fires

5.8.1. Release Rate

5.8.2. Pool Size

5.8.3. Flame Height

5.8.4. Duration of Burning Pools

5.8.5. Heat Transfer

5.8.6. Convective Heat Transfer above the Plume
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.9.</td>
<td>Gas and Jet Fires</td>
<td>73</td>
</tr>
<tr>
<td>5.9.1.</td>
<td>Estimating Discharge Rates</td>
<td>73</td>
</tr>
<tr>
<td>5.9.2.</td>
<td>Jet Flame Size</td>
<td>75</td>
</tr>
<tr>
<td>5.9.3.</td>
<td>Heat Transfer</td>
<td>76</td>
</tr>
<tr>
<td>5.9.4.</td>
<td>Radiative Exposure</td>
<td>78</td>
</tr>
<tr>
<td>5.10.</td>
<td>Solid Fires</td>
<td>80</td>
</tr>
<tr>
<td>5.11.</td>
<td>Fire Impact to Personnel, Structures, and Equipment</td>
<td>80</td>
</tr>
<tr>
<td>5.11.1.</td>
<td>Impact to Personnel</td>
<td>80</td>
</tr>
<tr>
<td>5.11.2.</td>
<td>Impact to Structures</td>
<td>83</td>
</tr>
<tr>
<td>5.11.3.</td>
<td>Thermal and Nonthermal Impact on Electrical and Electronic Equipment</td>
<td>89</td>
</tr>
<tr>
<td>5.11.4.</td>
<td>Impact on the Environment</td>
<td>89</td>
</tr>
<tr>
<td>5.12.</td>
<td>Examples</td>
<td>90</td>
</tr>
<tr>
<td>5.12.1.</td>
<td>Example—Warehouse Pool Fire (Indoor)</td>
<td>90</td>
</tr>
<tr>
<td>5.12.2.</td>
<td>Example—Process Jet Fire</td>
<td>92</td>
</tr>
<tr>
<td>5.12.3.</td>
<td>Example—Storage Tank Fire</td>
<td>94</td>
</tr>
<tr>
<td>5.12.4.</td>
<td>Example—Flowing Pool Fire</td>
<td>97</td>
</tr>
</tbody>
</table>

6 Fire Risk Assessment

6.1. Fire Risk Assessment Overview | 99 |
6.2. Fire Risk Assessment Methodology | 100 |
6.2.1. Process Information	102
6.2.2. Fire Hazard Identification	102
6.2.3. Fire Hazard Analysis	103
6.2.4. Likelihood	104
6.2.5. Risk	111
6.2.6. Other Risks	115
6.2.7. Risk Tolerance	117
6.2.8. Risk Reduction Measures	119
6.2.9. Reassessment of Risk	120

7 Fire Protection Fundamentals

7.1. General Design Criteria | 122 |
7.1.1. Automatic versus Manual Activation	122
7.1.2. Isolation	123
7.1.3. Depressurization	124
8
Specific Design Guidance

8.1. Process 234
 8.1.1. Process Structures and Areas 234
 8.1.2. Drainage and Containment for Process Structures and Areas 238
 8.1.3. Flammable Gas Detection Systems 246
 8.1.4. Fixed Fire Detection 250
 8.1.5. Fire Protection 251
 8.1.6. Structural Steel Protection 255
8.1.7. Manual Firefighting Equipment 262
8.1.8. Process Vessels 263
8.1.9. Columns, Scrubbers, and Reactors 264
8.1.10. Isolation Valves 267
8.1.11. Fired Heaters 267
8.1.12. Heat Exchangers 272
8.1.13. Pumps 273
8.1.15. Cable Trays 277
8.1.16. Pipe Racks and Piping 280
8.1.17. Pipe Trenches 281

8.2. Storage 282
8.2.1. Storage Tanks 282
8.2.2. Unstable/Reactive Material Storage 297
8.2.3. Outdoor Storage 297

8.3. Buildings 300
8.3.1. Control Buildings 301
8.3.2. Computer Rooms 305
8.3.3. Laboratories 307
8.3.4. MCCs, Substation Rooms, and Buildings 309
8.3.5. Clean Rooms 310
8.3.6. Warehouse Protection 311
8.3.7. Temporary Buildings and Office Trailers 314

8.4. Loading Racks and Marine Terminals 314
8.4.1. General 315
8.4.2. Loading Racks 316
8.4.3. Marine Terminals 318

8.5. Utilities 320
8.5.1. Cooling Towers 320
8.5.2. Air Compressors 322
8.5.3. Electric Generators 322
8.5.4. Boilers and Thermal Oxidizers 323
8.5.5. Transformers 323
8.5.6. Waste Handling 324

9
Installation of Fire Protection Systems

9.1. Approval Process 327
9.1.1. External 327
9.1.2. Internal 329
10

Inspection, Testing, and Maintenance

10.1. Ownership of Fire Protection Systems 343
10.2. Qualifications of Personnel 345
 10.2.1. Fire Protection Focal Point 345
 10.2.2. Inspection Personnel 345
 10.2.3. Testing and Maintenance Personnel 345
 10.2.4. Fire Protection Service Companies 345
10.3. Inspection, Testing, and Maintenance Programs 346
 10.3.1. Inspections 347
 10.3.2. Testing 348
 10.3.3. Maintenance 348
 10.3.4. Identification of Deficiencies 348
 10.3.5. Frequencies of Inspection, Testing, and Maintenance 349
 10.3.6. Documentation of Inspection and Testing 349
 10.3.7. Impairment Handling 349
10.4. Inspection and Testing Requirements 350
 10.4.1. Fire Protection Systems and Equipment Covered 350
 10.4.2. Water-Based 350
 10.4.3. Fire Water Distribution System 350
 10.4.4. Fire Pumps 350
10.4.5. Foam Systems
10.4.6. Portable Fire Extinguishers
10.4.7. Dry Chemical Extinguishing Systems
10.4.8. Carbon Dioxide Extinguishing Systems
10.4.9. Clean Agent Systems
10.4.10. Mobile Fire Equipment
10.4.11. Fireproofing
10.5. Inspection Checklist Examples

11
Fire Emergency Response

11.1. Considerations for Emergency Response Organizations
 11.1.1. Response Effectiveness
 11.1.2. Management Issues
 11.1.3. Cost Evaluation Factors
11.2. Develop Organization Plan
11.3. Outside Responders
 11.3.1. Integration of the Facility and Community Response Organization ICS
11.4. Training and Drills
 11.4.1. Training
 11.4.2. Drills and Exercises
 11.4.3. Critiques
11.5. Notification
11.6. Operating Procedures for Fire Emergency Response Equipment
11.7. Fire Pre-Plans

A
Case Histories

Introduction
Case History 1: Large Vessel Explosion
Case History 2: Pipe Rupture Leads to an LPG Tank BLEVE
Case History 3: Fire Turns into an Ecological Disaster
Case History 4: Exchanger Leaks, Burns Cooling Tower
Case History 5: Insufficient Sprinkler Density
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2. Evolution of Computer Fire Modeling</td>
<td>413</td>
</tr>
<tr>
<td>C3. Computer Model Applications</td>
<td>414</td>
</tr>
<tr>
<td>C4. Compartment Fire Simulations</td>
<td>415</td>
</tr>
<tr>
<td>C4.1. The Zone Model</td>
<td>415</td>
</tr>
<tr>
<td>C4.2. The Field Model</td>
<td>416</td>
</tr>
<tr>
<td>C4.3. The Post-Flashover Model</td>
<td>417</td>
</tr>
<tr>
<td>C5. Egress/Evacuation Models</td>
<td>417</td>
</tr>
<tr>
<td>C6. Smoke Movement Models</td>
<td>418</td>
</tr>
<tr>
<td>C7. Thermal/Structural Response Models</td>
<td>418</td>
</tr>
<tr>
<td>C8. Conglomerate/Miscellaneous Fire Models</td>
<td>419</td>
</tr>
<tr>
<td>C9. Fire Models and Analytical Tools Specific to the Petrochemical Industry</td>
<td>420</td>
</tr>
<tr>
<td>C9.1. Public Domain/Unrestricted</td>
<td>420</td>
</tr>
<tr>
<td>C9.2. Restricted</td>
<td>420</td>
</tr>
</tbody>
</table>

D

Sample Fire Pre-Plan 423

References

- American Petroleum Institute (API) References 427
- Center for Chemical Process Safety (CCPS) References 428
- National Fire Protection Association References 429
- General References 432

Glossary 439

Index 447
The American Institute of Chemical Engineers (AIChE) has helped chemical plants, petrochemical plants, and refineries address the issues of process safety and loss control for over 30 years. Through its ties with process designers, plant constructors, facility operators, safety professionals, and academia, the AIChE has enhanced communication and fostered improvement in the high safety standards of the industry. AIChE's publications and symposia have become an information resource for the chemical engineering profession on the causes of incidents and means of prevention.

The Center for Chemical Process Safety (CCPS), a directorate of AIChE, was established in 1985 to develop and disseminate technical information for use in the prevention of major chemical accidents. The CCPS is supported by a diverse group of industrial sponsors in the chemical process industry and related industries who provide the necessary funding and professional guidance for its projects. The CCPS Technical Steering Committee and the technical subcommittees oversee individual projects selected by the CCPS. Professional representatives from sponsoring companies staff the subcommittees and a member of the CCPS staff coordinates their activities.

Since its founding, the CCPS has published many volumes in its "Guidelines" series and in smaller "Concept" texts. Although most CCPS books are written for engineers in plant design and operations and address scientific techniques and engineering practices, several guidelines cover subjects related to chemical process safety management. A successful process safety program relies upon committed managers at all levels of a company who view process safety as an integral part of overall business management and act accordingly.

A team of fire protection experts from the chemical industry drafted the chapters for this guideline and provided real world examples to illustrate some
of the tools and methods used in their profession. The subcommittee members reviewed the content extensively and industry peers evaluated this book to help ensure it represents a factual accounting of industry best practices.
ACKNOWLEDGMENTS

The American Institute of Chemical Engineers wishes to thank the Center for Chemical Process Safety (CCPS) and those involved in its operation, including its many sponsors whose funding made this project possible; the members of its Technical Steering Committee who conceived of and supported this Guidelines project, and the members of its Fire Protection Subcommittee.

If this Guideline prevents one chemical, petrochemical, or hydrocarbon processing facility fire, the efforts of all those involved in preparing this work will be deeply recognized and rewarded.

The members of the CCPS Fire Protection Subcommittee were:

Robert M. Rosen, Chair, BASF Corporation
Siegfried Fiedler, BASF Corporation
Gene Hertz, Rohm & Haas Company
Duncan L. Hutcheon, ExxonMobil
Joel Krueger, BP Amoco
John Sepahpur, ChevronTexaco Energy Research & Technology Company
John Sharland, FM Global
William A. Thornberg, Industrial Risk Insurers
Della Wong, Aon Reed Stenhouse
Jeffrey Yuill, Starr Technical Risks Agency, Inc.

John Davenport was the CCPS staff liaison and was responsible for overall administration of the project. Additional contributors to the subcommittee were Charles E. Fryman, FMC, and Dave Moore, Acutech.

Risk, Reliability and Safety Engineering (RRS), of League City, Texas (www.rrseng.com) was contracted to write this guideline. The principal RRS authors of this guideline were:
Acknowledgments

John Alderman, PE, CSP
Bill Effron, CSP
Christy Franklyn
Tim McNamara

Additional RRS staff that supported this project includes Donna Hamilton, Marlon Harding, Ted Low, and Tom Lawrence.

Daniel T. Gottuk, PhD and Joseph Scheffey, PE of Hughes Associates were the primary authors of Chapter 5.

CCPS would like to thank Bud Slye, PE, Loss Control Associates, who provided technical quality review.

CCPS also gratefully acknowledges the comments and suggestions received from the following peer reviewers; their insights, comments, and suggestions helped ensure a balanced perspective to this Guideline:

Dr. Ezikpe Akuma, New Jersey Department of Environmental Protection
Reginald Baldini, New Jersey Department of Environmental Protection
Michael P. Broadribb, BP America, Inc.
Keith L. Farmer, DuPont Engineering Technologies
Les Fowler, BASF Corporation
Eric Lenoir, AIU-Energy
Darren Martin, Shell Chemical Company
Lisa M. Morrison, NOVA Chemicals, Inc.
Dave Owen, Exxon-Mobil
Asit Ray, New Jersey Department of Environmental Protection
Thomas Scherpa, DuPont Engineering Technologies
Milt Wooldridge, MRW & Associates, Inc.

The members of the CCPS Fire Protection Subcommittee and the peer reviewers wish to thank their employers for allowing them to participate in this project.
<table>
<thead>
<tr>
<th>ACRONYMS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALARP</td>
<td>As low as reasonably practical</td>
</tr>
<tr>
<td>AiChE</td>
<td>American Institute of Chemical Engineers</td>
</tr>
<tr>
<td>AISC</td>
<td>American Institute of Steel Construction</td>
</tr>
<tr>
<td>AHJ</td>
<td>Authority Having Jurisdiction</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>API</td>
<td>American Petroleum Institute</td>
</tr>
<tr>
<td>BI</td>
<td>Business Interruption</td>
</tr>
<tr>
<td>BLEVE</td>
<td>Boiling Liquid Expanding Vapor Explosion</td>
</tr>
<tr>
<td>CCPS</td>
<td>Center for Chemical Process Safety</td>
</tr>
<tr>
<td>CFD</td>
<td>Computational Fluid Dynamics</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Registry</td>
</tr>
<tr>
<td>CMPT</td>
<td>Center for Marine and Petroleum Technology</td>
</tr>
<tr>
<td>DCS</td>
<td>Distributed Control System</td>
</tr>
<tr>
<td>DOT</td>
<td>Department of Transportation</td>
</tr>
<tr>
<td>EANS</td>
<td>Emergency Alarm Notification System</td>
</tr>
<tr>
<td>EHS</td>
<td>Environmental, Health, and Safety</td>
</tr>
<tr>
<td>EOC</td>
<td>Emergency Operations Center</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>ERP</td>
<td>Emergency Response Plan</td>
</tr>
<tr>
<td>ERT</td>
<td>Emergency Response Team</td>
</tr>
<tr>
<td>FCC</td>
<td>Fluid Catalytic Cracking (Unit)</td>
</tr>
<tr>
<td>FHA</td>
<td>Fire Hazard Analysis</td>
</tr>
<tr>
<td>FMEA</td>
<td>Failure Mode and Effects Analysis</td>
</tr>
<tr>
<td>FM</td>
<td>Factory Mutual</td>
</tr>
<tr>
<td>FPS</td>
<td>Fire Protection Strategy</td>
</tr>
<tr>
<td>FRP</td>
<td>Fiberglass Reinforced Plastic</td>
</tr>
<tr>
<td>GRP</td>
<td>Glass Reinforced Plastic</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>HVAC</td>
<td>Heating, Ventilating, and Air Conditioning</td>
</tr>
<tr>
<td>HAZID</td>
<td>Hazard Identification</td>
</tr>
<tr>
<td>HAZOP</td>
<td>Hazard and Operability Study</td>
</tr>
<tr>
<td>HSSD</td>
<td>High Sensitivity Smoke Detection</td>
</tr>
<tr>
<td>HAZMAT</td>
<td>Hazardous Material</td>
</tr>
<tr>
<td>ICS</td>
<td>Incident Command System</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronic Engineers</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output</td>
</tr>
<tr>
<td>IR</td>
<td>Industrial Risk</td>
</tr>
<tr>
<td>LEPC</td>
<td>Local Emergency Planning Committee</td>
</tr>
<tr>
<td>LFL</td>
<td>Lower Flammability Limit</td>
</tr>
<tr>
<td>LOPA</td>
<td>Layer of Protection Analysis</td>
</tr>
<tr>
<td>LPG</td>
<td>Liquefied Petroleum Gas</td>
</tr>
<tr>
<td>MERITT</td>
<td>Maximizing EHS Returns by Integrating Tools and Talents</td>
</tr>
<tr>
<td>MFL</td>
<td>Maximum Foreseeable Loss</td>
</tr>
<tr>
<td>MOC</td>
<td>Management of Change</td>
</tr>
<tr>
<td>MSDS</td>
<td>Material Safety Data Sheet</td>
</tr>
<tr>
<td>NICET</td>
<td>National Institute for Certification in Engineering Technologies</td>
</tr>
<tr>
<td>NFPA</td>
<td>National Fire Protection Association</td>
</tr>
<tr>
<td>NLE</td>
<td>Normal Loss Estimate</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmosphere Administration</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety Hazard Association</td>
</tr>
<tr>
<td>P&ID</td>
<td>Piping and Instrumentation Drawing</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PDA</td>
<td>Personal Digital Assistant</td>
</tr>
<tr>
<td>PE</td>
<td>Professional Engineer</td>
</tr>
<tr>
<td>PHA</td>
<td>Process Hazard Analysis</td>
</tr>
<tr>
<td>PML</td>
<td>Probable Maximum Loss</td>
</tr>
<tr>
<td>PFD</td>
<td>Process Flow Diagrams</td>
</tr>
<tr>
<td>PPE</td>
<td>Personal Protective Equipment</td>
</tr>
<tr>
<td>PSM</td>
<td>Process Safety Management</td>
</tr>
<tr>
<td>PVC</td>
<td>Polyvinyl Chloride</td>
</tr>
<tr>
<td>RMS</td>
<td>Risk Management System</td>
</tr>
<tr>
<td>RP</td>
<td>Recommended Practice</td>
</tr>
<tr>
<td>RVP</td>
<td>Reid Vapor Pressure</td>
</tr>
<tr>
<td>SFPE</td>
<td>Society of Fire Protection Engineers</td>
</tr>
<tr>
<td>SI</td>
<td>Standard Instrumentation</td>
</tr>
<tr>
<td>SIS</td>
<td>Safety Instrumented System</td>
</tr>
<tr>
<td>UFL</td>
<td>Upper Flammability Limit</td>
</tr>
<tr>
<td>UL</td>
<td>Underwriters Laboratories</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>VCE</td>
<td>Vapor Cloud Explosion</td>
</tr>
</tbody>
</table>
INTRODUCTION

This Guideline provides tools to develop, implement, and integrate a fire protection program into a company's or facility's Risk Management System. Figure 1-1 highlights the guidance provided in this Guideline.

For the thirty-year period of 1970 through 1999, 116 fires resulted in large-scale property damage (greater than $10MM) in the hydrocarbon and petrochemical onshore industries, and totaled over 4.5 billion dollars adjusted for year 2000 dollars (Marsh Risk Consulting, 2001). This is an average of approximately 39 million US dollars per occurrence, and includes losses in refineries, petrochemical plants, gas plants, marine terminals, and offshore oil and gas operations. Consequential business losses are two to three times property damage losses.

During the five-year period of 1995 to 2000, 50 large-scale fire losses have resulted in losses totaling approximately 2 billion dollars, or an average of 40 million dollars per occurrence. These numbers indicate that although the average dollar loss per occurrence is about the same for both time frames, the number of large losses is increasing. These incidents reinforce the importance of utilizing a systematic approach for addressing fire hazards in the hydrocarbon and petrochemical industries.

A Risk Management System (RMS)\(^1\) is vital for effective loss prevention. Fire protection is an essential part of an RMS. Appropriately designed, installed, and maintained fire protection systems are paramount to mitigating the direct consequences, and preventing the escalation, of fires in processing facilities.

\(^1\) Some companies use the term Hazard Management System or HSE Management System.
1. Introduction

Figure 1-1. Fire Protection Guidance in This Guideline

1.1. Scope

Information on fire protection codes and standards are available from several sources, including the National Fire Protection Association (NFPA), the Society of Fire Protection Engineers (SFPE), the Fire Suppression Systems Association (FSSA), and the American Petroleum Institute (API). Jurisdictions that provide requirements for fire protection include federal, state, and local agencies. This Guideline bridges the regulatory requirements and industry standards with practical application and provides:

- A useful tool for making fire protection decisions
- Specific examples of fire protection criteria

While life safety issues are not a primary focus of this Guideline, they are an integral part of good fire protection design.²

There is a very close relationship between fires and explosions. In many instances, an explosion is the initial event, followed by a significant fire. Sometimes the fire can be the trigger that causes the explosion, such as a Boiling Liquid Expanding Vapor Explosion (BLEVE). This Guideline does not address the prevention of explosions, methods to quantify the severity of explosion, or explosion suppression techniques. Explosions are specifically addressed in

² For additional information on life safety issues, refer to NFPA 101.
Guidelines for Evaluating the Characteristics of Vapor Cloud Explosions, Flash Fires, and BLEVEs (CCPS, 1994) and Understanding Explosions (CCPS, 2003a).

1.2. Who Will Benefit from This Guideline?

Because fire protection is an important aspect of risk management and loss prevention, this Guideline will benefit many different people within an organization.

- Corporate Leadership—Senior executives define the basis for the development of fire protection philosophies. Their commitment and recognition of the value of fire protection is vital to integration into an RMS and implementation of fire protection strategies.

- Site Managers—Site Managers are responsible for developing and maintaining the facility’s fire protection philosophy and strategies.

- Line Management—Line Managers are responsible for maintaining fire protection systems and for assuring personnel are trained on their use. Line Managers are the champions of a facility’s entire RMS. They ensure that policies and procedures, including fire protection, are integrated and implemented. They also ensure that fire protection systems are tested and maintained.

- Project Managers—Project Managers are responsible for executing projects, usually from design through startup and commissioning. A Project Manager is responsible for determining the basic fire protection design concepts to apply in the execution of a project. The Project Manager is responsible for implementing the decisions and abiding by the project procedures associated with amending and adding to the fire protection system.

- Engineers—Engineers are responsible for specifying and designing fire protection systems that meet their company’s fire protection requirements. This still leaves room for making decisions when designing fire protection systems and knowledge of performance vs. prescriptive methods is beneficial.

- HSE Professionals—Health, Safety, and Environmental (HSE) Professionals provide technical guidance to engineers and typically are in an assurance role for fire protection systems.

All fire protection decision makers will benefit from this Guideline.

Figure 1-2 provides an overview of the contents of this Guideline and also provides examples of how each Chapter can assist in establishing fire protection programs, fire protection decision making, design, installation, etc.
1.2.1. What Is Fire Protection?

This Guideline focuses on fire protection. For the purpose of this Guideline, fire protection and fire prevention are defined as:

- **Fire Protection**—The science of reducing loss of life and property from fire by control and extinguishment. Fire protection includes fire prevention, detection of a fire, providing systems to control or mitigate the fire, and providing manual firefighting capabilities.

- **Fire Prevention**—Activities whose purpose is to prevent fires from starting. Fire protection and fire prevention go hand-in-hand. All fire protection programs include a fire prevention program. For example, control of ignition sources is very important in minimizing the risk of fire, but does not meet the definition of fire protection in this Guideline.

Much of process safety deals with the prevention of catastrophic events, such as fires and explosions. This is accomplished by containing hazardous materials within the process system. The Center for Chemical Process Safety (CCPS) has developed many Guidelines that assist companies in this effort (see Section 1.3 and References).

1.2.2. Examples

Fire protection is often driven by the likelihood of potential consequences. Examples of incidents resulting in fire are provided in Table 1-1.

1.3. Relation to Other CCPS Guidelines and Resources

Other CCPS Guidelines provide additional resources for topics discussed in this Guideline. Some of these include:

- **Guidelines for Engineering Design for Process Safety**
- **Guidelines for Evaluating the Characteristics of Vapor Cloud Explosions, Flash Fires, and BLEVES**
- **Guidelines for Facility Siting and Layout**
- **Guidelines for Technical Planning for Onsite Emergencies**
- **Guidelines for Integrating Process Safety Management, Environment, Safety, Health and Quality**
- **Guidelines for Technical Management of Process Safety**
- **Guidelines for Safe Warehousing of Chemicals**
Table 1-1
Examples of Major Fire Incidents

<table>
<thead>
<tr>
<th>Year / Location</th>
<th>Incident Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1984</td>
<td>LPG Terminal—a major fire and series of catastrophic Boiling Liquid Expanding Vapor Explosions (BLEVEs) killed 500 people and destroyed the LPG terminal.</td>
</tr>
<tr>
<td>Mexico City, Mexico</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>Process Facility—a fire originated in the feed heater of a hydrocracker and resulted in one fatality and significant damage to a Hydrocracking Unit.</td>
</tr>
<tr>
<td>New Brunswick, Canada</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>Terminal—16 tanks, containing approximately 30,000 barrels of crude oil each, caught fire after being struck by lightning.</td>
</tr>
<tr>
<td>Ras Gharib, Egypt</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>Process Facility—a fire in a process unit resulted in three fatalities, significant downtime, and public scrutiny of refinery operations.</td>
</tr>
<tr>
<td>California, USA</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>Warehouse—a pharmaceutical warehouse fire resulted in damage to adjacent warehouses and a total property loss of 100 million dollars.</td>
</tr>
<tr>
<td>Ohio, USA</td>
<td></td>
</tr>
</tbody>
</table>

Additional resources include the National Fire Protection Association (NFPA), the Society for Fire Protection Engineers (SFPE), Fire Suppression Systems Association (FSSA), and the American Petroleum Institute (API). Refer to the References section of this Guideline for specific resources.
MANAGEMENT OVERVIEW

Fire protection is a science that stretches as far back as the Roman Empire. The aqueducts and the Corp of Vigilantes gave the Romans what they needed for fire protection and control. Through the years, the practice of fire protection has evolved from a problem-solving approach to a mature, systematic discipline.

Most processing facilities, due to the materials being handled, have a high potential for loss due to fire. Management teams (like individuals) tend to believe that major incidents, such as fires, are unlikely to occur at their facility. This perception is not accurate. The statistics related to the number of fires do not vary widely year-to-year and losses continue to occur. To effectively implement a fire protection program, it is important to understand that a significant loss is possible. Top management personnel should view fire protection as a benefit - an integral part of the recovery of operations after an incident - and not just as a cost.

This book will assist organizations in making informed, risk-based decisions to determine the appropriate level of fire protection.

2.1. Management Commitment

All responsible organizations will have a fire protection program to protect their assets. For some, it may be fire extinguishers in the warehouse; while for others it is a department of professionals supplementing numerous automatic fire detection and suppression systems. Due to the nature of the program, it is often necessary to involve several individuals, each having a specific, assigned responsibility.
Management commitment to support the fire protection program is necessary if fire protection is to be available when needed. The commitment includes ensuring adequate staffing, resources, and technical support is provided. While fire protection is included with new capital projects, sufficient resources to maintain these systems must be included in the facility’s budget for maintenance.

Management has a responsibility to fully define the roles and responsibilities of each individual. These duties should not be assigned as an add-on or left to chance as this creates the impression that fire protection is not a priority issue. No matter the size of the organization nor the complexity of the program, the need for an effective fire protection program is always present.

2.2. Integration with Other Management Systems

While the implementation of risk management systems may vary from company to company, they are a fundamental activity in the chemical, petrochemical, and hydrocarbon processing industries. A company’s approach to risk management reflects its beliefs and values.

An organization needs to develop a strategy for fire protection. This allows for cost-effective and efficient implementation and continuous improvement in fire protection systems. This strategy must be reviewed and updated periodically because of the many changes that take place within processing industries.

A strategy for fire protection is only one part of an overall framework of guidance to allow consistent, methodical evaluation and management of hazards and risk. There are many ways to approach risk management; however, a strategy and procedures for fire protection must be established and followed.

2.3. Balancing Protection

Three factors contribute to the extent of any fire loss. The first involves an act, omission, or system failure allowing an ignition source and fuel to combine. The second involves the potential for continued fire growth and escalation. The third factor is extinguishment.

Providing the right level of protection can be a delicate balancing act. Overprotection results in unnecessary capital expenditure and higher ongoing costs. The larger the system and the more complex its components, the more capital will need to be invested and the greater the requirements for training on fire protection system operations, testing, and maintenance. Overprotection may result in an overconfidence in the ability of the system to address all situations and a subsequent deterioration in readiness. There are minimum require-