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Preface to the Second Edition

The first edition of “Microstrip Filters for RF/Microwave Applications” was published
in 2001. Over the years, this book has been well received and is used extensively in
both academy and industry by microwave researchers and engineers. From its incep-
tion to publication, the book is almost 10 years old. While the fundamentals of filter
circuit have not changed, further innovations in filter realizations and other appli-
cations have occurred, including changes in technology and use of new fabrication
processes. There have been recent advances in RF MEMS and ferroelectric films for
tunable filters; the use of liquid crystal polymer (LCP) substrates for multilayer cir-
cuits, as well as the new filters for multiband and ultra-wideband (UWB) applications.

Although the microstrip remains as a main transmission line medium for these
new developments, there has been a new trend of the combined use of other planar
transmission line structures, such as co-planar waveguide (CPW), slotline and de-
fected or slotted ground structures, for novel physical implementations beyond single
layer in order to achieve filter miniaturization and better performance. Over the years,
practitioners have also suggested topics that should be added for completeness, or
deleted in some cases, as they were not very useful in practice.

It is in response to these concerns that the 2nd edition of Microstrip Filters for
RF/Microwave Applications has been written. The extensively revised book will
offer a thoroughly up-to-date professional reference focusing on microstrip and planar
filters, which find wide applications in today’s wireless, microwave, communications,
and radar systems. It offers a unique comprehensive treatment of filters based on the
microstrip and planar structures and includes full design methodologies that are
applicable to waveguide and other transmission-line filters. The new edition includes
a wealth of new materials including

� CPW and slotlines
� General coupling matrix, including source and load
� Multiband filters
� Nondegenerate dual-mode filters

xiii
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xiv PREFACE TO THE SECOND EDITION

� Filters with defected ground structures
� Substrate-integrated waveguide filters
� Liquid crystal polymer (LCP) and LTCC multilayer filters
� HTS filters for mobile/satellite communications and radio astronomy
� Ultra-wideband (UWB) filters
� Tunable and reconfigurable filters

Microstrip Filters for RF/Microwave Applications utilize numerous design ex-
amples to demonstrate and emphasize computer-aided design with commercially
available software. This intensively revised book, with cutting-edge information, re-
mains not only a valuable design resource for partitions, but also a handy reference
for students and researchers in RF and microwave engineering.

I wish to acknowledge the financial supports of the UK EPSRC, Scottish En-
terprise, BAE Systems (UK), and SELEX Galileo (UK). I would like to thanks all
of my former and current research associates, PhD students, and visiting scholars,
including Eamon McErlean, Dr. Young-Hoon Chun, Dr. Zhang-Cheng Hao, Dr. Neil
Thomson, Dr. Hussein Shaman, Dr. Sultan Alotaibi, Shuzhou Li, Wenxing Tang,
and Alexander Miller, for their works, some of which are presented in the book.
In addition, I would like to express my gratitude to several national and interna-
tional collaborators, including Prof. Michael Lancaster and Dr. Tim Jackson (both
at University of Birmingham, UK), Dr. Paul Kirby (University of Cranfield, UK),
Dr. Zheng Cui (Rutherford Appleton Laboratory, UK), Prof. Yusheng He (CAS,
China), Alan Burdis and Colin Bird (both at SELEX Galileo, UK), and Dr. Keren Li
(NiCT, Japan). The support provided by Dr. James Rautio and other members of staff
at Sonnet Software Inc., USA, is acknowledged. I also wish to thank the colleagues
who I have worked with at Heriot-Watt University, including Prof. Marc Desmulliez,
Prof. Alan Sangster, Dr. George Goussetis, Prof. Duncan Hand, Dr. Changhai Wang,
and Dr. Paul Record.

Needless to say, I am indebted to many researchers for their published work,
which have been rich sources of reference. My sincere gratitude extends to the Editor
of Wiley series in microwave and optical engineering, Prof. Kai Chang; and the
Executive Editor of Wiley-Interscience, George Telecki, for their encouragement in
writing this new edition book. I am also indebted to my wife, Kai, and my son, Haide,
without their support, writing this book would not have been possible.

Jia-Sheng Hong

2010
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Preface to the First Edition

Filters play important roles in many RF/microwave applications. Emerging appli-
cations such as wireless communications continue to challenge RF/microwave fil-
ters with ever more stringent requirements — higher performance, smaller size,
lighter weight, and lower cost. The recent advance of novel materials and fabrication
technologies, including high-temperature superconductors (HTS), low-temperature
cofired ceramics (LTCC), monolithic microwave-integrated circuit (MMIC), micro-
electromechanic system (MEMS), and micro-machining technology, have stimulated
the rapid development of new microstrip and other filters for RF/microwave ap-
plications. In the meantime, advances in computer-aided design (CAD) tools, such
as full-wave electromagnetic (EM) simulators, have revolutionized the filter de-
sign. Many novel microstrip filters with advanced filtering characteristics have been
demonstrated. However, up until now there has not been a single book dedicated to
this subject.

Microstrip Filters for RF/Microwave Applications offers a unique and comprehen-
sive treatment of RF/microwave filters based on the microstrip structure, providing
a link to applications of computer-aided design tools and advanced materials and
technologies. Many novel and sophisticated filters using computer-aided design are
discussed, from basic concepts to practical realizations. The book is self-contained —
it is not only a valuable design resource, but also a handy reference for students, re-
searchers, and engineers in microwave engineering. It can also be used for RF/
microwave education.

The outstanding features of this book include discussion of many novel microstrip
filter configurations with advanced filtering characteristics, new design techniques,
and methods for filter miniaturization. The book emphasizes computer analysis and
synthesis and full-wave electromagnetic (EM) simulation through a large number of
design examples. Applications of commercially available software are demonstrated.
Commercial applications are included as are design theories and methodologies,
which are not only for microstrip filters, but also directly applicable to other types of
filters, such as waveguide and other transmission-line filters. Therefore, this book is
more than just a text on microstrip filters.

xv
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CHAPTER ONE

Introduction

The term microwaves may be used to describe electromagnetic (EM) waves with
frequencies ranging from 300 MHz to 300 GHz, which correspond to wavelengths
(in free space) from 1 m to 1 mm. The EM waves with frequencies above 30 and up
to 300 GHz are also called millimeter waves, because their wavelengths are in the
millimeter range (1−10 mm). Above the millimeter wave spectrum is the infrared,
which comprises electromagnetic waves with wavelengths between 1 µm (10−6 m)
and 1 mm. Beyond the infrared spectrum is the visible optical spectrum, the ultraviolet
spectrum, and x rays. Below the microwave frequency spectrum is the radio-frequency
(RF) spectrum. The frequency boundary between RF and microwaves is somewhat
arbitrary, depending on the particular technologies developed for the exploitation of
that specific frequency range. Therefore, by extension, the RF/microwave applications
can be referred to as communications, radar, navigation, radio astronomy, sensing,
medical instrumentation, and others that explore the usage of frequency spectrums
in the range, for example, 300 kHz up to 300 GHz (Fig. 1.1). For convenience,
some of these frequency spectrums are further divided into many frequency bands,
as indicated in Fig. 1.1.

Filters play important roles in many RF/microwave applications. They are used
to separate or combine different frequencies. The electromagnetic spectrum is lim-
ited and has to be shared; filters are used to select or confine the RF/microwave
signals within assigned spectral limits. Emerging applications, such as wireless com-
munications, continue to challenge RF/microwave filters with ever more stringent
requirements — higher performance, more functionalities such as tunable or recon-
figurable, smaller size, lighter weight, and lower cost. Depending on the requirements
and specifications, RF/microwave filters may be designed as lumped element or dis-
tributed element circuits, they may be realized in various transmission-line structures,
such as waveguide, coaxial line, coplanar waveguide (CPW), slotline, and microstrip.

Microstrip Filters for RF/Microwave Applications by Jia-Sheng Hong
Copyright C© 2011 John Wiley & Sons, Inc.

1
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2 INTRODUCTION

FIGURE 1.1 RF/microwave spectrums.

The recent advance of novel materials and fabrication technologies, including
monolithic microwave integrated circuit (MMIC), microelectromechanic system
(MEMS) or micromachining, ferroelectrics, high-temperature superconductor (HTS),
low-temperature co-fired ceramics (LTCC), and liquid crystal polymers (LCP), has
stimulated the rapid development of new microstrip and other filters. In the meantime,
advances in computer-aided design (CAD) tools, such as full-wave electromagnetic
(EM) simulators, have revolutionized the filter design. Many novel microstrip filters
with advanced filtering characteristics have been demonstrated.

The main objective of this book is to offer a unique and comprehensive treatment
of RF/microwave filters, based on the microstrip structure, providing a link to appli-
cations of CAD tools, advanced materials, and technologies (see Fig. 1.2). However,
it is not the intention of this book to include everything that has been published on
microstrip filters; such a work would be out of scale in terms of space and knowl-
edge involved. Moreover, design theories and methods described in the book are not
only for microstrip filters, but directly applicable to other types of filters, such as
waveguide filters.

Although the physical realization of filters at RF/microwave frequencies may
vary, the circuit network topology is common to all. Therefore, the technique con-
tent of the book begins with Chapter 2, which describes various network concepts
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INTRODUCTION 3

FIGURE 1.2 Microstrip filter linkage.

and equations; these are useful for the analysis of filter networks. Chapter 3 then
introduces basic concepts and theories for designing general RF/microwave fil-
ters (including microstrip filters). The topics cover filter transfer functions (such as
Butterworth, Chebyshev, elliptic function, all-pass, and Gaussian response), lowpass
prototype filters and elements, frequency and element transformations, immittance
(impedance/admittance) inverters, Richards’ transformation, and Kuroda identities
for distributed elements. Effects of dissipation and unloaded quality factor of filter
elements on the filter performance are also discussed.

Chapter 4 summarizes basic concepts and design equations for microstrip lines,
coupled microstrip lines, discontinuities, lumped and distributed components, as
well as coplanar waveguide (CPW), and slotlines, which are useful for design of
filters. In Chapter 5, conventional microstrip lowpass and bandpass filters, such
as stepped-impedance filters, open-stub filters, semilumped element filters, end- and
parallel-coupled half-wavelength resonator filters, hairpin-line filters, interdigital and
combline filters, pseudocombline filters and stubline filters, are discussed with in-
structive design examples.

Chapter 6 discusses some typical microstrip highpass and bandstop filters. These
include quasilumped element and optimum distributed highpass filters, narrow-band
and wide-band bandstop filters, as well as filters for RF chokes. Design equations,
tables, and examples are presented for easy reference.

The remaining chapters of the book deal with more advanced topics. Chapter 7,
presents a comprehensive treatment of subjects regarding coupled resonator circuits.
These are of importance for design of RF/microwave filters, in particular, the narrow-
band bandpass filters that play a significant role in many applications. There is a
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general technique for designing coupled resonator filters, which can be applied to
any type of resonator despite its physical structure. For examples, it can be applied for
the design of waveguide filters, dielectric resonator filters, ceramic combline filters,
microstrip filters, superconducting filters, and micromachined filters. This design
method is based on coupling coefficients of intercoupled resonators and the external
quality factors of the input and output resonators. Since this design technique is so
useful and flexible, it would be desirable to have a deep understanding of not only
its approach, but also its theory. For this purpose, the subjects cover (1) the formu-
lation of general coupling matrix, which is of importance for representing a wide
range of coupled-resonator filter topologies, and (2) the general theory of couplings
for establishing the relationship between the coupling coefficient, and the physical
structure of coupled resonators. This leads to a very useful formulation for extract-
ing coupling coefficients from EM simulations or measurements. Formulations for
extracting the external quality factors from frequency responses of the externally
loaded input/output resonators are derived next. Numerical examples are followed
to demonstrate how to use these formulations to extract coupling coefficients and
external quality factors of microwave coupling structures for filter designs. In addi-
tion, a more advanced topic on general coupling matrix involving source and load is
addressed.

Chapter 8 is concerned with computer-aided design (CAD). Generally speaking,
any design involves using computers may be called CAD. There have been extraor-
dinary recent advances in CAD of RF/microwave circuits, particularly in full-wave
electromagnetic (EM) simulations. They have been implemented both in commercial
and specific in-house software and are being applied to microwave filters simulation,
modeling, design, and validation. The developments in this area are certainly stimu-
lated by increasing computer power. Another driving force for the developments is
the requirement of CAD for low-cost and high-volume production. In general, the
investment for tooling, materials, and labor mainly affect the cost of filter production.
Labor costs include those for design, fabrication, testing, and tuning. Here the costs
for the design and tuning can be reduced greatly by using CAD, which can provide
more accurate design with less design iterations, leading to first-pass or tuneless
filters. This chapter discusses computer simulation and/or computer optimization.
It summarizes some basic concepts and methods regarding filter design by CAD.
Typical examples of the applications, including filter synthesis by optimization, are
described. Many more CAD examples, particularly those based on full-wave EM
simulation, can be found throughout this book.

In Chapter 9, we discuss the designs of some advanced filters, including selective
filters with a single pair of transmission zeros, cascaded quadruplet (CQ) filters, trisec-
tion and cascaded trisection (CT) filters, cross-coupled filters using transmission-line
inserted inverters, linear phase filters for group-delay equalization, extracted-pole
filters, canonical filters, and multiband filters. These types of filters, which are dif-
ferent from conventional Chebyshev filters, must meet stringent requirements from
RF/microwave systems, particularly from wireless communications systems.

Chapter 10 is intended to describe novel concepts, methodologies, and designs
for compact filters and filter miniaturization. The new types of filters discussed
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include compact open-loop and hairpin resonator filters, slow-wave resonator filters,
miniaturized dual-mode filters using degenerate or nondegenerate modes, lumped-
element filters, filters using high dielectric constant substrates, and multilayer filters.
The last topic covers aperture-coupled resonator filters, filters with defected or slotted-
ground structures, substrate integrated waveguide filters, as well as low-temperature
cofired ceramics (LTCC) and liquid crystal polymer (LCP) filters.

Chapter 11 introduces high-temperature superconductors (HTS) for RF/
microwave filter applications. It covers some important properties of superconduc-
tors and substrates for growing HTS films, which are essential for the design of HTS
microstrip filters. Typical superconducting filters with super performance for mobile
and satellite communications, as well as radio astronomy and radar applications, are
described in this chapter.

Chapter 12 focuses on ultra-wideband (UWB) filters, which are a key compo-
nent for many promising modern applications of UWB technology. In this chapter,
typical types of UWB filters are described. This includes UWB filters comprised of
short-circuit stubs, UWB filters using coupled single-mode or multimode resonators,
quasilumped element UWB filters, UWB filters based on cascaded highpass and
lowpass filters, and UWB filters with single- or multiple-notched bands.

The final chapter of the book (Chapter 13) is concerned with electronically tun-
able and reconfigurable filters. In general, to develop an electronically reconfigurable
filter, active switching or tuning elements, such as semiconductor p-i-n and var-
actor diodes, RF MEMS or other functional material-based components, including
ferroelectric varactors and piezoelectric transducers need to be integrated within a
passive filtering structure. Typical filters of these types are described in this chapter,
which include tunable combline filters, tunable open-loop filters without using any
via-hole connections, reconfigurable dual-mode filters, wideband filters with recon-
figurable bandwidth, reconfigurable UWB filters, RF MEMS reconfigurable filters,
piezoelectric transducer tunable filters, and ferroelectric tunable filters.
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CHAPTER TWO

Network Analysis

Filter networks are essential building elements in many areas of RF/microwave
engineering. Such networks are used to select/reject or separate/combine signals at
different frequencies in a host of RF/microwave systems and equipments. Although
the physical realization of filters at RF/microwave frequencies may vary, the circuit
network topology is common to all.

At microwave frequencies, the use of voltmeters and ammeters for the direct
measurement of voltages and currents do not exist. For this reason, voltage and
current, as a measure of the level of electrical excitation of a network, do not play a
primary role at microwave frequencies. On the other hand, it is useful to be able to
describe the operation of a microwave network, such as a filter, in terms of voltages,
currents, and impedances in order to make optimum use of low-frequency network
concepts.

It is the purpose of this chapter to describe various network concepts and provide
equations [1–10] that are useful for the analysis of filter networks.

2.1 NETWORK VARIABLES

Most RF/microwave filters and filter components can be represented by a two-port
network, as shown in Figure 2.1, where V1, V2 and I1, I2 are the voltage and current
variables at ports 1 and 2, respectively, Z01 and Z02 are the terminal impedances,
and Es is the source or generator voltage. Note that the voltage and current variables
are complex amplitudes when we consider sinusoidal quantities. For example, a
sinusoidal voltage at port 1 is given by

v1(t) = |V1| cos(ωt + φ) (2.1)

Microstrip Filters for RF/Microwave Applications by Jia-Sheng Hong
Copyright C© 2011 John Wiley & Sons, Inc.
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FIGURE 2.1 Two-port network showing network variables.

We can then make the following transformations

v1(t) = |V1| cos(ωt + φ) = Re
(|V1| ej (ωt+φ)

) = Re
(
V1e

jωt
)

(2.2)

where Re denotes “the real part of” the expression that follows it. Therefore, one can
identify the complex amplitude V1 defined by

V1 = |V1| ejφ (2.3)

Because it is difficult to measure the voltage and current at microwave frequencies,
the wave variables a1, b1 and a2, b2 are introduced, with a indicating the incident
waves and b the reflected waves. The relationships between the wave variables and
the voltage and current variables are defined as

V n = √
Z0n (an + bn)

n = 1 and 2
In = 1√

Z0n

(an − bn)
(2.4a)

or

an = 1

2

(
Vn√
Z0n

+
√

Z0nIn

)

n = 1 and 2

bn = 1

2

(
Vn√
Z0n

−
√

Z0nIn

) (2.4b)

The above definitions guarantees that the power at port n is

Pn = 1

2
Re

(
Vn · I ∗

n

) = 1

2

(
ana

∗
n − bnb

∗
n

)
(2.5)

where the asterisk denotes a conjugate quantity. It can be recognized that ana
∗
n/2 is

the incident wave power and bnb
∗
n/2 is the reflected wave power at port n.
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2.2 SCATTERING PARAMETERS

The scattering or S parameters of a two-port network are defined in terms of the wave
variables as

S11 = b1

a1

∣∣∣∣
a2=0

S12 = b1

a2

∣∣∣∣
a1=0

S21 = b2

a1

∣∣∣∣
a2=0

S22 = b2

a2

∣∣∣∣
a1=0

(2.6)

where an = 0 implies a perfect impedance match (no reflection from terminal
impedance) at port n. These definitions may be written as

[
b1

b2

]
=

[
S11 S12

S21 S22

]
·
[

a1

a2

]
(2.7)

where the matrix containing the S parameters is referred to as the scattering matrix
or S matrix, which may simply be denoted by [S].

The parameters S11 and S22 are also called the reflection coefficients, whereas S12

and S21 are the transmission coefficients. These are the parameters directly measurable
at microwave frequencies. The S parameters are, in general, complex, and it is con-
venient to express them in terms of amplitudes and phases, that is, Smn = |Smn| ejφmn

for m, n = 1, 2. Often their amplitudes are given in decibels (dB), which are defined
as

20 log |Smn| dB m, n = 1, 2 (2.8)

where the logarithm operation is base 10. This will be assumed through this book
unless otherwise stated. For filter characterization, we may define two parameters

LA = −20 log |Smn| dB m, n = 1, 2(m �= n)

LR = 20 log |Snn| dB n = 1, 2
(2.9)

where LA denotes the insertion loss between ports n and m and LR represents the
return loss at port n. Instead of using the return loss, the voltage-standing wave ratio
VSWR may be used. The definition of VSWR is

VSWR = 1 + |Snn|
1 − |Snn| (2.10)

Whenever a signal is transmitted through a frequency-selective network, such as
a filter, some delay is introduced into the output signal in relation to the input signal.
There are two other parameters that play a role in characterizing filter performance
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related to this delay. The first one is the phase delay, defined by

τp = φ21

ω
s (2.11)

where φ21 is in radians and ω is in rad/s. Port 1 is the input port and port 2 is the
output port. The phase delay is actually the time delay for a steady sinusoidal signal
and is not necessarily the true signal delay, because a steady sinusoidal signal does
not carry information; sometimes, it is also referred to as the carrier delay [1]. The
more important parameter is the group delay, defined by

τd = −dφ21

dω
s (2.12)

This represents the true signal (baseband signal) delay and is also referred to as
the envelope delay.

In network analysis or synthesis, it may be desirable to express the reflection
parameter S11 in terms of the terminal impedance Z01 and the so-called input
impedance Zin1 = V1/I1, which is the impedance looking into port 1 of the net-
work. Such an expression can be deduced by evaluating S11 in Eq. (2.6) in terms of
the voltage and current variables using the relationships defined in Eq. (2.4b). This
gives

S11 = b1

a1

∣∣
∣∣
a2=0

= V1/
√

Z01 − √
Z01I1

V1/
√

Z01 + √
Z01I1

(2.13)

Replacing V1 by Zin1I1 results in the desired expression

S11 = Zin1 − Z01

Zin1 + Z01
(2.14)

Similarly, we can have

S22 = Zin2 − Z02

Zin2 + Z02
(2.15)

where Zin2 = V2/I2 is the input impedance looking into port 2 of the network.
Equations (2.14) and (2.15) indicate the impedance matching of the network with
respect to its terminal impedances.

The S parameters have several properties that are useful for network analysis. For
a reciprocal network we have S12 = S21. If the network is symmetrical, an addition
property, S11 = S22, holds. Hence, the symmetrical network is also reciprocal. For a
lossless passive network, the transmitting power and the reflected power must equal
to the total incident power. The mathematical statements of this power conservation
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condition are

S21S
∗
21 + S11S

∗
11 = 1 or |S21|2 + |S11|2 = 1

S12S
∗
12 + S22S

∗
22 = 1 or |S12|2 + |S22|2 = 1

(2.16)

2.3 SHORT-CIRCUIT ADMITTANCE PARAMETERS

The short-circuit admittance or Y parameters of a two-port network are defined as

Y11 = I1

V1

∣∣∣∣
V2=0

Y 12 = I1

V2

∣∣∣∣
V1=0

Y21 = I2

V1

∣∣∣∣
V2=0

Y 22 = I2

V2

∣∣∣∣
V1=0

(2.17)

in which Vn = 0 implies a perfect short-circuit at port n. The definitions of the Y
parameters may also be written as

[
I1

I2

]
=

[
Y11 Y12

Y21 Y22

]
·
[

V1

V2

]
(2.18)

where the matrix containing the Y parameters is called the short-circuit admittance or
simply Y matrix and may be denoted by [Y ]. For reciprocal networks Y12 = Y21. In
addition to this, if networks are symmetrical, then Y11 = Y22. For a lossless network,
the Y parameters are all purely imaginary.

2.4 OPEN-CIRCUIT IMPEDANCE PARAMETERS

The open-circuit impedance or Z parameters of a two-port network are defined as

Z11 = V1

I1

∣∣∣∣
I2=0

Z12 = V1

I2

∣∣∣∣
I1=0

Z21 = V2

I1

∣∣∣∣
I2=0

Z22 = V2

I2

∣∣∣∣
I1=0

(2.19)

where In = 0 implies a perfect open-circuit at port n. These definitions can be written
as

[
V1

V2

]
=

[
Z11 Z12

Z21 Z22

]
·
[

I1

I2

]
(2.20)
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The matrix, which contains the Z parameters, is known as the open-circuit
impedance or Z matrix denoted by [Z]. For reciprocal networks, we have Z12 = Z21.
If networks are symmetrical, then Z12 = Z21 and Z11 = Z22. For a lossless network,
the Z parameters are all purely imaginary.

Inspecting Eqs. (2.18) and (2.20), we immediately obtain an important relation

[Z] = [Y ]−1 (2.21)

2.5 ABCD PARAMETERS

The ABCD parameters of a two-port network are given by

A = V1

V2

∣∣∣∣
I2=0

B = V1

−I2

∣∣∣∣
V2=0

C = I1

V2

∣∣∣∣
I2=0

D = I1

−I2

∣∣∣∣
V2=0

(2.22)

These parameters are actually defined in a set of linear equations in matrix notation

[
V1

I1

]
=

[
A B

C D

]
·
[

V2

−I2

]
(2.23)

where the matrix comprised of the ABCD parameters is called the ABCD matrix.
Sometimes, it may also be referred to as the transfer or chain matrix. The ABCD
parameters have following properties:

AD − BC = 1 for a reciprocal network (2.24)

A = D for a symmetrical network (2.25)

If the network is lossless, then A and D will be purely real and B and C will be
purely imaginary.

If the network in Figure 2.1 is turned around, then the transfer matrix defined in
Eq. (2.23) becomes

[
At Bt

Ct Dt

]
=

[
D B

C A

]
(2.26)

where the parameters with t subscripts are for the network after being turned around,
and the parameters without subscripts are for the network before being turned around
(with its original orientation). In both cases, V1 and I1 are at the left terminal and V2

and I2 are at the right terminal.
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FIGURE 2.2 Some useful two-port networks and their ABCD parameters.

The ABCD parameters are very useful for analysis of a complex two-port network
that may be divided into two or more cascaded subnetworks. Figure 2.2 gives the
ABCD parameters of some useful two-port networks.

2.6 TRANSMISSION-LINE NETWORKS

Since V2 = −I2Z02, the input impedance of the two-port network in Figure 2.1 is
given by

Zin1 = V 1

I1
= Z02A + B

Z02C + D
(2.27)


