Guidelines for Preventing Human Error in Process Safety

Center for Chemical Process Safety
Guidelines for Preventing Human Error in Process Safety
Publications Available from the
CENTER FOR CHEMICAL PROCESS SAFETY
of the
AMERICAN INSTITUTE OF CHEMICAL ENGINEERS

Guidelines for Preventing Human Error in Process Safety
Guidelines for Evaluating the Characteristics of Vapor Cloud Explosions, Flash Fires, and BLEVEs
Guidelines for Implementing Process Safety Management Systems
Guidelines for Safe Automation of Chemical Processes
Guidelines for Engineering Design for Process Safety
Guidelines for Auditing Process Safety Management Systems
Guidelines for Investigating Chemical Process Incidents
Guidelines for Hazard Evaluation Procedures, Second Edition with Worked Examples
Plant Guidelines for Technical Management of Chemical Process Safety
Guidelines for Technological Management of Chemical Process Safety
Guidelines for Chemical Process Quantitative Risk Analysis
Guidelines for Process Equipment Reliability Data, with Data Tables
Guidelines for Vapor Release Mitigation
Guidelines for Safe Storage and Handling of High Toxic Hazard Materials
Guidelines for Use of Vapor Cloud Dispersion Models
Safety, Health, and Loss Prevention in Chemical Processes: Problems for Undergraduate Engineering Curricula
Workbook of Test Cases for Vapor Cloud Source Dispersion Models
CCPS/AICHE Directory of Chemical Process Safety Services
Guidelines for Preventing Human Error in Process Safety

Center for Chemical Process Safety
To the Memory of John Embrey, 1937–1993

Copyright © 1994
American Institute of Chemical Engineers
345 East 47th Street
New York, New York 10017

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the prior permission of the copyright owner.

Library of Congress Cataloging-in Publication Data
Guidelines for preventing human error in process safety.
p. cm.
Includes bibliographical references and index.
I. American Institute of Chemical Engineers. Center for Chemical Process Safety.
TP155.5.G778 1994
660' .2804—dc20 94–2481
CIP

This book is available at a special discount when ordered in bulk quantities. For information, contact the Center for Chemical Process Safety of the American Institute of Chemical Engineers at the address shown above.

It is sincerely hoped that the information presented in this document will lead to an even more impressive safety record for the entire industry; however, the American Institute of Chemical Engineers, its consultants, CCPS subcommittee members, their employers, their employers’ officers and directors, and Human Reliability Associates disclaim making or giving any warranties or representations, express or implied, including with respect to fitness, intended purpose, use or merchantability and/or correctness or accuracy of the content of the information presented in this document. As between (1) the American Institute of Chemical Engineers, its consultants, CCPS subcommittee members, their employers, their employers’ officers and directors, and Human Reliability Associates and (2) the user of this document, the user accepts any legal liability or responsibility whatsoever for the consequence of its use or misuse.
Contents

List of Figures and Tables ix
Preface xii
Glossary and Acronyms xvii

1. Introduction: The Role of Human Error in Chemical Process Safety 1

1.1. Introduction 1
1.2. The Role of Human Error in System Accidents 4
1.3. Why Is Human Error Neglected in the CPI? 10
1.4. Benefits of Improved Human Performance 10
1.5. The Traditional and System-induced Error Approach 12
1.6. A Demand–Resource Mismatch View of Error 15
1.7. A Case Study Illustrating the System-Induced Error Approach 17
1.8. From Theory to Practice 19
1.9. Appendix: Case Studies 22

2. Understanding Human Performance and Error 39

2.1. Purpose of the Chapter 39
2.2. Concepts of Human Error 39
2.3. An Overview of the Four Perspectives on Human Error 44
2.4. The Traditional Safety Engineering Approach to Accidents and Human Error 47
2.5. The Human Factors Engineering and Ergonomics Approach (HF/E) 55
2.6. The Cognitive Engineering Perspective 67
2.7. The Sociotechnical Perspective 85
2.8. Summary 93
2.9. Appendix 2A: Process Plant Example of the Stepladder Model 94
2.10. Appendix 2B: Flowcharts for Using the Rasmussen Sequential Model for Incident Analysis (Petersen, 1985) 96
2.11. Appendix 2C: Case Study Illustrating the Use of the Sequential Model 100
3. Factors Affecting Human Performance in the Chemical Industry
 3.1. Introduction
 3.2. Applications of Performance-Influencing Factors
 3.3. A Classification Structure for Performance-Influencing Factors
 3.4. Operating Environment
 3.5. Task Characteristics
 3.6. Operator Characteristics
 3.7. Organizational and Social Factors
 3.8. Interaction of Performance-Influencing Factors
 3.9. Variability of Human Performance during Normal and Emergency Situations
 3.10. Summary

4. Analytical Methods for Predicting and Reducing Human Error
 4.1. Introduction
 4.2. Data Acquisition Techniques
 4.3. Task Analysis
 4.4. Human Error Analysis Techniques
 4.5. Ergonomics Checklists
 4.6. Summary

5. Qualitative and Quantitative Prediction of Human Error in Risk Assessment
 5.1. Introduction
 5.2. The Role of Human Reliability in Risk Assessment
 5.3. System for Predictive Error Analysis and Reduction (SPEAR)
 5.4. Critical Task Identification and Screening Analysis
 5.5. Qualitative Human Error Analysis
 5.6. Representation
 5.7. Quantification
 5.8. Summary
 5.9. Appendix 5A: Influence Diagram Calculations

6. Data Collection and Incident Analysis Methods
 6.1. Introduction
 6.2. An Overview of Data Collection Systems
 6.3. Types of Data Collection Systems
List of Figures and Tables

FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Production System Structure</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>Conditions Conducive to Accidents</td>
<td>9</td>
</tr>
<tr>
<td>1.3</td>
<td>The Dynamics of Incident Causation</td>
<td>11</td>
</tr>
<tr>
<td>1.4</td>
<td>Accident Causation Sequence</td>
<td>14</td>
</tr>
<tr>
<td>1.5</td>
<td>System-Induced Error Approach</td>
<td>15</td>
</tr>
<tr>
<td>1.6</td>
<td>A Demand–Resource View of Human Error</td>
<td>16</td>
</tr>
<tr>
<td>1.7</td>
<td>Overview of the Systems Approach</td>
<td>20</td>
</tr>
<tr>
<td>1.8</td>
<td>The Light Shows That the Solenoid Is Deenergized, Not That the Oxygen Flow Has Stopped</td>
<td>29</td>
</tr>
<tr>
<td>1.9</td>
<td>Valve B was Operated by Different Workers</td>
<td>34</td>
</tr>
<tr>
<td>2.1</td>
<td>Arrangement of Bypass Pipe at Flixborough</td>
<td>43</td>
</tr>
<tr>
<td>2.2</td>
<td>The Human–Machine Interface</td>
<td>58</td>
</tr>
<tr>
<td>2.3</td>
<td>Modes of Interacting with the World</td>
<td>71</td>
</tr>
<tr>
<td>2.4</td>
<td>The Continuum between Conscious and Automatic Behavior</td>
<td>71</td>
</tr>
<tr>
<td>2.5</td>
<td>Dynamics of Generic Error Modeling System (GEMS)</td>
<td>72</td>
</tr>
<tr>
<td>2.6</td>
<td>Classification of Human Errors</td>
<td>75</td>
</tr>
<tr>
<td>2.7</td>
<td>Decision-Making Model including Feedback</td>
<td>77</td>
</tr>
<tr>
<td>2.8</td>
<td>Flow Chart for Classifying Skill-, Rule-, and Knowledge-Based Processing</td>
<td>80</td>
</tr>
<tr>
<td>2.9</td>
<td>Sequential Model of Error Causation Chain</td>
<td>82</td>
</tr>
<tr>
<td>2.10</td>
<td>TRIPOD Failure-State Profiles of Two Production Platform</td>
<td>87</td>
</tr>
<tr>
<td>2.11</td>
<td>Factors in Human Factors Assessment Methodology</td>
<td>88</td>
</tr>
<tr>
<td>2.12</td>
<td>Example of use of HFAM Tool for Evaluation</td>
<td>89</td>
</tr>
<tr>
<td>2.13</td>
<td>Classification of Causal Factors</td>
<td>91</td>
</tr>
<tr>
<td>2.14</td>
<td>Sociotechnical Model Underlying Audit Tool</td>
<td>92</td>
</tr>
</tbody>
</table>
FIGURE 2.15. Flowchart for Determining Initiating Events. 97
FIGURE 2.16. Flowchart for Determining Internal Error Mechanisms. 98
FIGURE 2.17. Flowchart for Determining Internal Error Modes. 99
FIGURE 3.1. Circadian Variations in Oral Temperatures and Alertness for Six Process Workers. 117
FIGURE 3.2. Circadian Variations in Performance on High- and Low-Memory Load Tasks. 118
FIGURE 3.3. Circadian Variations in Errors Made by Process Workers Compared with Body Temperature Changes. 118
FIGURE 3.4. Risk Homeostasis Model. 139
FIGURE 3.5 Individual and Cognitive Phenomena under Stress. 151
FIGURE 4.1. Activity Analysis for the Control of “Substance” in Paper Making. 159
FIGURE 4.2. HTA Diagram of Isolating a Level Transmitter for Maintenance 164
FIGURE 4.3. Tabular HTA Showing How to Optimize a High Pressure in a Distillation Column 166
FIGURE 4.4. Event Tree for a Gas Leak from a Furnace. 168
FIGURE 4.5. Decision/Action Flow Diagram of a Furnace Start-Up Operation. 171
FIGURE 4.6. Decision/Action Diagram for Fault Diagnosis in a Crude Distillation Plant. 173
FIGURE 4.7. Temporal Operational Sequence Diagram in a Slitting Coated Fabric Operation. 174
FIGURE 4.8. Partitioned Operational Sequence Diagram for Loading a Recipe to a Computer Controlled Reactor. 175
FIGURE 4.9. Block Diagram and Signal-Flow Graph for “Substance” Control System in Paper Making. 178
FIGURE 4.10. Decision/Action Elements of the Rasmussen Model. 181
FIGURE 4.11. CADET Analysis of a Fault-Diagnostic Task in an Oil Refinery. 182
FIGURE 4.12. Murphy Diagram for “Planning” Element of Rasmussen Model. 184
FIGURE 4.13. Example of a Mental Model Elicited by IMAS. 185
FIGURE 4.15. How to Use Various TA Methods in Human Factors Application 189
FIGURE 4.16. Error Classification used in Predictive Error Analysis 192
FIGURE 4.17. Documentation of the Results of Human Error Analysis 193
FIGURE 5.1. Flammable Liquid Storage Tank P&ID. 203
FIGURE 5.2. Fault Tree Analysis of Flammable Liquid Storage Tank. 204
LIST OF FIGURES AND TABLES

FIGURE 5.3. Sample of HAZOP Worksheet (CCPS, 1985). 206
FIGURE 5.4. System for Predictive Error Analysis and Reduction. 208
FIGURE 5.5. Relationship of SPEAR to Human Reliability Assessment Methodology 210
FIGURE 5.6. Chlorine Tanker Task Analysis. 213
FIGURE 5.7. Error Classification. 215
FIGURE 5.8. Results of Predictive Human Error Analysis. 219
FIGURE 5.9. Error Reduction Recommendations Based on PHEA 220
FIGURE 5.10. Offshore Drilling Blowout Fault Tree Subtree, “Fail to use shear rams to prevent blowout.” 221
FIGURE 5.11. Operator Action Tree for ESD Failure Scenario. 223
FIGURE 5.12. THERP Event Tree. 227
FIGURE 5.13. Propane Condenser Schematic. 229
FIGURE 5.14. HRA Event Tree for Improper Condenser Isolation. 231
FIGURE 5.15. Influence Diagram. 239
FIGURE 6.1. Overall Structure of Data Collection System 250
FIGURE 6.2. Accident Causation Model. 258
FIGURE 6.3. Onion Model of Accident Causation. 263
FIGURE 6.4. Data Interpretation, Remedial Strategy Generation, and Implementation. 269
FIGURE 6.5. The Spanish Campsite Disaster Described Using the Tree of Causes Diagram. 272
FIGURE 6.6. Management Oversight and Risk Tree. 274
FIGURE 6.7. STEP Diagram for the Spanish Campsite Disaster. 276
FIGURE 6.8. Root Cause Tree. 279
FIGURE 6.9. HPIP Flowchart. 283
FIGURE 6.10. The Six Steps of Change Analysis. 284
FIGURE 7.1. Simplified Process Diagram: Hydrocarbon Leak from Pipe. 293
FIGURE 7.2. STEP Diagram of Hydrocarbon Leak from Pipe 300
FIGURE 7.3. Statements of Witnesses 304
FIGURE 7.4. Investigating Engineer’s Report 306
FIGURE 7.5. Data for Process Data Recording System. 306
FIGURE 7.6. Simplified Schematic Plant Diagram. 308
FIGURE 7.7. Charging Manifold. 309
FIGURE 7.8. Variation Tree for Mischarging of Solvent. 310
FIGURE 7.9. Events and Causal Factors Chart. 313
FIGURE 7.10. Diagram Showing the Flow of Solvents from the Storage Tanks to the Blenders and Reactors. 315
FIGURE 7.11. HTA of Pumping Solvent to Blender. 316
FIGURE 7.12. Extract of PHEA for the “pumping solvent” Task. 318
LIST OF FIGURES AND TABLES

FIGURE 7.13. Example of Step-by-Step Procedure for Pumping Solvents. 322
FIGURE 7.14. Example of Checklist for Pumping Solvents. 327
FIGURE 7.15. Original Graphic Display for Furnace A. 329
FIGURE 7.16. Hierarchical Task Analysis of the Task of Increasing Furnace Load. 331
FIGURE 7.17 Recommended Graphic Display for Furnace A. 332
FIGURE 7.18. Overview Display of the Four Furnaces of the Distillation Unit. 333
FIGURE 7.20. Task Analysis of Operator Response to a Significant Unignited Gas Leak in MSM. 341
FIGURE 8.1. The Phases of a Capital Project. 349
FIGURE 8.2. General Error Management Structure. 357
FIGURE 8.3. Stages in Setting Up an Error Management Program. 358

TABLES

TABLE 1.1 Studies of Human Error in the CPI: Magnitude of the Human Error Problem 6
TABLE 2.1 Comparisons between Various Perspectives on Human Error 45
TABLE 2.2 Effect of Different Motivational Schemes on Use of PPE (adapted from Pirani and Reynolds, 1976) 51
TABLE 2.3 Example Error Reduction Recommendations Arising from the SRK Model 83
TABLE 3.1 Examples of PIF Scales 106
TABLE 3.2 A Classification Structure of Performance Influencing Factors 108
TABLE 4.1 A Checklist on Procedures Extracted from the “Short Guide to Reducing Human Error” 198
TABLE 5.1 Events Included in the HRA Event Tree 232
TABLE 5.2 Human Reliability Analysis Results 232
TABLE 5.3 PIF Ratings 235
TABLE 5.4 Rescaled Ratings and SLIs 236
TABLE 5.5 Effects of Improvements in Procedures on Error Probabilities Calculated Using SLIM 238
TABLE 7.1 Data Collection Techniques in the Human Factors Audit 336
TABLE 7.2 Major Human Errors Affecting Time to Blowdown 342
The Center for Chemical Process Safety (CPS) was established in 1985 by the American Institute of Chemical Engineers (AIChE) for the express purpose of assisting the Chemical and Hydrocarbon Process Industries in avoiding or mitigating catastrophic chemical accidents. To achieve this goal, CCPS has focused its work on four areas:

- establishing and publishing the latest scientific and engineering guidelines (not standards) for prevention and mitigation of incidents involving toxic and/or reactive materials;
- encouraging the use of such information by dissemination through publications, seminars, symposia and continuing education programs for engineers;
- advancing the state-of-the-art in engineering practices and technical management through research in prevention and mitigation of catastrophic events; and
- developing and encouraging the use of undergraduate education curricula that will improve the safety knowledge and awareness of engineers.

It is readily acknowledged that human errors at the operational level are a primary contributor to the failure of systems. It is often not recognized, however, that these errors frequently arise from failures at the management, design, or technical expert levels of the company. This book aims to show how error at all of these levels can be minimized by the systematic application of tools, techniques and principles from the disciplines of human factors, ergonomics, and cognitive psychology. The book is the result of a project in which a group of volunteer professionals from CCPS sponsor companies prepared a project proposal and then worked with the successful contractor, Dr. David Embrey of Human Reliability Associates, to produce this book. The ensuing dialogue has resulted in a book that not only provides the underlying principles and theories of the science of human factors, but also goes on to show their application to process safety problems and to the CCPS technical management of process safety system.
ACKNOWLEDGMENTS

The American Institute of Chemical Engineers (AIChE) wishes to thank the Center for Chemical Process Safety (CCPS) and those involved in its operation, including its many sponsors, whose funding made this project possible; the members of its Technical Steering Committee who conceived of and supported this *Guidelines* project and the members of its Human Reliability Subcommittee for their dedicated efforts, technical contributions, and enthusiasm.

This book was written by Dr. David Embrey of Human Reliability Associates, with the assistance of the CCPS Human Reliability Subcommittee. Section 8.2, Managing Human Error by Design, which deals with the application of human factors principles in the process safety management system, was written by the Human Reliability Subcommittee.

- **The main authors of the text of the book were the following staff members of Human Reliability Associates:**
 - Dr. David Embrey
 - Dr. Tom Kontogiannis
 - Mark Green
- **Other contributions from the following individuals are gratefully acknowledged:**
 - Dr. Trevor Kletz
 - Dr. Deborah Lucas
 - Barry Kirwan
 - Andrew Livingston
- **The members of the Human Reliability Subcommittee were:**
 - Gary A. Page, American Cyanamid Co., (Chairman)
 - Joseph Balkey, Union Carbide Corp.
 - S. Barry Gibson, DuPont
 - Mark D. Johnson, Eastman Kodak Co.
 - Joseph B. Mettalia, Jr., CCPS Staff Consultant
 - Gary Van Sciver, Rohm and Haas Co.
 - Joseph C. Sweeney, ARCO Chemical Co.
- **Reviewers were:**
 - Randolph A. Freeman, Monsanto Co.
 - Thomas O. Gibson, The Dow Chemical Co.
 - William N. Helmer, Hoechst Celanese Corp.
 - Michele M. Houser, Martin Marietta Energy Systems
 - Trevor A. Kletz, Process Safety Consultant
 - Donald K. Lorenzo, Process Safety Institute
 - Denise B. McCafferty, DNV Technica, Inc.
 - Michael T. McHale, Air Products and Chemicals, Inc.
 - David Meister, Consultant
Robert W. Ormsby, Air Products and Chemicals, Inc.
Wayne A. Pennycook, Exxon
John D. Snell, OxyChem
Marvin F. Specht, Hercules Incorporated
Donald Turner, CH2M Hill
Lester H. Wittenberg, CCPS

The Human Reliability Subcommittee wishes to express its appreciation to Lester Wittenberg, Thomas Carmody, and Bob G. Perry of CCPS for their enthusiastic support.
This Page Intentionally Left Blank
Glossary and Acronyms

GLOSSARY

Active Errors An active human error is an intended or unintended action that has an immediate negative consequence for the system.

Cognitive “tunnel vision” A characteristic of human performance under stress. Information is sought that confirms the initial hypothesis about the state of the process while disregarding information that contradicts the hypothesis.

Encystment A characteristic of human performance under stress. Encystment occurs when minor problems and details are focused on to excess while more important issues are ignored.

External Error Mode The observable form of an error, for example, an action omitted, as distinct from the underlying process

Externals Psychological classification of individuals who assume (when under stress), that the problem is out of their immediate control and therefore seek assistance.

Human Error Probability The probability that an error will occur during the performance of a particular job or task within a defined time period. Alternative definition: The probability that the human operator will fail to provide the required system function within the required time.

Human Information-Processing A view of the human operator as an information-processing system. Information-processing models are conventionally expressed in terms of diagrams which indicate the flow of information through stages such as perception, decision-making, and action.

Human Reliability The probability that a job will be successfully completed within a required minimum time.

Human–Machine Interface The boundary across which information is transmitted between the process and the worker, for example, analog displays, VDUs.
Internal Error Mechanism The psychological process (e.g., strong stereotype takeover) that underlies an external error mode.

Internal Error Mode The stage in the sequence of events preceding an external error mode at which the failure occurred (e.g., failed to detect the initial signal).

Internals Individuals who, when under stress, are likely to seek information about a problem and attempt to control it themselves.

Knowledge-Based Level of Control Information processing carried out consciously as in a unique situation or by an unskilled or occasional user

Latent error An erroneous action or decision for which the consequences only become apparent after a period of time when other conditions or events combine with the original error to produce a negative consequence for the system.

Locus of Control The tendency of individuals to ascribe events to external or internal causes, which affects the degree of control that they perceive they have over these events. (See also **Externals** and **Internals**.)

Manual Variability An error mechanism in which an action is not performed with the required degree of precision (e.g., time, spatial accuracy, force).

Mindset Syndrome A stress-related phenomenon in which information that does not support a person's understanding of a situation is ignored. (See also **Cognitive tunnel vision**.)

Mistakes Errors arising from a correct intentions that lead to incorrect action sequences. Such errors may arise, for example, from lack of knowledge or inappropriate diagnosis.

Performance-Influencing Factors Factors that influence the effectiveness of human performance and hence the likelihood of errors.

Population Stereotype Expectations held by a particular population with regard to the expected movement of a control or instrument indicator and the results or implications of this movement

Reactance Occurs when a competent worker attempts to prove that his or her way of doing things is superior in response to being reassigned to a subordinate position.

Recovery Error Failure to correct a human error before its consequences occur.

Risk Assessment A methodology for identifying the sources of risk in a system and for making predictions of the likelihood of systems failures.

Risk Homeostasis The theory that an operator will attempt to maintain a stable perception of risk following the implementation of new technology that increases the safety of a human–machine system. The theory predicts that operators will take greater risks where more safety devices are incorporated into the system.
Role Ambiguity Exists when an individual has inadequate information about his or her roles or duties.

Role Conflict Exists when there is the simultaneous occurrence of two or more sets of responsibilities or roles such that compliance with one is not compatible with compliance with the other(s).

Root Causes The combinations of conditions or factors that underlie accidents or incidents.

Rule-Based Level of Control In the context of chemical industry tasks, the type of human information processing in which diagnoses are made and actions are formulated on the basis of rules (e.g., “if the symptoms are X then the problem is Y”).

Rule Book Culture An organization in which management or workers believe that all safety problems can be resolved by rigid adherence to a defined set of rules.

Skill-Based Level of Control A mode of information processing characterized by the smooth execution of highly practiced, largely physical actions requiring little conscious monitoring.

Slips Errors in which the intention is correct but failure occurs when carrying out the activity required. Slips occur at the skill-based level of information processing.

Stereotype Fixation Occurs when an individual misapplies rules or procedures that are usually successful.

Stereotype Takeover Occurs when an incorrect but highly practiced action is substituted for a correct but less frequently occurring action in a similar task. Also called a strong habit intrusion.

Traditional Safety Engineering A safety management policy that emphasizes individual responsibility for system safety and the control of error by the use of motivational campaigns and punishment.

Vagabonding Stress-related phenomenon in which a person’s thoughts move rapidly and uncontrollably among issues, treating each superficially.

Verbal Protocol Analysis Technique in which the person is asked to give a “self-commentary” as he or she undertakes a task.

Violation An error that occurs when an action is taken that contravenes known operational rules, restrictions, and/or procedures. The definition of violations excludes actions taken to intentionally harm the system (i.e., sabotage).

ACRONYMS

AT Area Technician

CADET Critical Action and Decision Evaluation Technique
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CADs</td>
<td>Critical Actions or Decisions</td>
</tr>
<tr>
<td>CCPS</td>
<td>Center for Chemical Process Safety</td>
</tr>
<tr>
<td>CCR</td>
<td>Central Control Room</td>
</tr>
<tr>
<td>CCTV</td>
<td>Closed-Circuit Television</td>
</tr>
<tr>
<td>CHAP</td>
<td>Critical Human Action Profile</td>
</tr>
<tr>
<td>CPI</td>
<td>Chemical Process Industry</td>
</tr>
<tr>
<td>CPQRA</td>
<td>Chemical Process Quantitative Risk Assessment</td>
</tr>
<tr>
<td>CR</td>
<td>Control Room</td>
</tr>
<tr>
<td>CRT</td>
<td>Cathode Ray Tube</td>
</tr>
<tr>
<td>CSE</td>
<td>Cognitive Systems Engineering</td>
</tr>
<tr>
<td>CT</td>
<td>Critical Tasks</td>
</tr>
<tr>
<td>CTI</td>
<td>Critical Task Identification</td>
</tr>
<tr>
<td>CV</td>
<td>Current Values</td>
</tr>
<tr>
<td>DA chart</td>
<td>Decision Action Chart</td>
</tr>
<tr>
<td>ECFC</td>
<td>Events and Causal Factors Charting</td>
</tr>
<tr>
<td>ERS</td>
<td>Error Reduction Strategies</td>
</tr>
<tr>
<td>FMECA</td>
<td>Failure Modes and Effects of Criticality Analysis</td>
</tr>
<tr>
<td>GEMS</td>
<td>Generic Error Modeling System</td>
</tr>
<tr>
<td>HAZOP</td>
<td>Hazard and Operability Study</td>
</tr>
<tr>
<td>HEA</td>
<td>Human Error Analysis</td>
</tr>
<tr>
<td>HEP</td>
<td>Human Error Probability</td>
</tr>
<tr>
<td>HFAM</td>
<td>Human Factors Assessment Methodology</td>
</tr>
<tr>
<td>HFE/E</td>
<td>Human Factors Engineering and Ergonomics Approach</td>
</tr>
<tr>
<td>HMI</td>
<td>Human–Machine Interface</td>
</tr>
<tr>
<td>HPES</td>
<td>Human Performance Evaluation System</td>
</tr>
<tr>
<td>HPIP</td>
<td>Human Performance Investigation Process</td>
</tr>
<tr>
<td>HRA</td>
<td>Human Reliability Analysis</td>
</tr>
<tr>
<td>HRAM</td>
<td>Human Reliability Assessment Method</td>
</tr>
<tr>
<td>HRP</td>
<td>Hazard Release Potential</td>
</tr>
<tr>
<td>HSP</td>
<td>Hazard Severity Potential</td>
</tr>
<tr>
<td>HTA</td>
<td>Hierarchical Task Analysis</td>
</tr>
<tr>
<td>IDA</td>
<td>Influence Diagram Approach</td>
</tr>
<tr>
<td>IMAS</td>
<td>Influence Modeling and Assessment System</td>
</tr>
<tr>
<td>IRS</td>
<td>Incident Reporting Systems</td>
</tr>
<tr>
<td>ISRS</td>
<td>International Safety Rating Systems</td>
</tr>
<tr>
<td>LTA</td>
<td>Less Than Adequate</td>
</tr>
<tr>
<td>MAST</td>
<td>Memory and Search Test</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>MORT</td>
<td>Management Oversight and Risk Tree</td>
</tr>
<tr>
<td>MSM</td>
<td>Molecular Sieve Module</td>
</tr>
<tr>
<td>NIOSH</td>
<td>National Institute of Occupational Safety and Health</td>
</tr>
<tr>
<td>NMRS</td>
<td>Near Miss Reporting System</td>
</tr>
<tr>
<td>NRC</td>
<td>US Nuclear Regulatory Commission</td>
</tr>
<tr>
<td>OAET</td>
<td>Operator Action Event Tree</td>
</tr>
<tr>
<td>OSD</td>
<td>Operational Sequence Diagram</td>
</tr>
<tr>
<td>P&ID</td>
<td>Piping and Instrumentation Diagram</td>
</tr>
<tr>
<td>PA</td>
<td>Public Address</td>
</tr>
<tr>
<td>PCS</td>
<td>Process Control System</td>
</tr>
<tr>
<td>PDCC</td>
<td>Program Development and Coordination Committee</td>
</tr>
<tr>
<td>PHEA</td>
<td>Predictive Human Error Analysis</td>
</tr>
<tr>
<td>PIF</td>
<td>Performance Influencing Factors</td>
</tr>
<tr>
<td>PORV</td>
<td>Pilot-Operated Relief Valve</td>
</tr>
<tr>
<td>PPE</td>
<td>Personal Protective Equipment</td>
</tr>
<tr>
<td>PRV</td>
<td>Pressure Relief Valve</td>
</tr>
<tr>
<td>PSA</td>
<td>Probabilistic Safety Analysis</td>
</tr>
<tr>
<td>PSF</td>
<td>Performance Shaping Factors</td>
</tr>
<tr>
<td>QRA</td>
<td>Quantitative Risk Assessment</td>
</tr>
<tr>
<td>RCAS</td>
<td>Root Cause Analysis System</td>
</tr>
<tr>
<td>RHT</td>
<td>Risk Homeostasis Theory</td>
</tr>
<tr>
<td>SFG</td>
<td>Signal Flow Graphs</td>
</tr>
<tr>
<td>SLI</td>
<td>Success Likelihood Index</td>
</tr>
<tr>
<td>SLIM</td>
<td>Success Likelihood Index Method</td>
</tr>
<tr>
<td>SM</td>
<td>Separator Module</td>
</tr>
<tr>
<td>SOP</td>
<td>Standard Operating Procedure</td>
</tr>
<tr>
<td>SORTM</td>
<td>Stimulus Operation Response Team Performance</td>
</tr>
<tr>
<td>SP</td>
<td>Set Points</td>
</tr>
<tr>
<td>SPEAR</td>
<td>System for Predictive Error Analysis and Reduction</td>
</tr>
<tr>
<td>SRK</td>
<td>Skill–Rule–Knowledge-Based Model</td>
</tr>
<tr>
<td>STAHR</td>
<td>Sociotechnical Approach to Human Reliability</td>
</tr>
<tr>
<td>STEP</td>
<td>Sequentially Timed Events Plotting Procedure</td>
</tr>
<tr>
<td>TA</td>
<td>Task Analysis</td>
</tr>
<tr>
<td>THERP</td>
<td>Technique for Human Error Rate Prediction</td>
</tr>
<tr>
<td>TQM</td>
<td>Total Quality Management</td>
</tr>
<tr>
<td>TSE</td>
<td>Traditional Safety Engineering</td>
</tr>
<tr>
<td>VDU</td>
<td>Visual Display Unit</td>
</tr>
</tbody>
</table>
This Page Intentionally Left Blank
Guidelines for Preventing Human Error in Process Safety
1

Introduction: The Role of Human Error in Chemical Process Safety

1.1. INTRODUCTION

1.1.1. Objective

This book has been written to show how the science of human factors can be applied at the plant level to significantly improve human performance and reduce human error, thus improving process safety.

1.1.2. Scope and Organization

The application of the science of human factors to eliminating error in all aspects of process design, management, operation, and maintenance is the focus of this work. Human error has been a major cause of almost all of the catastrophic accidents that have occurred in the chemical process industries (CPI). If one adopts the broad view of human error as being the result of a mismatch between human capabilities and process demands, then clearly management’s role is critical in the following areas:

- Defining the process
- Providing the resources to manage, operate, and maintain the process
- Setting up the feedback systems to monitor the processes which are critical to ensuring safe operation

The book begins with a discussion of the theories of error causation and then goes on to describe the various ways in which data can be collected, analyzed, and used to reduce the potential for error. Case studies are used to teach the methodology of error reduction in specific industry operations. Finally, the book concludes with a plan for a plant error reduction program and a discussion of how human factors principles impact on the process safety management system.
The book is organized as follows:

Chapter 1, The Role of Human Error in Chemical Process Safety, discusses the importance of reducing human error to an effective process safety effort at the plant. The engineers, managers, and process plant personnel in the CPI need to replace a perspective that has a blame and punishment view of error with a systems viewpoint that sees error as a mismatch between human capabilities and demands.

Chapter 2, Understanding Human Performance and Error, provides a comprehensive overview of the main approaches that have been applied to analyze, predict, and reduce human error. This chapter provides the reader with the underlying theories of human error that are needed to understand and apply a systems approach to its reduction.

Chapter 3, Factors Affecting Human Performance in the Chemical Industry, describes how a knowledge of "performance-influencing factors" (PIFs), can be used to identify and then eliminate error-causing conditions at the plant.

Chapter 4, Analytical Methods for Predicting and Reducing Human Error, contains a discussion and critique of the various methods that are available for analyzing a process for its potential for human error.

Chapter 5, Quantitative and Qualitative Prediction of Human Error in Safety Assessments, describes a systematic process for identifying and assessing the risks from human error, together with techniques for quantifying human error probabilities.

Chapter 6, Data Collection and Incident Analysis Methods, examines the pitfalls involved in collecting data on human error and suggests possible approaches to improving the quality of the data.

Chapter 7, Case Studies, uses examples that illustrate the application of the various error analysis and reduction techniques to real world process industry cases.

Chapter 8, A Systematic Approach to the Management of Human Error, explains how the manager and safety professional can use human factors principles in the management of process safety. This chapter also provides a practical plan for a plant human error reduction program that will improve productivity and quality as well.

1.1.3. Purpose of This Book

The objectives of this book are ambitious. It is intended to provide a comprehensive source of knowledge and practical advice that can be used to substantially reduce human error in the CPI. The following sections describe how this is achieved.
1.1.3.1. **Consciousness Raising**

A major objective is to provide engineers, managers, and process plant personnel in the CPI with an entirely new perspective on human error. In particular, the intention is to change the attitudes of the industry such that human error is removed from the emotional domain of blame and punishment. Instead, a systems perspective is taken, which views error as a natural consequence of a mismatch between human capabilities and demands, and an inappropriate organizational culture. From this perspective, the factors that directly influence error are ultimately controllable by management. This book is intended to provide tools, techniques, and knowledge that can be applied at all levels of the organization, to optimize human performance and minimize error. One of the major messages of this book, with regard to implementing the ideas that it contains, is that methods and techniques will only be effective in the long term if they are supported by the active participation of the entire workforce. To this extent, the consciousness raising process has to be supported by training. The primary focus for raising the awareness of approaches to human error and its control is in Chapters 2 and 7.

1.1.3.2 **Provision of Tools and Techniques**

This book brings together a wide range of tools and techniques used by human factors and human reliability specialists, which have proved to be useful in the context of human performance problems in the CPI. Although many human factors practitioners will be familiar with these methods, this book is intended to provide ready access to both simple and advanced techniques in a single source. Where possible, uses of the techniques in a CPI context are illustrated by means of case studies.

Chapter 4 focuses on techniques which are applied to a new or existing system to optimize human performance or qualitatively predict errors. Chapter 5 shows how these techniques are applied to risk assessment, and also describes other techniques for the quantification of human error probabilities. Chapters 6 and 7 provide an overview of techniques for analyzing the underlying causes of incidents and accidents that have already occurred.

1.1.3.3 **Provision of Solutions to Specific Problems**

In addition to raising consciousness and acquainting the reader with a selection of tools for error reduction, this book is also intended to provide assistance in solving specific human error problems that the reader may be experiencing at the plant level. It should be emphasized that no textbook can substitute for appropriate training in human factors techniques or for the advice of human factors specialists. Readers requiring advice should contact professional bodies such as the Human Factors and Ergonomics Society (USA) or the Ergonomics Society (England) who have lists of qualified consultants.
However, given appropriate training, it is quite feasible for personnel such as engineers and process workers to apply techniques such as task analysis (Chapter 4) and audit methods (Chapter 3) to reducing error potential in the workplace.

1.1.3.4. Provision of a Database of Case Studies
The book provides a comprehensive set of examples and case studies that cover a wide variety of process plant situations. Some of these are intended to illustrate the range of situations where human error has occurred in the CPI (see Appendix 1). Other examples illustrate specific techniques (for example, Chapter 4 and Chapter 5). Chapter 7 contains a number of extended case studies intended to illustrate techniques in detail and to show how a range of different techniques may be brought to bear on a specific problem.

1.1.3.5 Cross-Disciplinary Studies
Although this book is primarily written for chemical process industry readers, it also provides a sufficiently wide coverage of methods, case studies and theory to be of interest to behavioral scientists wishing to specialize in process industry applications. Similarly, it is hoped that the a comprehensive description of current theory and practice in this area will stimulate interest in the engineering community and encourage engineers to gain a more in-depth knowledge of the topic. Overall, the intention is to promote the cross-disciplinary perspective that is necessary for effective problem solving in the real world environment.

1.1.3.6. A Complement to Other CCPS Publications
A final objective of this book is to complement other books in this series such as Guidelines for Chemical Process Quantitative Risk Assessment (CCPS, 1989b), Guidelines for Investigating Chemical Process Incidents (CCPS, 1992d), and Plant Guidelines for the Technical Management of Chemical Process Safety (CCPS, 1992a). In the latter volume, human factors was identified as one of twelve essential elements of process safety management. The application to this area of the concepts described in this book is addressed in Chapter 8.

1.2. THE ROLE OF HUMAN ERROR IN SYSTEM ACCIDENTS
After many years of improvements in technical safety methods and process design, many organizations have found that accident rates, process plant losses and profitability have reached a plateau beyond which further improvements seem impossible to achieve. Another finding is that even in organizations with good general safety records, occasional large scale disasters occur which shake public confidence in the chemical process industry. The common