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 PREFACE     

  Earth has the unique characteristic of absorbing any amount of electricity (electric 
charge) and yet remaining neutral, that is, at zero potential. However, there could 
be no electricity without electrical insulation. The higher the potential, the greater 
the level of insulation required. The fundamentals of understanding high voltage 
engineering lie in the knowledge of the behavior of dielectrics, the electrical insula-
tion, subjected to high potentials. 

 The insulation system is the basis of power systems. To create an optimally 
designed insulation system, that can provide long - lasting and satisfactory service, it 
is important to understand the behavior of dielectrics under electric stress. In a sci-
entifi c subject, the fundamental knowledge and concepts evolve through continuous 
academic efforts supported by dedicated research work over decades, in some cases 
even centuries. 

 The contents of this book are derived from the lectures in High Voltage 
Engineering delivered by us for decades at Technical University (TU) Dresden, 
Germany and at Indian Institute of Technology, Kanpur, India, to the graduate and 
senior undergraduate students. Our fi rst book in English on the subject was published 
in 1995 in India. Since then, much research and development work have been per-
formed in our laboratories and elsewhere in the world. The innovative conceptual 
ideas, developed through discussions in the classrooms over the last two decades, 
have prompted us to write this book. 

 TU Dresden is one of the biggest and oldest technical universities in Europe. 
It celebrated its 150th anniversary in 1978. Germany is well known for its organized, 
systematic practical research in laboratories for the development of fundamental 
scientifi c approach and technology. The development in high voltage engineering at 
TU Dresden started more than a century ago, in early 1900. The research work in 
the fi eld of gas discharge was initiated by the well - known persons in the fi eld, 
Professors Teopler and Binder. Having had the opportunity to work in such a highly 
developed professional environment, the authors had full access to the fundamental 
concepts that evolved on the subject at TU Dresden. 

 A novel approach, the  “ fi eld dependent behavior of the dielectrics ” , has been 
adopted throughout this book. In the classifi cation of electric fi elds, a unique concept 
of  “ weakly nonuniform fi eld ”  is introduced conceptually as well as analytically with 
the help of Schwaiger factor. It is an important tool for the design of high voltage 
equipment, especially for the Gas Insulated Systems (GIS). 

 For the preparation of this manuscript the authors have had the advantage of 
referring to the vast and rich literature available in German and in English. The 
advanced level of contents in this book is suitable for graduate and senior under-
graduate engineering students. Research, design and practicing professionals will 

xi



xii PREFACE

also fi nd it useful for gaining in - depth knowledge and insights into the subject. For 
explaining a particular phenomenon, the actual measured curves, rather than sche-
matic curves, have been provided throughout the book in order to make it more 
practice oriented. 

 In place of the hitherto commonly used term  “ Partial Discharge ”  (PD), a more 
appropriate term  “ Partial Breakdown ”  (PB) has been adopted for the fi rst time in 
this book. In electrical engineering, the literal meaning of the word  “ discharge ”  is 
to get rid of a charge or electricity. Discharge is also described as the process of 
withdrawing or transference of an electric charge. At its initial stage, the electric 
discharge process between two electrodes leads to the mechanism of  “ conduction ”  
of current through the dielectric. When the conduction is increased to the extent that 
the electric discharge current may lead to equalization of the difference of potential 
between two electrodes, the phenomenon is appropriately termed  “ breakdown ” , 
which is often mentioned as  “ discharge ” . Breakdown is the situation in which com-
plete insulation failure takes place. Under extremely nonuniform fi eld conditions, 
the electric breakdown process can confi ne locally to a region within the dielectric 
without affecting the total dielectric. Such a local breakdown process is appropriately 
termed as  “ Partial Breakdown ” , (PB). Stable Partial Breakdown process in any 
gaseous medium is known as  “ Corona ” . Stable PB process always precedes the 
complete breakdown in all the dielectrics working under extremely nonuniform fi eld 
conditions. 

 The fi rst chapter of the book,  “ Introduction ” , explains the real meaning of the 
relevant scientifi c terms commonly used in high voltage engineering. These terms 
have often been interpreted and adopted inappropriately. We saw the need to write 
this chapter through our involvement in teaching and interaction with our students. 
Discussions with graduate students while supervising their theses generated correct 
interpretations that have been incorporated in this text. 

 Chapter  2  on electric fi elds provides the base for understanding the fi eld 
dependent behavior of dielectrics. The  “ electric fi eld intensity ”  is the measure of 
 “ Electric Stress ”  a dielectric is subjected to and it depends upon the shape of the 
electrodes. Hence, the electric fi eld intensity determines the overall performance of 
the dielectrics. 

 Chapter  3  in the book on gaseous dielectrics is the longest. The investigations 
made on free atmospheric air reveal the interesting conceptual developments in the 
breakdown process and the failure of insulating properties of dielectrics. Studying 
gaseous dielectrics is the best way of learning the behavior of all other types of 
dielectrics. The reader should fi nd it interesting to learn how the breakdown strength 
of atmospheric air varies between very high magnitudes of the order of 90   kV/cm 
to an extremely low value of just 1   kV/cm under different fi eld conditions. Distinction 
between the three types of Coronas, namely Star, Streamer and Leader Corona, and 
their peculiar characteristics are also described in this chapter. The performance of 
SF 6  gas and its mixtures is examined under different fi eld conditions. Professionals 
involved with GIS will also fi nd this part of the chapter useful for their specifi c 
interests. 

 The phenomenon of lightning, very closely related to the breakdown process 
in long air gaps, is presented in Chapter  4 . Description of the rare phenomenon of 
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 “ Ball Lightning ”  should be interesting for all readers. The authors ’  experiences with 
the rare incidents of Ball Lightning due to man - made sources of charge are also 
described. Application of vacuum as a dielectric has increased considerably in the 
last three decades. Hence, it has been presented separately in Chapter  5 . 

 Classifi cation, properties and practical applications of liquid and solid dielec-
trics are presented in the Chapters  6  and  7 . Their intrinsic and practical breakdown 
strengths are distinguished with respect to the processes, which affect the break-
down. Partial Breakdown in solid dielectrics is covered with special signifi cance. 

 This book is our second joint venture. The fi rst one was published in 1995 in 
India. We are always open to and would be grateful for suggestions from readers of 
our book. 

   Ravindra Arora 
 Wolfgang Mosch 

  June 2011        
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  CHAPTER 1 

INTRODUCTION     

     The subject,  “ High Voltage Engineering ” , is the knowledge of the behavior of 
dielectrics — electrical insulation when subjected to high voltage. Performance 
of dielectrics is electric fi eld dependent. The electric fi eld confi guration to which a 
dielectric is subjected determines its life and function in the long run. It is always 
desirable to minimize the volume of the electrical insulation requirements yet a long 
and trouble - free life of all high voltage apparatus should be ensured. For an appa-
ratus to be economically viable, its desirable life expectancy is thirty to forty years, 
depending upon the cost and technology of production involved. 

 The world has seen rapid advancement in the technology applied in high 
voltage apparatus in the second half of the twentieth century. Manufacturing of Gas 
Insulated Sub - stations (GIS), power transformers, cables and switchgears at the 
highest rated voltages up to 1100   kV involve the most sophisticated technologies. 
Such a development has taken place with dedicated efforts to understand the behav-
ior of dielectrics, gaseous, solid, liquid, and vacuum. 

 The last half a century has also seen prominent advancement in the technology 
of dielectric fi nishes on equipment. To a limited extent, insulating materials with 
better dielectric properties and performance have been developed. Knowledge of 
electric fi eld dependent behavior of dielectrics has led to better use of the insulating 
materials. Advancement in techniques of evaluating the quality of the fi nish of elec-
trical insulation in an apparatus has contributed to producing quality power apparatus 
with more reliability up to the highest rated voltages. The non - destructive testing 
and condition monitoring techniques of equipment/insulation have improved con-
siderably. The high voltage test apparatus and measuring instrumentation and their 
respective technologies have also made big advances. These have led to the produc-
tion of more dependable and economical high voltage apparatus with sophisticated 
technologies. 

 The contents of this book were initially developed at the High Voltage 
Laboratory of Technische Universit ä t Dresden, Germany, which is well known in the 
continent of Europe for its dedicated research and development work for more than 
one and a half centuries. These were published for the fi rst time in English in our 

High Voltage and Electrical Insulation Engineering, First Edition. Ravindra Arora, Wolfgang Mosch.
© 2011 Institute of Electrical and Electronics Engineers. Published 2011 by John Wiley & Sons, Inc.
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2 CHAPTER 1 INTRODUCTION

earlier book,  “ High Voltage Insulation Engineering ”  in 1995. Advances in this 
subject, at TU Dresden, Germany and Indian Institute of Technology Kanpur (India) 
and in many other countries in the world are being incorporated into this second book. 

 While delivering the lectures based on our fi rst book, interaction with the 
students revealed a number of lacunae in interpreting the basic concepts essential 
for understanding the behavior of dielectrics. Hence, some fundamental terminolo-
gies used commonly in this subject are explained in the following pages. Explanation 
of these terms has been mainly derived from various English - language dictionaries 
 [1.1]  to  [1.4]  that describe the same terminology in slightly different ways. Hence, 
a number of similar expressions available for a particular term are compiled. These 
descriptions are bulleted in the following text. A clear interpretation of these terms 
will help the reader to better understand the high voltage phenomena.  

   1.1    ELECTRIC CHARGE AND DISCHARGE 

   Electron: 

   •      an elementary particle of negative charge found outside the nucleus of an atom  

   •      negatively charged sub - atomic particle found in all atoms and acting as the 
primary carrier of electricity in solids   

  Proton: 

   •      a subatomic particle with a positive electric charge occurring in all atomic 
nuclei - origin Greek,  “ fi rst thing ”   

   •      a nuclear particle with positive charge equal and opposite to that of an electron 
negative charge   

  Ion: 

   •      an electrifi ed atom having either a positive or negative charge  

   •      an electrifi ed atom which has increased or decreased its number of electrons 
after electrolysis (ionisation)  

   •      an atom or molecule with a net electric charge produced through loss or gain 
of electrons   

  Ionise: 

   •      convert an atom, molecule or substance, into an ion or ions  

   •      to convert into an ion form  

   •      to convert wholly or partly into ions — to become ionized   

  Ionisation: 

   •      the process of formation of ions   

  Electric Charge: 

   •      the presence of an uncancelled excess of either positive subatomic particles 
(protons), or negative subatomic particles (electrons) in a substance  

   •      free subatomic particles of a polarity, positive or negative    
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 The behavior of electric charge can be explained with the following typical 
characteristics:

    •      ionisation is a process by which charges build up  

   •      accumulation of charge (q) builds up potential   φ  

   •      concentration of like polarity charge (in dielectrics) is known as  “  space charge  ”   

   •      when the positive and the negative charges are uniformly distributed in a 
dielectric, the volume charge density  “   ρv ” , is equal to zero  

   •      on the contrary, when there is a concentration of any one polarity charge,   ρv 
is not equal to zero  

   •      the electric charge is at rest in dielectrics, however, it is restless in conductors  

   •      the electric charge always acquires the least resistance path to fl ow  

   •      fl ow of charge is electric current  

   •      the electric charge fi nds its ultimate peace only inside the earth, the mother earth   

  Electric discharge: 

   •      to get rid of a charge of electricity  

   •      withdrawing or transference of an electric charge  

   •      release or neutralise the electric charge  

   •      a fl ow of electricity through the air or other gas  

   •      a sudden movement of charge    

 The electric discharge process can be typically described by the following:

    •      ionization is the process by which electric charges — hence potential builds up; 
while discharge involves movement of charge — hence loss of potential  

   •      ionization builds up potential on a body while discharge tends to lose it  

   •      electric discharge leads to equalization of the difference of electric potential 
built by the charge between any two bodies/electrodes    

   1.2    ELECTRIC AND MAGNETIC FIELDS AND 
ELECTROMAGNETICS 

 Field is a quantity that is a function of space. The presence of a fi eld is sensed by 
the force exerted on a particle or body. A wave can be defi ned as a function of both 
time and space  [1.5, 1.6] .

  Electric Field: 

   •      a quantitative description of the attraction or repulsion of one electric charge 
by another at any one point  

   •      the ratio of the force exerted on a positive test charge, placed at that point, to 
the magnitude of the charge  

   •      the source of electric fi eld intensity is electric charge   



4 CHAPTER 1 INTRODUCTION

  Magnetic Field: 

   •      the portion of space near a magnetic body or a current carrying body in which 
the forces from the body or current can be detected  

   •      a region around a magnet within which the force of magnetism acts  

   •      any space or region in which magnetic forces are present, as the space or 
region in or around a piece of magnetized steel, or in or around an electrical 
current   

  Electromagnetic: 

   •      relating to the inter - relation of electric and magnetic fi elds  

   •      pertaining to electromagnetism or an electromagnet   

  Electromagnetism: 

   •      magnetism developed by a current of electricity  

   •      branch of physical science that deals with the physical relations between 
electricity and magnetism  

   •      the study of the relation between electric currents and magnetism  

   •      magnetism caused by electric current   

  Electromagnetic Radiation: 

   •      radiation in which electric and magnetic fi elds vary at the same time   

  Electromagnetic Wave: 

   •      a wave whose characteristics are variations of electric and magnetic fi elds, 
such as a radio wave or a light wave  

   •      one of the waves that are propagated by simultaneous periodic variations of 
electric and magnetic fi eld intensity and that include radio wave, infrared, 
visible light, ultraviolet, X - rays and gamma rays    

 Electromagnetic waves can also be explained as follows:

    •      time varying magnetic fi eld produces an electric fi eld (Maxwell ’ s equation)  

   •      time varying electric fi eld also produces a magnetic fi eld, even in the absence 
of fl ow of electric current  

   •      time varying electric and magnetic fi elds form electromagnetic waves that are 
characterized by their impedance, energy and velocity of propagation etc.   

  Electromagnetic Field: 

   •      An electromagnetic fi eld comprised of both electric and magnetic fi elds. The 
two fi elds are related to each other theoretically such that the Maxwell ’ s equa-
tions are satisfi ed under the given boundary conditions. An electromagnetic 
fi eld itself has no mathematical symbol and it is not a measurable quantity 
as such.      
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   1.3    DIELECTRIC AND ELECTRICAL INSULATION 

   Electric: 

   •      electricus produced from amber (a resin) by friction  

   •      amber ’ s substance that develops electricity under friction  

   •      pertaining to, consisting of, or containing electric charge or electric current  

   •      charged with or capable of developing electricity   

  Dielectric: 

   •      archaic: a non conductor of electricity used to excite or accumulate 
electricity  

   •      dia    +    electric: non conductor of direct electric current  

   •      insulating (medium or substance), non - conductive, non - conductor, through 
which electricity is transmitted (without conduction).  

   •      a non conducting or insulating material; a material which admits electrostatic 
and magnetic lines of force but resists passage of electric current.    

 However, there is no dielectric which does not have any conduction of 
charge or current. Conduction currents through dielectrics mainly depend upon 
their relative permittivity number   εr and the type and amplitude of the voltage 
applied. 

 Before pico, nano or micro ampere of current magnitudes could not be detected 
or measured, the electrical insulating materials were considered to be totally non -
 conducting, hence called  “ dielectric ” .

  Insulator: 

   •      one that insulates; a material that is a poor conductor of electricity   

  Electrical insulant: 

   •      an electrical insulating material, insulation, the material used for insulating   

  Insulate: 

   •      to separate from conducting bodies by means of nonconductors so as to 
prevent transfer of electricity    

 The fi rst and foremost enemy of an electrical insulator is water. It is the most 
 bitter  enemy of liquid and solid dielectrics.  

   1.4    ELECTRICAL BREAKDOWN 

 Failure of electrical insulation properties of insulating materials is known as 
 “ breakdown ” . The electrical breakdown of dielectrics can be distinguished between 
 “ Global ”  and  “ Local ”  breakdowns, described below. 



6 CHAPTER 1 INTRODUCTION

   1.4.1    Global Breakdown 

 The complete rupture or failure of the electrical insulation between two electrodes 
is described as  “ breakdown ” . It is generally termed as  “ electrical breakdown ” , or 
simply  “ breakdown ” .  

   1.4.2    Local Breakdown 

 The phenomenon of failure of insulating properties confi ned locally to a part of the 
total insulation system provided between two electrodes is known as local break-
down. Since it takes place partially, not globally, it is described as  “ Partial 
Breakdown ”  (PB) in an electrical insulation. The healthy part of the dielectric con-
tinues to provide electrical insulation between the two electrodes in spite of failure 
of insulating properties in some limited part. The terminology, used very widely so 
far, for describing this phenomenon has been  “ Partial Discharge ”  (PD) in the litera-
ture. Since the word discharge has several meanings, it is more appropriate to 
describe this phenomenon as  “ Partial Breakdown ”  (PB). This phenomenon can occur 
in any dielectric under adverse conditions. Like Breakdown, the Partial Breakdown 
phenomenon is injurious for the dielectrics. Hence it is most undesirable and should 
be prevented as much as possible.   

   1.5    CORONA, STREAMER AND AURORA 

   Corona: 

   •      the gaseous envelope of the sun or star  

   •      a small circle of light seen around the sun or moon  

   •      origin Latin; crown, cornice, garland  

   •      halo of white light seen around the black disc of moon in total eclipse of sun, 
Figure  1.1   

   •      the brush discharge of electricity  

   •      a circle of light made by the apparent convergence of the streamers of the 
aurora borealis  

   •      a faint glow adjacent to the surface of an electrical conductor at high voltage  

   •      a crown or garland, especially that bestowed upon the ancient Romans as a 
reward for distinguished services  

   •      white or coloured circle of light seen around a luminous body, the sun or moon  

   •      the thin, hot outer atmosphere of the sun that is shaped by solar magnetic fi elds      

 The stable Partial Breakdown (PB) phenomenon in gaseous dielectrics/
mediums is known as corona.

  Streamer: 

   •      a long, narrow strip of material used as a decoration or fl ag  

   •      a Pennon, ribbon attached at one end and fl oating or waving at the other  
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   •      column of light shooting up in aurora  

   •      any long narrow wavy strip resembling or suggesting a banner fl oating in 
the wind  

   •      a long extension of the solar corona visible only during a total solar eclipse  

   •      Aurora Borealis  

   •      anything which streams  

   •      stream of light shooting upward from the horizon, as in some forms of the 
aurora borealis    

 The partial breakdown (PB) phenomenon in gaseous dielectrics at hemispheri-
cal rods, spherical or similar electrodes appear like a streamer or a shower of dis-
charge, are known as streamer corona.

  Aurora: 

   •      luminous atmospheric (prob. electrical) phenomenon radiating from earths 
northern or southern magnetic pole; down; colour of sky at sunrise  

   •      Roman Goddess of dawn (morning)  

   •      a luminous phenomenon that consists of streamers or arches of light appearing 
in the upper atmosphere of a planet ’ s polar regions and is caused by the emis-
sion of light from atoms excited by electrons accelerated along the planets 
magnetic fi eld lines.  

   •      the sporadic radiant emission of light from the upper atmosphere over middle 
and high latitudes    

     Figure 1.1     Diamond ring with long extension of the solar corona seen at total eclipse 
taken by the author in 1995.  
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 Auroras are spectacular displays of luminous radiation in the sky near polar 
regions, their symmetry defi ned by the earth ’ s magnetic fi eld. Aurora lights are 
emitted when atoms in the ionosphere are struck by high energy electrons coming 
from the sun  [1.7] . 

 The well known  “ Faraday Glow ”  is nothing but emission of light from atoms 
excited by electrons accelerated along a tube having atmospheric pressures, as in 
high latitudes at an altitude of hundreds of kilometers above the ground (earth), on 
application of voltage.

  Aurora australis: 

   •      an aurora that occurs in earth ’ s southern hemisphere  

   •      the southern lights  

   •      streamers of coloured light seen in the sky near the South Pole 
origin: Latin   

  Aurora borealis: 

   •      an aurora that occurs in earth ’ s northern hemisphere  

   •      the northern lights  

   •      streamers of coloured light seen in the sky near the North Pole 
origin: Latin  

   •      the northern down in Latin, meaning the light generated by electrons and ions 
bombarding the upper atmosphere at high latitudes.     

   1.6    CAPACITANCE AND CAPACITOR 

 Conductors have resistance; coils have inductance; and dielectrics have capacitance. 
A dielectric between two electrodes gives rise to a capacitor having a capacitance. 
The exact value of capacitance (in Farads) of a capacitor is diffi cult to determine 
analytically. It depends upon the shape and size of the electrodes, the volume of the 
dielectric between them, and the condition of the dielectric.   

 Figure  1.2  shows a typical parallel plate capacitor. The capacitance  “ C ”  of this 
capacitor is analytically calculated as,

   C
A

d
Fo r= ε ε  

where

    εo:      is the absolute permittivity or dielectric constant equal to 8.854 10  − 12  or 
  1 36 10 9/ π × −  Farads/m.  

   εr:      the relative permittivity number, a dimension less quantity which is a 
function of the temperature of the dielectric and also the magnitude and 
frequency of the voltage applied to it.  
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 A:      area of the plates (considered to be identical) in sq.m  

 d:      gap distance between the plates in m      

 This analytical formula for the calculation of capacitance has been derived 
with a very important assumption that the electric fi eld between the plates is a 
 “ uniform ”  fi eld. However, if the two plates are of limited size, the fringing effect of 
the plate ends would not render unifor the fi eld inbetween. Hence, many authors 
have described it to be valid for two  “ infi nite ”  size plates in the literature. In that 
case, the fi eld in the  “ center ”  of the plates may be uniform but when the area  “ A ”  
tends to infi nity, this formula is not valid for determining capacitance of this capaci-
tor. Even if one considers two very large area plates, the fi eld may be uniform only 
in the middle of the plates, not throughout the area  “ A ” . Uniform fi eld between two 
electrodes is only an ideal condition, one which is very diffi cult to achieve in 
practice. 

 Another lacunae in this formula is that  “   ε ” , the permittivity of the dielectric is 
often considered to be a constant. As mentioned, the relative permittivity varies with 
temperature and applied magnitude of voltage and its frequency. Since,   ε ε ε= o r, it 
would be wrong to describe   ε to be a constant. 

 The formula for the calculation of capacitance of the parallel plate capacitor 
should therefore be applied for a rough estimation of the capacitance. It is always 
advisable for the actual value of capacitance formed by a dielectric between two 
electrodes to be determined by measurement. 

   1.6.1    Stray Capacitance 

 A capacitor, depending upon its physical location, forms capacitance with other 
wholly or partially conducting bodies.   

 As shown in Figure  1.3 , the stray capacitances could be constituted by one or 
more dielectrics. The stray capacitances may vary in magnitude with respect to the 
location of the main capacitor. Air is the dielectric which constitutes most often the 
stray capacitances. To minimize the effect of stray capacitance, often screens 
(grounded concentric electrodes) are used in practice.     

     Figure 1.2     A Capacitor.  
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  CHAPTER 2 
ELECTRIC FIELDS, THEIR 
CONTROL AND ESTIMATION     

     To optimally design insulation that could provide long and satisfactory performance of 
electric equipment, it ’ s important to understand electric fi eld intensity in high voltage 
engineering. A systematic approach, with the help of electric fi eld theory, develops 
a vivid understanding of the behavior of dielectrics under various fi eld conditions. 

 The electric fi eld, produced due to potential on a body, stresses the dielectric 
(electric insulation) with  “ electric stress ” . The parameter that determines the mag-
nitude of electric stress on the dielectrics is known as the  “ electric fi eld intensity ” . 
The performance of a dielectric strongly depends upon the fi eld confi guration and 
the magnitude of electric fi eld intensity with which it is stressed. 

 The electric charge is considered static when there is no movement of charge. 
This is possible only when the dielectrics have no or negligible conduction of 
current. Unlike in metals, where the charge is turbulent, it can be considered to be 
relatively stationary in all dielectrics when static voltage is applied. 

 The fi elds produced by static charge or direct voltage is known as  “ electrostatic 
fi eld ” , whereas the fi eld produced by power frequency alternating voltage is described 
as  “ quasi - stationary electric fi eld ” . Both these fi elds are, however, often assumed to 
be without any space charge and not infl uenced by the movement of charge carriers 
for analysis. Such fi elds, also described as streamlined, rotation free or curlfree 
fi elds, are interesting to analyze. This chapter classifi es the fi eld confi gurations, and 
then describes different analytical and numerical methods of fi eld estimation. 
Methods of stress control and numerical optimization techniques of electric stress 
are also explained.  

   2.1    ELECTRIC FIELD INTENSITY,  “  E  ”  

 Faraday described the space around a magnet to be fi lled with  “ lines of magnetic 
force ” . Similarly, the region around an electrifi ed object can be considered fi lled 
with  “ lines of electric force ” . To Faraday, these lines existed as mechanical structures 
in the surrounding medium (the dielectric) and could exert force on an object placed 
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therein. Two typical electrostatic fi eld structures are shown in Figure  2.1 . Figure (a) 
sketches the fi eld between a sphere or a cylinder and plane, and Figure (b) shows 
the fi eld on a cross section of a bundle of four conductors. The sketches of these 
fi eld confi gurations neglect the effect of ground.   

 The  “ electric fi eld intensity ” , also known as the  “ electric fi eld strength ” , is 
defi ned as the electrostatic force  F  per unit positive test charge  q , placed at a par-
ticular point  p  in a dielectric. It is denoted by  E , and expressed in the unit  “ Newtons 
per Coulomb ” , that is, the force per unit charge. 

 Since the potential is expressed in  “ Joules per Coulomb (J/C) ” , or  “ Newton -
 meter per Coulomb (Nm/C) ” , which is defi ned as  “ Volt ” , the electric fi eld intensity 
is measured in its more common practical units of  “ Volt per meter ”  (V/m or kV/cm). 
It is often expressed in kV/mm also. 

 The electric fi eld intensity is often more specifi cally mentioned as  “ electric 
stress ”  experienced by a dielectric or an electrical insulating material. The potential 

     Figure 2.1     Typical electric fi eld confi gurations. (a) fi eld between sphere or cylinder and 
plane, (b) Field on a bundle conductor cross - section.  
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