GUIDELINES FOR
Investigating
Chemical
Process
Incidents
Second Edition
GUIDELINES FOR
Investigating
Chemical
Process
Incidents

Second Edition
This book is one of a series of titles published by the Center for Chemical Process Safety of the American Institute of Chemical Engineers. A complete list of available titles appears at the end of this book.
GUIDELINES FOR
Investigating Chemical Process Incidents
Second Edition

Center for Chemical Process Safety
of the
American Institute of Chemical Engineers
3 Park Avenue, New York, NY 10016-5991
It is sincerely hoped that the information presented in this document will lead to an even more impressive safety record for the entire industry; however, neither the American Institute of Chemical Engineers, its consultants, CCPS Technical Steering Committee and Subcommittee members, their employers, their employers' officers and directors, nor AntiEntropics, Inc. and its employees warrant or represent, expressly or by implication, the correctness or accuracy of the content of the information presented in this document. As between (1) American Institute of Chemical Engineers, its consultants, CCPS Technical Steering Committee and Subcommittee members, their employers, their employers' officers and directors, and AntiEntropics, Inc. and its employees, and (2) the user of this document, the user accepts any legal liability or responsibility whatsoever for the consequence of its use or misuse.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xv</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xvii</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Building on the Past</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Who Should Read This Book?</td>
<td>4</td>
</tr>
<tr>
<td>1.3. The Guideline's Objectives</td>
<td>4</td>
</tr>
<tr>
<td>1.4. The Continuing Evolution of Incident Investigation</td>
<td>8</td>
</tr>
<tr>
<td>2. Designing an Incident Investigation Management System</td>
<td>9</td>
</tr>
<tr>
<td>2.1. Preplanning Considerations</td>
<td>10</td>
</tr>
<tr>
<td>2.1.1. An Organization's Responsibilities</td>
<td>10</td>
</tr>
<tr>
<td>2.1.2. The Benefits of Management's Commitment</td>
<td>14</td>
</tr>
<tr>
<td>2.1.3. The Role of the Developers</td>
<td>15</td>
</tr>
<tr>
<td>2.1.4. Integration with Other Functions and Teams</td>
<td>15</td>
</tr>
<tr>
<td>2.1.5. Regulatory and Legal Issues</td>
<td>16</td>
</tr>
<tr>
<td>2.2. Typical Management System Topics</td>
<td>17</td>
</tr>
<tr>
<td>2.2.1. Classifying Incidents</td>
<td>17</td>
</tr>
<tr>
<td>2.2.2. Other Options for Establishing Classification Criteria</td>
<td>19</td>
</tr>
<tr>
<td>2.2.3. Specifying Documentation</td>
<td>20</td>
</tr>
<tr>
<td>2.2.4. Describing Team Organization and Functions</td>
<td>20</td>
</tr>
<tr>
<td>2.2.5. Setting Training Requirements</td>
<td>22</td>
</tr>
<tr>
<td>2.2.6. Emphasizing Root Causes</td>
<td>23</td>
</tr>
</tbody>
</table>
2.2.7. Developing Recommendations 24
2.2.8. Fostering a Blame-Free Policy 24
2.2.9. Implementing the Recommendations and Follow-up Activities 25
2.2.10. Resuming Normal Operation and Establishing Restart Criteria 25
2.2.11. Providing a Template for Formal Reports 26
2.2.12. Review and Approval 27
2.2.13. Planning for Continuous Improvement 27
2.3. Implementing the Management System 27
2.3.1. Initial Implementation—Training 28
2.3.2. Initial Implementation—Data Management System 28

References 32

3

An Overview of Incident Causation Theories 33
3.1. Stages of a Process-Related Incident 33
3.1.1. Three Phases of Process-Related Incidents 34
3.1.2. The Importance of Latent Failures 35
3.2. Theories of Incident Causation 36
3.2.1. Domino Theory of Causation 37
3.2.2. System Theory 37
3.2.3. Hazard—Barrier—Target Theory 38
3.3. Investigation's Place in Controlling Risk 39
3.4. Relationship between Near Misses and Incidents 40

Endnotes 41

4

An Overview of Investigation Methodologies 43
4.1. Historical Approach 43
4.2. Modern Structured Approach 44
4.3. Methodologies Used by CCPS Members 45
4.4. Description of Tools 47
4.4.1. Brainstorming 47
4.4.2. Timelines 48
4.4.3. Sequence Diagrams 49
4.4.4. Causal Factor Identification 50
4.4.5. Checklists 50
5

Reporting and Investigating Near Misses

5.1. Defining a Near Miss 61
5.2. Obstacles to Near Miss Reporting and Recommended Solutions 63
 5.2.1. Fear of Disciplinary Action 64
 5.2.2. Fear of Embarrassment 66
 5.2.3. Lack of Understanding: Near Miss versus Nonincident 66
 5.2.4. Lack of Management Commitment and Follow-through 69
 5.2.5. High Level of Effort to Report and Investigate 70
 5.2.6. Disincentives for Reporting Near Misses 71
 5.2.7. Not Knowing Which Investigation System to Use 72
5.3. Legal Aspects
Endnotes 74

6

The Impact of Human Factors

6.1. Defining Human Factors 76
6.2. Human Factors Concepts 77
 6.2.1. Skills–Rules–Knowledge Model 82
 6.2.2. Human Behavior 84
6.3. Incorporating Human Factors into the Incident Investigation Process 86
 6.3.1. Finding the Causes 88
6.4. How an Incident Evolves 89
 6.4.1. Organizational Factors 90
 6.4.2. Unsafe Supervision 91
 6.4.3. Preconditions for Unsafe Acts 91
 6.4.4. Unsafe Acts 92
6.5. Checklists and Flowcharts 93
Endnotes 93
7
Building and Leading an Incident Investigation Team

7.1. Team Approach
7.2. Advantages of the Team Approach
7.3. Leading a Process Safety Incident Investigation Team
7.4. Potential Team Composition
7.5. Training Potential Team Members and Support Personnel
7.6. Building a Team for a Specific Incident
 7.6.1. Minor Incidents
 7.6.2. Limited Impact Incidents
 7.6.3. Significant Incidents
 7.6.4. High Potential Incidents
 7.6.5. Catastrophic Incidents
7.7. Developing a Specific Investigation Plan
7.8. Team Operations
7.9. Setting Criteria for Resuming Normal Operations

8
Gathering and Analyzing Evidence

8.1. Overview
 8.1.1. Developing a Specific Plan
 8.1.2. Investigation Environment Following a Major Occurrence
 8.1.3. Priorities for Managing an Incident Investigation Team
8.2. Sources of Evidence
 8.2.1. Types of Sources
 8.2.2. Information from People
 8.2.3. Physical Evidence and Data
 8.2.4. Paper Evidence and Data
 8.2.5. Electronic Evidence and Data
 8.2.6. Position Evidence and Data
8.3. Evidence Gathering
 8.3.1. Initial Site Visit
 8.3.2. Evidence Management
 8.3.3. Tools and Supplies
 8.3.4. Photography and Video
 8.3.5. Witness Interviews
8.4. Evidence Analysis
Determining Root Causes—Structured Approaches 179

9.1. The Management System’s Role 181
9.2. Structured Root Cause Determination 183
9.3. Organizing Data with a Timeline 185
 9.3.1. Developing a Timeline 185
 9.3.2. Determining Conditions at the Time of Failure 189
9.4. Organizing Data with Sequence Diagrams 190
9.5. Root Cause Determination Using Logic Trees—Method A 197
 9.5.1. Gather Evidence and List Facts 197
 9.5.2. Timeline Development 198
 9.5.3. Logic Tree Development 198
9.6. Logic Trees 201
 9.6.1. Choosing the Top Event 202
 9.6.2. Logic Tree Basics 203
 9.6.3. Example—Chemical Spray Injury 209
 9.6.4. What to Do If the Process Stalls 214
 9.6.5. Guidelines for Stopping Tree Development 214
9.7. Fact/Hypothesis Matrix 216
 9.7.1. Application of Fact/Hypothesis Matrix 218
9.8. Case Histories and Example Applications 219
 9.8.1. Fire and Explosion Incident—Fault Tree 219
 9.8.2. Data Driven Cause Analysis 223
 9.9.1. Evidence Gathering 225
 9.9.2. Timeline Development 226
 9.9.3. Scenario Determination 226
 9.9.4. Causal Factors 226
 9.9.5. Predefined Tree 227
9.10. Causal Factor Identification 228
11 Communication Issues and Preparing the Final Report 267

11.1. Interim Reports 267
11.2. Writing the Formal Report 269
 11.2.1. General Guidance 269
11.3. Sample Report Format 272
 11.3.1. Executive Summary 272
 11.3.2. Introduction 273
 11.3.3. Background 274
 11.3.4. Sequence of Events and Description of the Incident 274
 11.3.5. Evidence and Cause Analysis 275
 11.3.6. Findings and Recommendations 275
 11.3.7. Noncontributory Factors 278
 11.3.8. Attachments or Appendices 278
 11.3.9. Criteria for Restart 279
11.4. Capturing Lessons Learned 279
 11.4.1. Internal 279
 11.4.2. External 283
11.5. Tools for Assessing Report Quality 286
 11.5.1. Checklist 286
 11.5.2. Avoiding Common Mistakes 286
Endnotes 288

12 Legal Issues and Considerations 289

12.1. Seeking Legal Guidance in Preparing Documentation 290
 12.1.1. Use and Limits of Attorney–Client Privilege 290
 12.1.2. Recording the Facts 291
12.2. The Importance of Document Management 292
12.3. Communications and Credibility 293
12.4. The Challenges and Rewards of Sharing New Knowledge 294
12.5. Employee Interviews and Personal Liability Concerns 295
12.6. Gathering and Preserving Evidence 297
12.7. Inspection and Investigation by Regulatory and Other Agencies 298
12.8. Legal Issues Related To “Postinvestigation” 300
12.9. Summary 302
Endnotes 303
13
Implementing the Team's Recommendations 305
13.1. Three Major Concepts 306
13.2. What Happens When There Is Inadequate Follow-up? 307
 13.2.1. Nuclear Plant Incident 307
 13.2.2. Aircraft Incident 308
 13.2.3. Petrochemical Plant Incident 308
 13.2.4. Challenger Space Shuttle Incident 308
 13.2.5. Typical Plant Incidents 309
13.3. Management System Considerations for Follow-up 309
 13.3.1. Understanding Responsibilities 310
 13.3.2. Formally Accepting Recommendations 311
 13.3.3. Assigning a Responsible Individual 312
 13.3.4. Determining Action Item Priority 312
 13.3.5. Implementing the Action Items 312
 13.3.6. Documenting Recommendation Decisions—
 the Audit Trail 314
 13.3.7. Tracking Action Items 314
 13.3.8. Revising the Incident Investigation Management System 315
13.4. Sharing Lessons Learned 316
 13.4.1. Performing the Follow-Up Audit 316
 13.4.2. Internal Sharing 316
 13.4.3. External Sharing 318
13.5. Analyzing Incident Trends 320
Endnotes 321

14
Continuous Improvement for the
Incident Investigation System 323
14.1. Regulatory Compliance Review 324
14.2. Investigation Quality Assessment 325
14.3. Recommendations Review 326
14.4. Potential Optimization Options 326
 14.4.1. Follow Up 326
 14.4.2. Causal Category Analysis 326
Endnotes 331
15 Lessons Learned 333
 15.1. Learning Lessons from Within Your Organization 333
 15.2. Learning Lessons from Others 334
 15.3. Cross-Industry Lessons 335
 15.4. Trends and Statistics 337
 15.5. Management Application 337
 15.6. Case Studies 337
 15.6.1. Esso Longford Gas Plant Explosion 338
 15.6.2. Union Carbide Bhopal Toxic Gas Release 340
 15.6.3. NASA Challenger Space Shuttle Disaster 342
 15.6.4. Tosco Avon Oil Refinery Fire 343
 15.6.5. Shell Deer Park Olefins Plant Explosion 345
 15.6.6. Texas Utilities Concrete Stack Collapse 346
 15.6.7. Three Mile Island Nuclear Accident 349
 15.6.8. Concorde Air Crash 350
 15.7. Sharing Lessons Learned 351
References 353

Appendix A
Relevant Organizations 355

Appendix B
Professional Assistance Directory 359

Appendix C
Photography Guidelines for Maximum Results 361

Appendix D
Example Case Study—Fictitious NDF Company Incident 365

Appendix E
Example Case Study—More Bang for the Buck: Getting the Most from Accident Investigations 395
Appendix F
Selected OSHA and EPA Incident Investigation Regulations 415

Appendix G
Quick Checklist for Investigators 419

Appendix H
Additional Resources 425

Appendix I
Contents of CD-ROM 431

Glossary 433

Index 443
Preface

The American Institute of Chemical Engineers (AIChE) has helped chemical plants, petrochemical plants, and refineries address the issues of process safety and loss control for over 30 years. Through its ties with process designers, plant constructors, facility operators, safety professionals, and academia, the AIChE has enhanced communication and fostered improvement in the high safety standards of the industry. AIChE's publications and symposia have become an information resource for the chemical engineering profession on the causes of incidents and the means of prevention.

The Center for Chemical Process Safety (CCPS), a directorate of AIChE, was established in 1985 to develop and disseminate technical information for use in the prevention of major chemical accidents. CCPS is supported by a diverse group of industrial sponsors in the chemical process industry and related industries who provide the necessary funding and professional guidance for its projects. The CCPS Technical Steering Committee and the technical subcommittees oversee individual projects selected by the CCPS. Professional representatives from sponsoring companies staff the subcommittees and a member of the CCPS staff coordinates their activities.

Since its founding, CCPS has published many volumes in its "Guidelines" series and in smaller "Concept" texts. Although most CCPS books are written for engineers in plant design and operations and address scientific techniques and engineering practices, several guidelines cover subjects related to chemical process safety management. A successful process safety program relies upon committed managers at all levels of a company who view process safety as an integral part of overall business management and act accordingly.

Incident investigation is an essential element of every process safety management program. This book presents underlying principles, man-
agement system considerations, investigation tools, and specific methodologies for investigating incidents in a way that will support implementation of a rigorous process safety program at any facility.

A team of incident investigation experts from the chemical industry drafted the chapters for this guideline and provided real-world examples to illustrate some of the tools and methods used in their profession. The subcommittee members reviewed the content extensively and industry peers evaluated this book to help ensure it represents a factual accounting of industry best practices. This second edition of the guideline provides updated information on many facets of the investigative process as well as additional details on important considerations such as human factors, forensics, legalities surrounding incident investigation, and near miss reporting.
Acknowledgments

The American Institute of Chemical Engineers wishes to thank the Center for Chemical Process Safety (CCPS) and those involved in its operation, including its many sponsors whose funding made this project possible; the members of its Technical Steering Committee who conceived of and supported this Guidelines project; and the members of its Incident Investigation Subcommittee. The Incident Investigation Subcommittee of the Center for Chemical Process Safety authored this second edition of the Guidelines for Investigating Chemical Process Incidents.

The members of the CCPS Incident Investigation Subcommittee were:

Michael Broadribb, Chair, *BP America, Inc.*
Curtis Clements, *DuPont*
Jim Bartlett, *Proctor and Gamble (retired)*
Dennis Blowers, *BP Solvay Polyethylene NA*
Bill Bridges, *ABS Consulting*
Marty Clancy, *AIChE*
Brian Kelly, *Syncrude Canada Ltd.*
Jack McCavit, *Celanese Chemicals*
Lisa Morrison, *NOVA Chemicals, Inc.*
Mickey Norsworthy, *Arch Chemicals*
Henry Ozog, *ioMosaic*
Mark Paradies, *System Improvements, Inc.*
Katherine Pearson, *Rohm and Haas Company*
Jack Philley, *Baker Engineering and Risk Consultants*
Pat Ragan, *Aventis*
Adrian Sepeda, *Occidental Chemical Corporation (retired)*
David Tabar, *Sherwin Williams*
Lee Vanden Heuvel, *ABS Consulting*

Dan Sliva was the CCPS staff liaison and was responsible for overall administration of the project. AntiEntropics, Inc. of New Market, Maryland, was contracted to provide editing services for this book. Sandra A. Baker and Robert Walter were the principal technical editors. CCPS would like to thank Mr. Ludwig Benner for providing historical perspective on MES information. CCPS would also like to thank Ms. Angella Lewis of Rohm and Haas Company for her timely graphics support.

CCPS also gratefully acknowledges the comments and suggestions received from the following peer reviewers:

Arthur M. Dowell, III, *Rohm and Haas Company*
Andrew Hart, *NOVA Chemicals (Canada) Ltd*
David Heller, *US Chemical Safety and Hazard Investigation Board*
Alistair D. McNab, *UK Health and Safety Executive*
Mike Marshall, *USDOL - OSHA*
David A. Moore, *AcuTech Consulting Group*
Ed Perz, *BP plc*
Armando L. Santiago, *U.S. Environmental Protection Agency*

Their insights, comments, and suggestions helped ensure a balanced perspective to this Guideline.

The members of the CCPS Incident Investigation Subcommittee wish to thank their employers for allowing them to participate in this project and lastly, we wish to thank Scott Berger and Les Wittenberg of the CCPS staff for their support and guidance.
Acronyms and Abbreviations

ACC American Chemistry Council
AIChe American Institute of Chemical Engineers
ALARP As Low as Reasonably Practicable
ANSI American National Standards Institute
API American Petroleum Institute
ARIP Accidental Release Information Program
ASME American Society of Mechanical Engineers
B.P. Boiling Point
BI Business Interruption
BLEVE Boiling Liquid Expanding Vapor Explosion
BPCS Basic Process Control System
C Consequence factor, related to magnitude of severity
CCF Common Cause Failure
CCPS Center for Chemical Process Safety,
CEA Change Evaluation/Analysis
CEI Dow Chemical Exposure Index
CELD Cause and Effect Logic Diagram
CIRC Chemical Incidents Report Center
CLC Comprehensive List of Causes
CPQRA Chemical Process Quantitative Risk Assessment
CSB Chemical Safety and Hazards Investigation Board (US)
CTM Causal Tree Method
CW Cooling Water
D Number of times a component or system is challenged

DIERS Design Institute for Emergency Relief Systems,
DOT Department of Transportation
E&CF Events & Causal Factor Charting
EBV Emergency Block Valve
Guidelines for Investigating Chemical Process Incidents

EPA United States Environmental Protection Agency
ERPG Emergency Response Planning Guideline
ETA Event Tree Analysis
F Failure Rate (hr\(^{-1}\) or year\(^{-1}\))
f Frequency (hr\(^{-1}\) or year\(^{-1}\))
F&EI Dow Fire and Explosion Index
F/N Fatality Frequency versus Cumulative Number
FCE Final Control Element
FMEA Failure Modes and Effect Analysis
FTA Fault Tree Analysis
HAZMAT Hazardous Materials
HAZOP Hazard and Operability Study
HAZWOPER Hazardous Waste Operations and Emergency Response
HBT Hazard−Barrier−Target
HE Hazard Evaluation
HRA Human Reliability Analysis
IChemE Institution of Chemical Engineers
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronic Engineers
IPL Independent Protection Layer
ISA The Instrumentation, Systems, and Automation Society
(Jointly with the Instrument Society of America)
JSA Job Safety Analysis
LAH Level Alarm—High
LEL Lower Explosive Limit
LFL Lower Flammability Limit
LI Level Indicator
LIC Level Indicator—Control
LNG Liquefied Natural Gas
LOPA Layer of Protection Analysis
LOTO Lockout/Tagout
LT Level Transmitter
MARS Major Accident Reporting System
MAWP Maximum Allowable Working Pressure
MCII Multiple-Cause, Systems-Oriented Incident Investigation
MES Multilinear Event Sequencing
MHIDAS Major Hazard Incident Data System
MOC Management of Change
MORT Management Oversight Risk Tree
MSDS Material Safety Data Sheet
N\(_2\) Nitrogen
NTSB National Transportation Safety Board
OREDA The Offshore Reliability Data Project
<table>
<thead>
<tr>
<th>Acronyms and Abbreviations</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORPS</td>
</tr>
<tr>
<td>OSBL</td>
</tr>
<tr>
<td>OSHA</td>
</tr>
<tr>
<td>(P_{\text{fatality}})</td>
</tr>
<tr>
<td>(P_{\text{ignition}})</td>
</tr>
<tr>
<td>(P_{\text{person present}})</td>
</tr>
<tr>
<td>(P)</td>
</tr>
<tr>
<td>P&ID</td>
</tr>
<tr>
<td>PFD</td>
</tr>
<tr>
<td>PHA</td>
</tr>
<tr>
<td>PI</td>
</tr>
<tr>
<td>PL</td>
</tr>
<tr>
<td>PM</td>
</tr>
<tr>
<td>PSID</td>
</tr>
<tr>
<td>PSM</td>
</tr>
<tr>
<td>PSV</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>RMP</td>
</tr>
<tr>
<td>RV</td>
</tr>
<tr>
<td>SCAT</td>
</tr>
<tr>
<td>SCE</td>
</tr>
<tr>
<td>SIF</td>
</tr>
<tr>
<td>SIS</td>
</tr>
<tr>
<td>SOP</td>
</tr>
<tr>
<td>SOURCE</td>
</tr>
<tr>
<td>SSDC</td>
</tr>
<tr>
<td>STEP</td>
</tr>
<tr>
<td>(T)</td>
</tr>
<tr>
<td>(T_0)</td>
</tr>
<tr>
<td>(T_e)</td>
</tr>
<tr>
<td>VCE</td>
</tr>
<tr>
<td>VLE</td>
</tr>
<tr>
<td>XV</td>
</tr>
</tbody>
</table>
1

Introduction

1.1. Building on the Past

Flixborough, Bhopal, Piper Alpha—All three are now synonyms for catastrophe. These names are inextricably linked with images of death and disastrous loss tied to the production of chemicals or oil. An objective review of the world’s industrial history reveals a story punctuated with infrequent yet similarly tragic incidents. Invariably, in the wake of such tragedy, companies, industries, and governments work to learn the causes. Their ultimate goal is that the knowledge acquired through diligent investigation can help prevent recurrence.

However, these investigations have revealed something of more significance—the key to preventing disaster first lies in recognizing the leading indicators. These leading indicators exist in incidents that are less than catastrophic. They can even be seen in so-called near misses that may have no discernable impact on routine operation. By examining lower-consequence, higher-frequency occurrences, companies may avoid those rare incidents that cause major consequences. The two most significant roles incident investigations can play in comprehensive process safety programs are:

1. Preventing disasters by consistently examining and learning from near misses and
2. Preventing disasters by consistently examining and learning from major consequence accidents.

The Center for Chemical Process Safety (CCPS) of the American Institute of Chemical Engineers (AIChE) recognized the role of incident investigation when it published the original Guidelines for Investigating Chemical
Process Incidents in 1992. The first edition provided a timely treatment of incident investigation including:

- a detailed examination of incident investigation's role in a process safety management system,
- guidance on implementing an incident investigation system, and
- in-depth information on conducting incident investigations, including the tools and techniques most useful in understanding the underlying causes.

This second edition builds on the first text's solid foundation. The goal is to retain the knowledge base provided in the original book while simultaneously updating and expanding upon it to reflect the latest thinking. This edition presents techniques used by the world's leading practitioners in the science of process safety incident investigation.

Successful investigations are dependent on preplanning and appropriate training. Preplanning allows organizations to respond properly and promptly. The first step in conducting a successful incident investigation is to recognize when an incident has occurred so that it can be investigated appropriately. To enhance effective recognition and communication during an investigation, the following definitions for key terms will apply throughout this book. Some investigators may define the terms presented below slightly differently or use other descriptive terms that mean the same things. The heart of the issue is that members of an operating investigation team all share a common language that supports their investigation objectives efficiently and accurately.

Incident—an unusual or unexpected occurrence, which either resulted in, or had the potential to result in:

- serious injury to personnel,
- significant damage to property,
- adverse environmental impact, or
- a major interruption of process operations.

This definition implies three categories of incidents:

1. Accidents
2. Near misses
3. Operational interruptions

An **accident** is an occurrence in which property damage, material loss, detrimental environmental impact, or human loss (either injury or death) occurs.

A **near miss** is an occurrence in which an accident (that is, property damage, material loss, environmental impact, or human loss) or an operational interruption could have plausibly resulted if circumstances had been slightly different.
An operational interruption is an occurrence in which production rates or product quality is seriously impacted.

The second step in conducting a thorough investigation is to assemble a qualified team to determine and analyze the facts of the incident. This team’s charter, using appropriate investigative techniques and methodologies, is to reveal the true underlying root causes. The terms causal factor and root cause help investigators analyze the facts and communicate with each other during the investigation phase.

A causal factor, also known as a critical factor or contributing cause, is a major unplanned, unintended contributor to the incident (a negative occurrence or undesirable condition), that if eliminated would have either prevented the occurrence, or reduced its severity or frequency.

A root cause is a fundamental, underlying, system-related reason why an incident occurred that identifies a correctable failure(s) in management systems. There is typically more than one root cause for every process safety incident.

The third step in incident investigation is to generate a report detailing facts, findings, and recommendations. Typically, recommendations are written to reduce risk by:

- improving the process technology,
- upgrading the operating or maintenance procedures or practices, and
- upgrading the management systems. (When indicated in a recommendation, this is often the most critical area.)

After the investigation is completed and the findings and recommendations are issued in the report, a system must be in place to implement those recommendations. This is not part of the investigation itself, but rather the follow-up related to it. It is not enough to put a technological, procedural, or administrative response into effect. The action should be monitored periodically for effectiveness and, where appropriate, modified to meet the intent of the original recommendation.

These four steps will result in the greatest positive effect when they are performed in an atmosphere of openness and trust. Management must demonstrate by both word and deed that the primary objective is not to assign blame, but to understand what happened for the sake of preventing future incidents. This book helps organizations define and refine their incident investigation systems to achieve positive results effectively and efficiently.
1.2. Who Should Read This Book?

This book assists three target groups:

1. Incident investigation team leaders
2. Incident investigation team members
3. Corporate and site process safety managers and coordinators

For anyone directly involved in leading or participating on incident investigation teams, the book provides a valuable reference tool. It presents knowledge, techniques, and examples to support successful investigations. For persons in technical and management roles responsible for implementing the incident investigation element of an integrated process safety system, it offers a model for success in building or upgrading their program.

Like the previous edition, the book remains focused primarily on investigating process-related incidents that present realized or potential catastrophic consequences (that is, accidents as well as near misses). However, readers will find that the methodologies, tools, and techniques described in the following chapters may also be applied when investigating other types of occurrences such as reliability, quality, and occupational health and safety incidents.

1.3. The Guideline's Objectives

Readers should be able to achieve the following objectives.

- Describe the basic principles behind successful incident investigations.
- Identify the essential features of a management system designed to foster and support high quality incident investigations.
- List detailed information for planning and conducting incident investigations including investigative tools, techniques, and methodologies for determining causes.
- Use the findings of an investigation to make effective recommendations that can reduce the likelihood of recurrence or mitigate the consequences of similar incidents (or even dissimilar incidents with common root causes).
- Plan an effective system for documenting, communicating, and resolving investigation findings and recommendations including a method to track closure of incident recommendations.
1 Introduction

The summaries below provide an overview of the content and organization of the book chapter-by-chapter and assist in quickly locating a particular area of interest.

Chapter 2—Designing an Incident Investigation Management System
This chapter provides an overview of a management system for investigating process safety incidents. It opens with a review of management responsibilities and presents the important features that a management system must address to be effective. It examines systematic approaches that help implement incident investigation teams, root cause determinations, recommendations, follow-up, and documentation.

Chapter 3—An Overview of Incident Causation Theories
This section discusses the basics of determining incident causation and describes the general categories of incidents—from near miss to major catastrophe. It examines the anatomy of process incidents as related to theoretical models of incident causation.

Chapter 4—An Overview of Incident Investigation Tools and Methodologies
This chapter provides a brief overview of investigation tools in simple, generic terms, and demonstrates the benefits of using a more structured approach. It describes both public and proprietary methodologies.

Chapter 5—Reporting and Investigating Near Misses
Many major process safety incidents were preceded by precursor occurrences. These occurrences were unrecognized or ignored because “nothing bad” actually happened. The lessons learned from such occurrences, typically referred to as near misses, can be extremely valuable in averting disaster. However, this benefit is only realized when they are recognized, reported, and investigation techniques are properly applied. This chapter describes near misses, discusses their importance, and presents the latest methods for helping ensure appropriate near misses are reported.

Chapter 6—The Impact of Human Factors
This chapter describes human factor considerations in incident causation. It provides insight and tools to identify and address applicable human factors issues during an investigation.

Chapter 7—Building and Leading an Investigation Team
Personnel with proper training, skills, and experience are critical to the successful outcome of an incident investigation. This chapter describes team composition as a function of incident type, complexity, and severity as well as suggested training topics. It also provides team leaders with a high-level overview of the basic team activities typically required in the course of conducting an investigation.
Chapter 8—Gathering and Analyzing Evidence
Facts are the fuel an investigation needs to reach a successful conclusion. This chapter addresses the practical considerations of data-gathering activities. It describes types of data, sources of data, data-gathering tools, and techniques.

Chapter 9—Determining Root Causes—Structured Approaches
This chapter addresses methods and tools used successfully to identify multiple root causes. Process safety incidents are usually the result of more than one root cause. This chapter provides a structured approach for determining root causes. It details some powerful, widely used tools and techniques available to incident investigation teams including timelines, logic trees, predefined trees, checklists, and fact/hypothesis. Examples are included to demonstrate how they apply to the types of incidents readers are likely to encounter.

Chapter 10—Developing Effective Recommendations
Once the likely causes of an incident have been identified, investigation teams evaluate what can be done to help prevent recurrence. The incident investigation recommendations are the product of this evaluation. This chapter addresses types of recommendations, some attributes of good recommendations, methods to document and present recommendations, and management’s responsibilities.

Chapter 11—Communication Issues and Preparing the Final Report
In the case of incident investigation, a major milestone is completed when the final incident investigation report is submitted. The incident report documents the investigation team’s findings, conclusions, and recommendations. This chapter describes practical considerations for writing formal incident reports, a discussion of the attributes of quality reports, and the issue of communicating the report findings to affected persons, both internally and externally.

Chapter 12—Considering Legal Issues
The work products of incident investigations are subject to the legal process of discovery. The incident investigation team must keep two purposes in mind. First, the ultimate purpose of the incident investigation is to determine what happened, why it happened, and how to prevent future occurrences. Second, there are important legal issues associated with the conduct, documentation, and follow-up of incident investigations. This chapter provides insight into legal issues and is written for a lay audience.

Chapter 13—Implementing the Team's Recommendations
The recommendations generated from an incident investigation should be properly implemented in a timely fashion to decrease the probability of