Condensed Matter Physics

Second Edition

Michael P. Marder

This page intentionally left blank

Condensed Matter Physics

This page intentionally left blank

Condensed Matter Physics

Second Edition

Michael P. Marder

Copyright © 2010 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data is available.

ISBN 978-0-470-61798-4

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

Contents

	Pref Refe	ace		xix xxii
Ι	ATO	OMIC	STRUCTURE	1
1	The	Idea of	Crystals	3
	1.1	Introdu	uction	3
		1.1.1	Why are Solids Crystalline?	4
	1.2	Two-D	Dimensional Lattices	6
		1.2.1	Bravais Lattices	6
		1.2.2	Enumeration of Two-Dimensional Bravais Lattices	7
		1.2.3	Lattices with Bases	9
		1.2.4	Primitive Cells	9
		1.2.5	Wigner–Seitz Cells	10
	1.3	Symm	etries	11
		1.3.1	The Space Group	11
		1.3.2	Translation and Point Groups	12
		1.3.3	Role of Symmetry	14
	Prob	olems		14
	Refe	erences		16
2	Thr	ee-Dime	ensional Lattices	17
	2.1	Introdu	uction	17
	2.2	Monat	omic Lattices	20
		2.2.1	The Simple Cubic Lattice	20
		2.2.2	The Face-Centered Cubic Lattice	20
		2.2.3	The Body-Centered Cubic Lattice	22
		2.2.4	The Hexagonal Lattice	23
		2.2.5	The Hexagonal Close-Packed Lattice	23
		2.2.6	The Diamond Lattice	24
	2.3	Compo	ounds	24
		2.3.1	Rocksalt—Sodium Chloride	25
		2.3.2	Cesium Chloride	26
		2.3.3	Fluorite—Calcium Fluoride	26

		2.3.4	Zincblende—Zinc Sulfide	27
		2.3.5	Wurtzite—Zinc Oxide	28
		2.3.6	Perovskite—Calcium Titanate	28
	2.4	Classif	ication of Lattices by Symmetry	30
		2.4.1	Fourteen Bravais Lattices and Seven Crystal Systems	30
	2.5	Symme	etries of Lattices with Bases	33
		2.5.1	Thirty-Two Crystallographic Point Groups	33
		2.5.2	Two Hundred Thirty Distinct Lattices	36
	2.6	Some I	Macroscopic Implications of Microscopic Symmetries	37
		2.6.1	Pyroelectricity	37
		2.6.2	Piezoelectricity	37
		2.6.3	Optical Activity	38
	Prob	olems		38
	Refe	erences		41
3	Scat	tering a	nd Structures	43
	3.1	Introdu	action	43
	3.2	Theory	v of Scattering from Crystals	44
		3.2.1	Special Conditions for Scattering	44
		3.2.2	Elastic Scattering from Single Atom	46
		3.2.3	Wave Scattering from Many Atoms	47
		3.2.4	Lattice Sums	48
		3.2.5	Reciprocal Lattice	49
		3.2.6	Miller Indices	51
		3.2.7	Scattering from a Lattice with a Basis	53
	3.3	Experi	mental Methods	54
		3.3.1	Laue Method	56
		3.3.2	Rotating Crystal Method	57
		3.3.3	Powder Method	59
	3.4	Further	r Features of Scattering Experiments	60
		3.4.1	Interaction of X-Rays with Matter	60
		3.4.2	Production of X-Rays	61
		3.4.3	Neutrons	63
		3.4.4	Electrons	63
		3.4.5	Deciphering Complex Structures	64
		3.4.6	Accuracy of Structure Determinations	65
	3.5	Correla	ation Functions	66
		3.5.1	Why Bragg Peaks Survive Atomic Motions	66
		3.5.2	Extended X-Ray Absorption Fine Structure (EXAFS)	67
		3.5.3	Dynamic Light Scattering	68
		3.5.4	Application to Dilute Solutions	70
	Prob	olems		71
	Refe	erences		73

4	Surf	aces and	d Interfaces	77
	4.1	Introdu	ction	77
	4.2	Geome	try of Interfaces	77
		4.2.1	Coherent and Commensurate Interfaces	78
		4.2.2	Stacking Period and Interplanar Spacing	79
		4.2.3	Other Topics in Surface Structure	81
	4.3	Experie	mental Observation and Creation of Surfaces	82
		4.3.1	Low-Energy Electron Diffraction (LEED)	82
		4.3.2	Reflection High-Energy Electron Diffraction (RHEED)	84
		4.3.3	Molecular Beam Epitaxy (MBE)	84
		4.3.4	Field Ion Microscopy (FIM)	85
		4.3.5	Scanning Tunneling Microscopy (STM)	86
		4.3.6	Atomic Force Microscopy (AFM)	91
		4.3.7	High Resolution Electron Microscopy (HREM)	91
	Prob	lems		91
	Refe	rences		94
5	Beyo	ond Cry	stals	97
	5.1	Introdu	lction	97
	5.2	Diffusi	on and Random Variables	97
		5.2.1	Brownian Motion and the Diffusion Equation	97
		5.2.2	Diffusion	98
		5.2.3	Derivation from Master Equation	99
		5.2.4	Connection Between Diffusion and Random Walks	100
	5.3	Alloys		101
		5.3.1	Equilibrium Structures	101
		5.3.2	Phase Diagrams	102
		5.3.3	Superlattices	103
		5.3.4	Phase Separation	104
		5.3.5	Nonequilibrium Structures in Alloys	106
		5.3.6	Dynamics of Phase Separation	108
	5.4	Simula	tions	110
		5.4.1	Monte Carlo	110
		5.4.2	Molecular Dynamics	112
	5.5	Liquids	\$	113
		5.5.1	Order Parameters and Long- and Short-Range Order	113
		5.5.2	Packing Spheres	114
	5.6	Glasses	5	116
	5.7	Liquid	Crystals	120
		5.7.1	Nematics, Cholesterics, and Smectics	120
		5.7.2	Liquid Crystal Order Parameter	122
	5.8	Polyme	ers	123
		5.8.1	Ideal Radius of Gyration	123
	5.9	Colloid	Is and Diffusing-Wave Scattering	128

	5.9.1	Colloids
	5.9.2	Diffusing-Wave Spectroscopy
5.10	Quasic	rystals
	5.10.1	One-Dimensional Quasicrystal
	5.10.2	Two-Dimensional Quasicrystals—Penrose Tiles 139
	5.10.3	Experimental Observations
5.11	Fullere	nes and nanotubes
Probl	ems	
Refer	ences	

II ELECTRONIC STRUCTURE

153

6	The	Free Fo	ermi Gas and Single Electron Model	155
	6.1	Introd	uction	155
	6.2	Startin	g Hamiltonian	157
	6.3	Densit	ies of States	159
		6.3.1	Definition of Density of States D.	160
		6.3.2	Results for Free Electrons	161
	6.4	Statist	ical Mechanics of Noninteracting Electrons	163
	6.5	Somm	erfeld Expansion	166
		6.5.1	Specific Heat of Noninteracting Electrons at Low Temper-	
			atures	169
	Prob	olems		171
	Refe	erences		173
7	Non	–Intera	cting Electrons in a Periodic Potential	175
	7.1	Introd	uction	175
	7.2	Transl	ational Symmetry—Bloch's Theorem	175
		7.2.1	One Dimension	176
		7.2.2	Bloch's Theorem in Three Dimensions	180
		7.2.3	Formal Demonstration of Bloch's Theorem	182
		7.2.4	Additional Implications of Bloch's Theorem	183
		7.2.5	Van Hove Singularities	186
		7.2.6	Kronig–Penney Model	189
	7.3	Rotati	onal Symmetry—Group Representations	192
		7.3.1	Classes and Characters	198
		7.3.2	Consequences of point group symmetries for Schrödinger's	
			equation	201
	Prot	olems		203
	Refe	erences		206

8	Near	ly Free	and Tightly Bound Electrons	207
	8.1	Introdu	lection	207
	8.2	Nearly	Free Electrons	208
		8.2.1	Degenerate Perturbation Theory	210
	8.3	Brillou	in Zones	211
		8.3.1	Nearly Free Electron Fermi Surfaces	214
	8.4	Tightly	Bound Electrons	219
		8.4.1	Linear Combinations of Atomic Orbitals	219
		8.4.2	Wannier Functions	222
		8.4.3	Geometric Phases	223
		8.4.4	Tight Binding Model	226
	Prob	lems		227
	Refe	rences		232
	I CIU	renees		232
9	Elect	tron–El	ectron Interactions	233
	9.1	Introdu	ction	233
	9.2	Hartree	e and Hartree–Fock Equations	234
		9.2.1	Variational Principle	235
		9.2.2	Hartree–Fock Equations	235
		9.2.3	Numerical Implementation	239
		9.2.4	Hartree–Fock Equations for Jellium	242
	93	Density	v Functional Theory	244
		931	Thomas_Fermi Theory	247
		932	Stability of Matter	249
	94	Ouantu	Im Monte Carlo	252
	7.4	Quante Q / 1	Integrals by Monte Carlo	252
		9.4.1	Quantum Monte Carlo Methods	252
		9.4.2	Dhysical Pacults	255
	0.5	9.4.J Vohn	Sham Equations	254
	9.J Droh	KUIII-		255
	Prod	lems		200
	Rele	rences		202
10	Real	istic Ca	Iculations in Solids	265
10	10.1	Introdu	iction	265
	10.1	Numer	ical Methods	265
	10.2	10.2.1	Pseudopotentials and Orthogonalized Planes Wayes (OPW)	200
		10.2.1	Linear Combination of Atomic Orbitals (LCAO)	200
		10.2.2	Diana Wayaa	271
		10.2.3	Linger Augmented Diene Wayse (LADW)	271
	10.2	10.2.4 D-fmit	Linear Augmented Plane waves (LAPW)	274
	10.3		ion of inicials, insulators, and Semiconductors	211
	10.4	Brief S	Nearly Erec Electron Metals	219
		10.4.1	Netly Free Electron Metals	280
		10.4.2		282
		10.4.3	Semiconductors	283

293

10.4.4	Transition Metals	284
10.4.5	Rare Earths	286
Problems		286
References		291

III MECHANICAL PROPERTIES

11 C	Cohesion of Solids	29:	5
1	1.1 Introduction		5
	11.1.1 Radii of Atoms		7
1	1.2 Noble Gases		9
1	1.3 Ionic Crystals		1
	11.3.1 Ewald Sums		2
1	1.4 Metals		5
	11.4.1 Use of Pseudopotentials		7
1	1.5 Band Structure Energy		8
	11.5.1 Peierls Distortion		9
	11.5.2 Structural Phase Transitions		1
1	1.6 Hydrogen-Bonded Solids		2
1	1.7 Cohesive Energy from Band Calculations		2
1	1.8 Classical Potentials		3
F	Problems		5
F	References		8
12 F	Elasticity	32	1
	2.1 Introduction		1
1	2.2 Nonlinear Elasticity		1
_	12.2.1 Rubber Elasticity		2
	12.2.2 Larger Extensions of Rubber		4
1	2.3 Linear Elasticity		5
	12.3.1 Solids of Cubic Symmetry		6
	12.3.2 Isotropic Solids		8
1	2.4 Other Constitutive Laws		2
_	12.4.1 Liquid Crystals		2
	12.4.2 Granular Materials		5
P	Problems		6
F	References		9
13 F	Phonons	34	1
1	3.1 Introduction	34	1
1	3.2 Vibrations of a Classical Lattice	34	\hat{j}
1	13.2.1. Classical Vibrations in One Dimension	34	$\tilde{2}$
			2
	13.2.2 Classical Vibrations in Three Dimensions	34	h

		13.2.4	Lattice with a Basis	348
	13.3	Vibratio	ons of a Quantum–Mechanical Lattice	351
		13.3.1	Phonon Specific Heat	354
		13.3.2	Einstein and Debye Models	358
		13.3.3	Thermal Expansion	361
	13.4	Inelasti	c Scattering from Phonons	363
		13.4.1	Neutron Scattering	364
		13.4.2	Formal Theory of Neutron Scattering	366
		13.4.3	Averaging Exponentials	370
		13.4.4	Evaluation of Structure Factor	372
		13.4.5	Kohn Anomalies	373
	13.5	The Mö	össbauer Effect	374
	Prob	lems		376
	Refe	rences		377
14	Dislo	ocations	and Cracks	379
	14.1	Introdu	ction	379
	14.2	Disloca	tions	381
		14.2.1	Experimental Observations of Dislocations	383
		14.2.2	Force to Move a Dislocation	386
		14.2.3	One-Dimensional Dislocations: Frenkel-Kontorova Model	386
	14.3	Two-Di	imensional Dislocations and Hexatic Phases	389
		14.3.1	Impossibility of Crystalline Order in Two Dimensions	389
		14.3.2	Orientational Order	391
		14.3.3	Kosterlitz–Thouless–Berezinskii Transition	392
	14.4	Cracks		399
		14.4.1	Fracture of a Strip	399
		14.4.2	Stresses Around an Elliptical Hole	402
		14.4.3	Stress Intensity Factor	404
		14.4.4	Atomic Aspects of Fracture	405
	Prob	lems		406
	Refe	rences		409
15	Fluic	d Mecha	anics	413
	15.1	Introdu	ction	413
	15.2	Newtor	ian Fluids	413
		15.2.1	Euler's Equation	413
		15.2.2	Navier–Stokes Equation	415
	15.3	Polyme	ric Solutions	416
	15.4	Plastici	ty	423
	15.5	Superfl	uid ⁴ He	427
		15.5.1	Two-Fluid Hydrodynamics	430
		15.5.2	Second Sound	431
		15.5.3	Direct Observation of Two Fluids	433

15.5.4	Origin of Superfluidity	434
15.5.5	Lagrangian Theory of Wave Function	439
15.5.6	Superfluid ³ He	442
Problems		443
References		447

IV ELECTRON TRANSPORT

451

16	Dyna	amics of	f Bloch Electrons	453
	16.1	Introdu	ction	453
		16.1.1	Drude Model	453
	16.2	Semicl	assical Electron Dynamics	455
		16.2.1	Bloch Oscillations	456
		16.2.2	$\vec{k} \cdot \hat{P}$ Method	457
		16.2.3	Effective Mass	459
	16.3	Nonint	eracting Electrons in an Electric Field	459
		16.3.1	Zener Tunneling	462
	16.4	Semicl	assical Equations from Wave Packets	465
		16.4.1	Formal Dynamics of Wave Packets	465
		16.4.2	Dynamics from Lagrangian	467
	16.5	Quantiz	zing Semiclassical Dynamics	470
		16.5.1	Wannier-Stark Ladders	472
		16.5.2	de Haas-van Alphen Effect	473
		16.5.3	Experimental Measurements of Fermi Surfaces	474
	Prob	lems		477
	Refe	rences		480
17	Tran	snort P	henomena and Fermi Liquid Theory	483
1,	17.1	Introdu	iction	483
	17.2	Boltzm	pann Fountion	483
	17.2	17.2.1	Boltzmann Equation	485
		17.2.2	Including Anomalous Velocity	486
		17.2.2	Relaxation Time Approximation	487
		17.2.4	Relation to Rate of Production of Entropy	489
	17.3	Transp	ort Symmetries	490
		17.3.1	Onsager Relations	491
	17.4	Therm	oelectric Phenomena	492
		17.4.1	Electrical Current	492
		17.4.2	Effective Mass and Holes	494
		17.4.3	Mixed Thermal and Electrical Gradients	495
		17.4.4	Wiedemann–Franz Law	496
		17.4.5	Thermopower—Seebeck Effect	497
		17.4.6	Peltier Effect	498

	17.4.7	Thomson Effect	498
	17.4.8	Hall Effect	500
	17.4.9	Magnetoresistance	502
	17.4.1	0 Anomalous Hall Effect	503
	17.5 Fermi	Liquid Theory	504
	17.5.1	Basic Ideas	504
	17.5.2	Statistical Mechanics of Quasi-Particles	506
	17.5.3	Effective Mass	508
	17.5.4	Specific Heat	510
	17.5.5	Fermi Liquid Parameters	511
	17.5.6	Traveling Wayes	512
	17.5.7	Comparison with Experiment in 3 He	515
	Problems		516
	References		520
	References		520
18	Microscopi	c Theories of Conduction	523
	18.1 Introd	uction	523
	18.2 Weak	Scattering Theory of Conductivity	523
	18.2.1	General Formula for Relaxation Time	523
	18.2.2	Matthiessen's Rule	528
	18.2.3	Fluctuations	529
	18.3 Metal-	-Insulator Transitions in Disordered Solids	530
	1831	Impurities and Disorder	530
	18.3.2	Non-Compensated Impurities and the Mott Transition	531
	18.4 Comp	ensated Impurity Scattering and Green's Functions	534
	18.4.1	Tight-Binding Models of Disordered Solids	534
	18.4.2	Green's Functions	536
	18.4.2	Single Impurity	530
	18.4.3	Coherent Dotential Approximation	5/1
	10.4.4		542
	10.5 Locali	Exact Decults in One Dimension	542
	10.3.1	Exact Results III One Difficision	544
	18.5.2	Scaling Theory of Localization	547
	18.5.5		551
	18.6 Luttin		555
	18.6.1	Density of States	557
	Problems		560
	References		564
10	Flootronics		567
17	10.1 Introd	uation	507
	10.2 Matel		J0/
	19.2 Metal	Wede Experience	208
	19.2.1	work Functions	569
	19.2.2	Schottky Barrier	570
	19.2.3	Contact Potentials	- 572

609

19.3 Semiconductors
19.3.1 Pure Semiconductors
19.3.2 Semiconductor in Equilibrium
19.3.3 Intrinsic Semiconductor
19.3.4 Extrinsic Semiconductor
19.4 Diodes and Transistors
19.4.1 Surface States
19.4.2 Semiconductor Junctions
19.4.3 Boltzmann Equation for Semiconductors
19.4.4 Detailed Theory of Rectification
19.4.5 Transistor
19.5 Inversion Layers
19.5.1 Heterostructures
19.5.2 Quantum Point Contact
19.5.3 Quantum Dot
Problems
References

V OPTICAL PROPERTIES

Phenomene	ological Theory	611
20.1 Introd	uction	611
20.2 Maxw	vell's Equations	613
20.2.1	Traveling Waves	615
20.2.2	Mechanical Oscillators as Dielectric Function	616
20.3 Kram	ers–Kronig Relations	618
20.3.1	Application to Optical Experiments	620
20.4 The K	ubo–Greenwood Formula	623
20.4.1	Born Approximation	623
20.4.2	Susceptibility	627
20.4.3	Many-Body Green Functions	628
Problems		628
References		631
Optical Pro	operties of Semiconductors	633
21.1 Introd	luction	633
21.2 Cyclo	tron Resonance	633
21.2.1	Electron Energy Surfaces	636
21.3 Semic	conductor Band Gaps	638
21.3.1	Direct Transitions	638
21.3.2	Indirect Transitions	639
21.4 Excite	ons	641
21.4.1	Mott Wanniar Excitance	641
	Phenomene 20.1 Introd 20.2 Maxw 20.2.1 20.2.2 20.3 Kramo 20.3.1 20.3.1 20.4 The K 20.4.1 20.4.2 20.4.3 Problems References Optical Pro 21.1 Introd 21.2 Cyclo 21.3 Semic 21.3.1 21.3.2 21.4 Excito	Phenomenological Theory 20.1 Introduction 20.2 Maxwell's Equations 20.2.1 Traveling Waves 20.2.2 Mechanical Oscillators as Dielectric Function 20.3 Kramers–Kronig Relations 20.3.1 Application to Optical Experiments 20.4 The Kubo–Greenwood Formula 20.4.1 Born Approximation 20.4.2 Susceptibility 20.4.3 Many-Body Green Functions Problems References 21.1 Introduction 21.2 Cyclotron Resonance 21.3 Semiconductor Band Gaps 21.3.1 Direct Transitions 21.3.2 Indirect Transitions

		21.4.2	Frenkel Excitons	644
		21.4.3	Electron–Hole Liquid	645
	21.5	Optoele	ectronics	645
		21.5.1	Solar Cells	645
		21.5.2	Lasers	646
	Probl	lems		652
	Refe	rences		656
 22	Onti	cal Pro	narties of Inculators	650
	22 1	Introdu		659
	22.1	Polariz	ation	650
	22.2	1 01al 12	Eerroelectrics	650
		22.2.1	Perry phase theory of polorization	661
		22.2.2	Clausius Mossetti Balation	661
	<u></u>	22.2.3	Madaa in Jania Crustala	664
	22.3	Optical	Delevitore	004
		22.3.1		000
		22.3.2	Polarons	669
		22.3.3	Experimental Observations of Polarons	674
	22.4	Point L	Defects and Color Centers	674
		22.4.1		675
		22.4.2	F Centers	676
		22.4.3	Electron Spin Resonance and Electron Nuclear Double Res-	
			onance	677
		22.4.4	Other Centers	679
		22.4.5	Franck–Condon Effect	679
		22.4.6	Urbach Tails	683
	Probl	lems		684
	Refe	rences		686
23	Opti	cal Proj	perties of Metals and Inelastic Scattering	689
	23.1	Introdu	ction	689
		23.1.1	Plasma Frequency	689
	23.2	Metals	at Low Frequencies	692
		23.2.1	Anomalous Skin Effect	694
	233	Plasmo	ns	695
	-010	23.3.1	Experimental Observation of Plasmons	696
	23.4	Interba	nd Transitions	698
	23.5	Brillou	in and Raman Scattering	701
	<u>_</u> J.J	23 5 1	Brillouin Scattering	702
		23.5.1	Raman Scattering	702
		23.5.2	Inelastic X-Ray Scattering	703
	72 F	25.5.5 Photoe	mission	703
	23.0	23 6 1	Massurement of Work Functions	702
		23.0.1	Angle Decelved Decteomicsics	703
		23.0.2	Angie-Resolved Photoennission	700

23.6.3	Core-Level Photoemission and Charge-Transfer Insulators	710
Problems		716
References		719

VI MAGNETISM

721

24	Class	sical Theories of Magnetism and Ordering	723
	24.1	Introduction	723
	24.2	Three Views of Magnetism	723
		24.2.1 From Magnetic Moments	723
		24.2.2 From Conductivity	724
		24.2.3 From a Free Energy	725
	24.3	Magnetic Dipole Moments	727
		24.3.1 Spontaneous Magnetization of Ferromagnets	730
		24.3.2 Ferrimagnets	731
		24.3.3 Antiferromagnets	733
	24.4	Mean Field Theory and the Ising Model	734
		24.4.1 Domains	736
		24.4.2 Hysteresis	739
	24.5	Other Order–Disorder Transitions	740
		24.5.1 Alloy Superlattices	740
		24.5.2 Spin Glasses	743
	24.6	Critical Phenomena	743
		24.6.1 Landau Free Energy	744
		24.6.2 Scaling Theory	750
	Prob	lems	754
	Refe	rences	757
25	Mag	netism of Ions and Electrons	759
	25.1	Introduction	759
	25.2	Atomic Magnetism	761
		25.2.1 Hund's Rules	762
		25.2.2 Curie's Law	766
	25.3	Magnetism of the Free-Electron Gas	769
		25.3.1 Pauli Paramagnetism	770
		25.3.2 Landau Diamagnetism	771
		25.3.3 Aharonov–Bohm Effect	774
	25.4	Tightly Bound Electrons in Magnetic Fields	777
	25.5	Quantum Hall Effect	780
		25.5.1 Integer Quantum Hall Effect	780
		25.5.2 Fractional Quantum Hall Effect	785
	Prob	lems	791
	Refe	rences	794

26	Qua	ntum M	lechanics of Interacting Magnetic Moments	797
	26.1	Introdu	uction	797
	26.2	Origin	of Ferromagnetism	797
		26.2.1	Heitler–London Calculation	797
		26.2.2	Spin Hamiltonian	802
	26.3	Heisen	berg Model	802
		26.3.1	Indirect Exchange and Superexchange	804
		26.3.2	Ground State	805
		26.3.3	Spin Waves	805
		26.3.4	Spin Waves in Antiferromagnets	808
		26.3.5	Comparison with Experiment	811
	26.4	Ferrom	agnetism in Transition Metals	811
		26.4.1	Stoner Model	811
		26.4.2	Calculations Within Band Theory	813
	26.5	Spintro	onics	815
		26.5.1	Giant Magnetoresistance	815
		26.5.2	Spin Torque	816
	26.6	Kondo	Effect	819
		26.6.1	Scaling Theory	824
	26.7	Hubba	rd Model	828
		26.7.1	Mean-Field Solution	829
	Prob	lems		832
	Refe	rences		835
27	Supe	ercondu	ctivity	839
	27.1	Introdu	uction	839
	27.2	Phenor	nenology of Superconductivity	840
		27.2.1	Phenomenological Free Energy	841
		27.2.2	Thermodynamics of Superconductors	843
		27.2.3	Landau–Ginzburg Free Energy	844
		27.2.4	Type I and Type II Superconductors	845
		27.2.5	Flux Quantization	850
		27.2.6	The Josephson Effect	852
		27.2.7	Circuits with Josephson Junction Elements	854
		27.2.8	SQUIDS	855
		27.2.9	Origin of Josephson's Equations	856
	27.3	Micros	copic Theory of Superconductivity	858
		27.3.1	Electron–Ion Interaction	859
		27.3.2	Instability of the Normal State: Cooper Problem	863
		27.3.3	Self-Consistent Ground State	865
		27.3.4	Thermodynamics of Superconductors	869
			Thermodynamics of Superconductors	
		27.3.5	Superconductor in External Magnetic Field	873
		27.3.5 27.3.6	Superconductor in External Magnetic Field	873 876

27.3.8	High-Temperature Superconductors	881
Problems		888
References		890

APPENDICES

895

								-		•																			00.
A	Latt	ice Sum	ns a	inc	I Fo	our	ier	Tr	an	sto	rr	ns	5																897
	A.1	One-Di	Dim	ens	sion	ial S	Sun	n .			•	•	•	•									•	•	•	•			897
	A.2	Area U	Jnd	ler	Pea	ıks								•					•	•									897
	A.3	Three-l	Di	me	nsia	ona	l Su	ım					•																898
	A.4	Discret	te C	Cas	se									•								•							899
	A.5	Convol	oluti	ion	1.															•									900
	A.6	Using (the	Fa	ast F	Fou	rier	Tr	an	sfo	orr	n	•			•			•				•				•		900
	Refe	rences			•					•	•	•	•	•••	•	•	•	•	•	•	•		•	•	•	•	•	•	902
B	Vari	ational	Te	ch	niq	ues																							903
	B.1	Functio	ona	als	and	l Fu	inct	ior	nal	D	eri	va	ativ	ves	\$.														903
	B.2	Time-I	Ind	epe	ende	ent	Scł	ırö	dir	nge	er l	Eq	Jua	atio	on				•										904
	B .3	Time-I	Der	per	ıder	it S	chr	ödi	ing	er	E	qu	at	ior	ı														905
	B .4	Method	od o	of S	tee	pes	t D	esc	en	t																			906
	Refe	rences									•	•	•			•	•		•	•			•	•	·		•		906
С	Seco	nd Qua	anti	iza	tio	n																							907
	C .1	Rules																											907
		C.1.1	S	tate	es																								907
		C.1.2	0)pe	rate	ors																							907
		C.1.3	Н	lan	nilto	onia	ans																						908
	C.2	Derivat	itio	ns																									909
		C.2.1	В	os	ons																								909
		C.2.2	F	err	nio	ns						•	•		•					•				•		•		•	910

Index

Preface

Preface to first edition

Using this book.

This textbook provides material for a one-year graduate course on condensed matter physics. It contains introductions to classic subjects, and it also presents topics I believe will continue to occupy the field in the future. The book teaches not only about the effective masses of electrons in semiconductor crystals and band theory, but also about quasicrystals, dynamics of phase separation, why rubber is more floppy than steel, electron interference in nanometer-sized channels, and the quantum Hall effect.

It is arranged in six parts, convenient for dividing into two semesters or three quarters. However, there is more material than can reasonably be covered in one year. My experience suggests that an instructor should aim to cover roughly two-thirds of the material in each part. The remainder is available for reference. Every instructor will find that some of the topics are very elementary and others are quite advanced. However, instructors with different backgrounds will disagree to a surprising extent on which are which. The web site associated with the book, http://chaos.ph.utexas.edu/~cmp, contains sample syllabi, as well as corrections, and other information.

Each chapter is followed by a collection of problems. Some are brief derivations, but many introduce new topics and are fairly lengthy. An instructor's manual is available to aid in decisions on what to assign. Whether in academic or industrial posts, experimentalists and theorists must all become fluent in manipulating data and symbols with the computer. Therefore, many of the problems involve numerical work, ranging from no more than plotting graphs to a series of linked exercises that produces a simple band structure code.

The book presumes a working knowledge of quantum mechanics, statistical mechanics, and electricity and magnetism. I decided to exclude many-body Green functions, which become such an absorbing formal world of their own that they too easily drive physical reasoning out of an introductory course. However, as the book proceeds I do begin to employ second quantization, and it becomes quite common by the time of the section on magnetism.

If simple arguments explain a phenomenon, I present them, but I also have paid some attention to the actual historical process by which ideas were accepted, and I try to explain in detail some of the calculations and experimental data that actually convinced the specialists. Not all the subjects discussed in this book are closed; even simple questions do not always have answers; and theory and experiment do not always completely agree. The topics that can today be presented only within a distressing cloud of uncertainty are precisely the ones most likely to remain central to the development of condensed matter physics.

References to original literature. There are two attitudes toward references to original literature. One is that it is ridiculous to "cite the original work of Maxwell, for example, which nobody bothers to look up anyway" [Aharoni (1996), p. vii].

Maxwell himself disagreed. He believed that it "is of great advantage to the student of any subject to read the original memoirs on that subject, for science is always most completely assimilated when it is found in its nascent state" [Maxwell (1904), p. xi]. While it would be impossible to cite all papers responsible for the development of condensed matter physics without having reference lists longer than the remainder of the book, I have cited some of the most influential papers for two reasons. First, anyone who is part of research today knows how strongly all authors feel about having contributions recognized, and it hardly seems fair to have older generations drift entirely out of consciousness simply because they are no longer around to defend themselves. Second, original papers on difficult topics sometimes provide clearer explanations than anything that ever follows. Review articles quickly race over elementary points so as to provide comprehensive coverage of current developments, while textbooks easily make assertions, ignoring the complex web of evidence that eventually produced a consensus.

To try to ensure that major portions of the field were not left unrepresented, I somewhat arbitrarily chose three series of review articles and included a reference to almost every article with a bearing on condensed matter physics in the last 30 years. These are: *Solid State Physics: Advances in Research and Applications, Reviews of Modern Physics*, and *Physics Today*. Some of these articles have a very narrow focus, but the degree of difficulty can happily be estimated with little effort by using Ziman's "coefficient of non-specificity, calculated as follows: transform the title into a succession of A adjectives qualifying S substantives, omitting redundant words like 'physics', 'effects', 'properties', 'materials', etc. Then take the ratio A/S. Inspection ... shows quite clearly that if the coefficient is greater than 3 the article is too specialized.... The optimum seems to be in the range $1 \le A/S \le 2$ " [Ziman (1961)].

Origin of the field. The discovery of quantum mechanics raised the hope of explaining the familiar world from equations at the atomic scale. In early stages this enterprise was largely restricted to metals in crystalline form. The field began as "metals physics," but the term excluded widely studied solids such as ionic crystals. "Solid state physics" was adopted instead, with creation of the Division of Solid State Physics by the American Physical Society in 1947. A decade later even "solid state" was becoming too restrictive for a field tackling liquid metals, liquid helium, liquid crystals, and polymer melts. In 1963, Busch began editing a journal called *Physik der Kondensierten Materie/Physique de la matière condensée/Physics of condensed matter*. The daring term gained usage slowly. The American Physical Society Division of Solid State Physics voted in April 1978 to change its name to the Division of Condensed Matter Physics.

Having set itself the modest goal of explaining the whole material world, including structural and electronic properties of solids and liquids, the field of condensed matter physics has become enormous. It overlaps statistical physics, materials physics, and fluid and solid mechanics. The diversity in topics obscures a unity of approach.

Experiments play a crucial role. The systems studied by condensed matter

Preface

physics are far too complicated for anyone to deduce their qualitative behavior from atomic scale considerations. Only once experience has determined the nature of the qualitative problem does theory have a chance of explaining it. On the other hand, most experiments are impossible to interpret quantitatively without theoretical support.

Condensed matter theories search for relations between separate levels of description. The fundamental underlying equations are largely useless, so theories of condensed matter are largely based upon equations whose form is guessed rather than derived, and in which parameters or methods of approximation are constrained by symmetry and determined by experiment. Often there is a friendly competition between simple models, employed for conceptual understanding, and attempts at realistic computation. There is sometimes a tendency to speak a bit contemptuously of the simple models. However, "for many purposes a theory whose consequences are easily followed is preferable to one which is more fundamental but also more unwieldy" [Thomson (1907), p. 2].

Acknowledgements. In the course of preparing this manuscript, I received generous assistance from dozens of people who supplied figures, answered queries, and took the time to debunk anecdotes that not only seemed to good to be true, but were in fact too good to be true. Some who wrote comments include Martin Bazant, Hans Bethe, Danita Boonchaisri, Steve Girvin, Stefan Hüfner, David Lazarus, Neil Mathur, David Mermin, George Sawatzky, and John Ziman. Lynn Boatner, Janie Gardner, and Douglas Corrigan of Oak Ridge National Laboratory contributed the micrograph appearing on the front cover. At The University of Texas at Austin, I was particularly helped by Alex de Lozanne, John Markert, Jim Erskine, Ken Shih, and Hugo Steinfink. Bob Martinez was the first person after me to try teaching from the text. Ted Einstein of the University of Maryland, Sokrates Pantelides of Vanderbilt University, and Rashmi Desai of The University of Toronto have also taught from draft versions, and they found embarrassing errors that I am perfectly glad to see disappear with the drafts. Roberto Diener trapped many additional errors. Caryn Cluiss assisted in the task of organizing permissions from numerous publishers.

As part of writing the book, I wanted to learn about band structure calculations. My colleague Len Kleinman helped with a steady supply of physical insight, provocative commentary, and warnings about the *method of successful approximations*, where twiddling hidden parameters stops as soon as one obtains an expected answer. Hans Skriver kindly supplied me with a copy of the code described in Skriver (1984). Roland Stumpf supplied improved versions of the planewave pseudopotential code described in Stumpf and Scheffler (1994), and he also answered interminable series of questions. Most recently, calculations were performed using VASP (Vienna ab-initio simulation program) developed at the Institut für Theoretische Physik of the Technische Universität Wien by Kresse and Hafner (1993), Kresse and Hafner (1994), Kresse and Furthmüller (1996b), and Kresse and Furthmüller (1996a).

I owe special thanks to Qian Niu. On many occasions I found myself baffled

by an apparently simple point, and I asked one expert after another without finding a resolution. When all other avenues failed, I took the stairs one flight down to Qian's office, where after a brief smile he explained matters to me with perfect clarity.

The Exxon Education Foundation and the National Science Foundation gave me the means to buy a laptop computer, which in turn allowed me to continue thinking about condensed metaphysics in unexpected places. My thanks to the citizens of Gavdos for allowing me to use cast-off solar panels, to Elias Kyriakopoulos for repairing a 12-volt power inverter when all seemed hopeless, and to Nikos Papanicolaou for unquestioning hospitality at the University of Crete whenever life without a library became just too difficult. Last thanks of all to my wife Elpida, without whose quiet encouragement and example of determination I would never have had the courage to complete this book.

Austin, Texas September, 1999 MICHAEL MARDER

References

- A. Aharoni (1996), Introduction to the Theory of Ferromagnetism, Clarendon Press, Oxford.
- G. Kresse and J. Furthmüller (1996a), Efficiency of *ab-initio* total energy calculations for metals and semiconductors using a plane-wave basis set, *Computational Materials Science*, **6**, 15–50.
- G. Kresse and J. Furthmüller (1996b), Efficient iterative schemes for *ab initio* total-energy calculations using a plane-wave basis set, *Physical Review B*, **55**, 11169–11186.
- G. Kresse and J. Hafner (1993), *Ab initio* molecular dynamics for liquid metals, *Physical Review B*, 47, 558–561.
- G. Kresse and J. Hafner (1994), *Ab initio* molecular-dynamics simulation of the liquid-metalamorphous-semiconductor transition in germanium, *Physical Review B*, **49**, 14251–14269.
- J. C. Maxwell (1904), A Treatise on Electricity and Magnetism, vol. I, 3rd ed., Clarendon Press, Oxford.
- H. Skriver (1984), The LMTO Method: Muffin-Tin Orbitals and Electronic Structure, Springer-Verlag, Berlin.
- R. Stumpf and M. Scheffler (1994), Simultaneous calculation of the equilibrium electronic structure and its ground state using density functional theory, *Computer Physics Communications*, **79**, 447– 465. The code is available in source from the CPC program library.
- J. J. Thomson (1907), The Corpuscular Theory of Matter, Charles Scribner's Sons, New York.
- J. M. Ziman (1961), Book reviews, Philosophical Magazine, 6, 1071.

Preface to second edition

The goal of this second edition is to consolidate thousands of changes suggested by readers since the first was published, to improve presentation of several topics, and to add a small number of new ones.

Minor typographical errors were originally very numerous, and over 40 individuals from all over the world contributed corrections. The top 5 error-finders found so many that they deserve special recognition: Roberto Diener read the book cover to cover, checked every derivation, and found 244; Dominic Holland found 33; Erkki Thuneberg found 20; Dale Kitchen found 15; Qian Niu found 11. Particularly extensive and detailed comments arrived from Wesley Matthews, Sasha Chernyshev, and Vincenzo Fiorentini.

The primary reason for many students to learn Condensed Matter Physics is for the topics of electron and phonon band structures. The presentation of these topics had been rushed, and the new presentation is slower, working out one-dimensional examples before proceeding to the full three-dimensional and abstract formulations.

The entire discipline of condensed matter is roughly ten percent older than when the first edition was written, so adding some new topics seemed appropriate. For the most part, these new topics were ones whose importance is increasingly appreciated, rather than material first derived in the last few years. They include graphene and nanotubes, Berry phases, Luttinger liquids, diffusion, dynamic light scattering, and spin torques.

The world in which this edition was produced is slightly different from that of the previous one. The first edition required many, many days walking up and down library stacks searching for articles. Now almost all academic publications are available through the internet in the world's most remote corners. Laptop computers were a rare luxury twelve years ago. Now they are a common commodity. The discipline of condensed matter physics itself underlies these technical advances. The benefits of instant connection everywhere to everything are partly offset by the corresponding demand to respond instantly to everyone everywhere about everything. I thank the National Science Foundation for sustained support that allowed me some periods of peace where I could finish this book.

Phalasarna, Crete June, 2010 MICHAEL MARDER

Permissions

Cover, Upper Image: Zinc oxide (ZnO) is a wide band gap semiconductor with a multitude of applications in the areas of microelectronic devices, catalysis, varistors, light-emitting diodes, gas sensing, and scintillators. ZnO is a hexagonal, wurtzite-structure material that is characterized by polar Znterminated and O-terminated surfaces. In the top micrograph, chemical reactions produced by a high-temperature treatment in zinc metal vapor have produced morphological changes on the surface of a ZnO single crystal. Optical interference contrast microscopy reveals the hexagonal-symmetry ZnO surface topology in the form of color variations. Micrograph by: L. A. Boatner and Hu Longmire, Materials Science and Technology Division, Oak Ridge National Laboratory **Bottom Image:** Transition metal carbides are characterized by high melting points, high hardness, high-temperature corrosion resistance, and an ability to maintain their strength at elevated temperatures. The optical interference contrast micrograph shown at the bottom of the cover illustrates the morphological features of a fracture surface on a single crystal of titanium carbide. This material is brittle and is prone to fracture at room temperature, but it can be used as a structural material at high temperatures where the brittleness is reduced. Micrograph by: L. A. Boatner and Hu Longmire, Materials Science and Technology Division, Oak Ridge National Laboratory Division, Oak Ridge National Laboratory

Figure 1.1 (B): Reprinted from J. C. Heyraud and J. J. Métois, Establishment of the equilibrium shape of metal crystallites on a foreign substrate: Gold on graphite, 571-574, ©1980, with kind permission from Elsevier Science NL, Sara Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands. Figure 1.1 (C): Reprinted courtesy of author and with permission of Taylor and Francis from S. Lipson (1987), Helium crystals, Contemporary Physics, 28, pp. 117–142. Figure 1.3: Reprinted from J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth (2007), The structure of suspended graphene sheets, Nature, 446, 60-63, courtesy of J Meyer and A Geim. Reprinted by permission from Macmillan Publishers Ltd. Figure 3.14: C. G. Shull, W. A. Strauser, and E. O. Wollan, Neutron diffraction by paramagnetic and antiferromagnetic substances, Physical Review, 83, 333–345, ©1951 by the American Physical Society. Figure 3.17: After B. J. Berne and R. Pecora (2000), Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics, Figure 5.4.1, Dover, New York. Reprint of 1976 edition Figure 4.6: C.-L. Cheng, H.-C. Chang, J.-C. Lin, K.-J. Song, and J.-K. Want (1997), Direct observation of hydrogen etching anisotropy on diamond single crystal surfaces, Physical Review Letters, 78, 3713-3716, ©1997 by the American Physical Society. Figure 4.9: W. Braun, L. Däweritz, and K. H. Ploog (1998), Origin of electron diffraction oscillations during crystal growth, Physical Review Letters, 80, 4935–4938, ©1998 by Figure 4.13: R. Wolkow and P. Avouris (1988), Atom-resolved the American Physical Society. surface chemistry using scanning tunneling microscopy, Physical Review Letters, 60, 1049-1052, ©1988 by the American Physical Society. Figure 4.14: Reproduced with permission of M. Tortonese and ThermoMicroscopes. Figure 5.2: Reprinted with permission of Oxford University Press from C. P. Flynn, Point Defects and Diffusion, Clarendon Press, Oxford, p. 38, ©1972. Figure 5.3: Reprinted by permission of the McGraw-Hill companies from M. Hansen, Constitution of Binary Alloys, McGraw Hill, New York, 2nd ed, ©1958. Figure 5.7: Figure due to B. Hockey, attributed to E. Fuller, and published by R. Thomson (1986), The physics of fracture, Solid State Physics: Advances in Research and Applications, 39, 1–129, reprinted with permission from all parties. Figure 5.8(A): Reprinted from S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metallurgica, 27, 1085–1095, ©1979, with permission from Elsevier Science. Figure 5.8(B): Reprinted courtesy of L. A. Boatner, J. Gardner, and D. Corrigan, Oak Ridge National Laboratory. Figure 5.9(A): After R. Winter, P. A. Egelstaff, W.-C. Pilgrim, and W. S. Howells (1990), The structural properties of liquid, solid and amorphous sulphur, Journal of Physiscs: Condensed Matter, 2, SA215-SA218. Figure 5.9(B): After C. Vega, C. McBride, E. Sanz, and J. L. F. Abascal (2005), Radial distribution functions and densities for the SPC/E, TIP4P and TIP5P models for liquid water and ices I_h , I_c , II, III, IV, V, VI, VII, VIII, IX, XI and XII, Physical Chemistry and Chemical Physics, 7, 1450 – 1456, reproduced by permission of PCCP Owner Societies. Figure 5.10: Reprinted by permission of the McGraw-Hill companies from Y. Waseda (1980), The Structure of Non-Crystalline Materials : Liquids and Amorphous Solids, McGraw Hill, New York, p. 91. Figure 5.13: N. O. Birge and S. R. Nagel, Specific-heat spectroscopy of the glass transition, Physical Review Letters, 54, 2674-

2677, ©1985 by the American Physical Society. Figure 5.21: After D. A. Weitz and D. J. Pine (1993), Diffusing-wave spectroscopy, in Dynamic Light Scattering: the Method and Some Applications, W. Brown, ed., Clarendon, Oxford Figure 5.22: D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Metallic phase with long-range orientational order and no translational symmetry, Physical Review Letters, 53, 1951–1953, ©1984 by the American Physical Society. Figure 5.23: A. R. Kortan, Quasicrystals, in Encyclopedia of Applied Physics, G. L. Trigg, ed., vol. 15, ©1996, VCH, New York. Figure 5.31: A. R. Kortan, Quasicrystals, in Encyclopedia of Applied Physics, G. L. Trigg, ed., vol. 15, ©1996, VCH, New York. Figure 9.3: After L. Cândido, B. Bernu, and D. M. Ceperley (2004), Magnetic ordering of the three-dimensional Wigner crystal, *Physical Review B*, 70, 094 413/1-6, Figure 1(©2005, American Physical Society. Figure 11.2: From J. M. Zuo, M. Kim, M. O'Keeffe, and J. C. H. Spence (1999), Direct observation of d-orbital holes and Cu-Cu bonding in Cu₂O, Nature, 401, 49–51. Adapted by permission from Macmillan Publishers Ltd. Figure 12.2: Permission for Figure 5.5 from The Physics of Rubber Elasticity by L. R. G. Treloar, third edition, granted by The Royal Society for Chemistry. Figure 13.9: Reprinted from G. Dolling and R. A. Cowley (1966), The thermodynamic and optical properties of germanium, silicon, diamond, and gallium arsenide, Proceedings of the Physical Society (London), 88, 463-504, with permission of publisher. Figure 13.14: Reprinted from Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and P. D. Desai (1975), Thermal Expansion: Metallic Elements and Alloys, vol. 12 of Thermophysical Properties of Matter, IFI/Plenum, New York, with permission of publisher. Figure 13.18: S. Wei and M. Y. Chou, Phonon dispersions of silicon and germanium from first-principles calculations, Physical Review B, 50, 2221–2226, ©1994 by the American Physical Society. Figure 13.19: Reprinted with permission from E. G. Brovman and Y. M. Kagan, Phonons in nontransition metals, Soviet Physics Uspekhi, 17, 125–152, ©1974, American Institute of Physics. Figure 13.20 (B): R. S. Preston, S. S. Hanna, and J. Heberle, Mössbauer effect in metallic iron, *Physical Review*, **128**, 2207–2218, ©1962 by the American Physical Society. Figure 14.8: Reprinted from S. Amelinckx, The Direct Observation of Dislocations, ©1964, Academic Press. Figure 14.9(A): Reprinted with permission of J. Humphreys, Manchester University. Figure 14.9(B): Reprinted from A. B. Cullis, N. G. Chew, and J. L. Hutchison, Formation and elimination of surface ion milling defects in cadmium telluride, zinc sulphide, and zinc selenide, Ultramicroscopy, 17, 203–212, ©1985 with permission of Elsevier Figure 14.12: Reprinted with permission, from the Annual Review of Physical Chem-Science. istry, Volume 47, ©1996, by Annual Reviews Inc. Figure 15.4: From J. D. Ferry, Viscoelastic Properties of Polymers, John Wiley and Sons, New York, ©1980. Reprinted by permission of John Wiley & Sons, Inc. Figure 15.7: After M. S. Paoletti, R. B. Fiorito, K. R. Sreenivasan, and D. P. Lathrop (2008), Visualization of superfluid helium flow, Journal of the Physical Society of Japan, 77, 111 007/1–7, Figure 5. Figure 15.8: Reprinted with permission from R. J. Donnelly, Quantized Vortices in Helium II, Cambridge University Press, Cambridge, ©1991. Figure 15.9: P. W. Karn, D. R. Starks, and W. Zimmerman, Observation of quantization of circulation in rotating superfluid ⁴He, *Physical Review B*, **21**, 1797–1805, ©1980 by the American Physical Society. Figure 15.10: Reprinted with permission from R. J. Donnelly, Quantized Vortices in Helium II, Cambridge University Press, Cambridge, ©1991. Figure 16.3: M. ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, Bloch oscillations of atoms in an optical potential, Physical Review Letters, 76, 4508–4511, ©1996 by the American Physical Society. Figure 17.5: Reprinted with permission from N. E. Alekseevskii and Y. P. Gaidukhov, The anisotropy of magnetoresistance and the topology of Fermi surfaces of metals, Soviet Physics JETP, 10, 481-484, ©1960, American Institute of Physics, Figure 17.6: After C. Zeng, Y. Yao, Q. Niu, and H. Weitering (2006), Linear magnetization dependence of the intrinsic anomalous Hall effect, Physical Review Letters, 96, 037 204/1-4, Figure 4c, ©2006, American Physical Society. Figure 17.8: W. R. Abel, A. C. Anderson, and J. C. Wheatley, Propagation of zero sound in liquid He³ at low temperatures, *Physical Review Letters*, 17, 74–78, ©1966 by the American Physical Society. Figure 18.2: Reprinted with permission from T. F. Rosenbaum, The disordered insulator: electron glasses and crystals, in *Localization and* Metal-Insulator Transitions, H. Fritzsche and D. Adler, eds., pp. 1-8, Plenum, New York, ©1985. Figure 18.3: Reprinted with permission from P. P. Edwards and M. J. Sienko, The transition to the metallic state, Accounts of Chemical Research, 15, 87-93, ©1982, American Chemical Society. Figure 18.10: M. Ahlskog, R. Menon, A. J. Heeger, T. Noguchi, and T. Ohnishi, Metal-insulator transition in oriented poly(p-phenylenevinylene), Physical Review B, 55, 6777–6787, ©1997 by the American Physical Society. Figure 18.12: From M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, and P. L. McEuen (1999), Luttinger-liquid behaviour in carbon nanotubes, *Nature*, **397**, 598–601. Adapted by permission from Macmillan Publishers Ltd. Figure 19.20 (B): B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Quantized conductance of point contacts in a two-dimensional electron gas, *Physical Review Letters*, **60**, 848–850, ©1988 by the American Physical Society. Figure 19.23: Reprinted with permission from U. Meirav and E. B. Foxman, Single-electron phenomena in semiconductors, Semiconductor Science and Technology, 10, 255-284, ©1996, Institute of Physics Publishing. Figure 21.3: R. N. Dexter, H. J. Zeiger, and B. Lax, Cyclotron resonance experiments in silicon and germanium, Physical Review, 104, 637-44, ©1956 by the American Physical Society. Figure 21.4: Reprinted with permission from E. J. Johnson, Absorption near the fundamental edge, in Semiconductors and Semimetals, R. K. Willardson and A. C. Beer, eds., vol. 3, pp. 153-258, Academic Press, New York ©1967 Academic Press. Figure 21.5: M. D. Sturge, Optical absorption of gallium arsenide between 0.6 and 2.75 ev, *Physical Review*, **127**, 768–773, ©1962 by the American Physical Society. Figure 21.6: G. G. Macfarlane, T. P. McLean, J. E. Quarrington, and V. Roberts, Fine structure in the absorption-edge spectrum of Ge, Physical Review, 108, 1377-1383, ©1957 by the American Physical Society. Figure 21.8: P. W. Baumeister, Optical absorption of cuprous oxide, Physical Review, 121, 359–362, ©1961 by the American Physical Society. Figure 22.7:Courtesy of H. Pick, reprinted from Structure of trapped electron and trapped hole centers in alkali halides: "Color centers", in Optical Properties of Solids, F. Abelès, ed., pp. 654-747, North-Holland, Amsterdam, ©1972. Figure 22.8: Reprinted with permission from H. Seidel and H. C. Wolf, ESR and ENDOR spectroscopy of color centers in alkali halide crystals, in Physics of Color Centers, W. B. Fowler, ed., pp. 537–624, Academic Press, New York, ©1968. Figure 22.13: Reprinted with permission from U. Haupt, On the temperature dependence and form of the long wavelength excitation band in KI crystals, Zeitschrift für Physik, 157, 232–246, ©1959, Springer-Verlag. Figure 23.4: Reprinted with permission from W. Lang, Velocity loss of medium speed electrons during passage through thin metal foils, Optik (Stuttgart), 3, 233-246, ©1948. Figure 23.5: Reprinted with permission from C. Kunz, On the angular dependence of characteristic energy loss in Al, Si, Ag, Zeitschrift für Physik, 167,n 53-71, ©1962, Springer-Verlag. Figure 23.7: N. V. Smith, Photoemission studies of the alkali metals. ii: rubidium and cesium, Physical Review B, 3, 3662-3670, ©1970 by the American Physical Society. Figure 23.8: Reprinted with permission of author. Figure 23.9:J. R. Sandercock, Brillouin-scattering measurements on silicon and germanium, Physical Review Letters, 28, 237-240, ©1972 by the American Physical Society. Figure 23.10: C. H. Henry and J. J. Hopfield, Raman scattering by polaritons, Physical Review Letters, 15, 964–966, ©1965 by the American Physical Society. Figure 23.11: Reprinted with permission from B. Dorner, E. Burkel, T. Illini, and J. Peisl, First measurement of a phonon dispersion curve by inelastic X-ray scattering, Zeitschrift für Physik B: Condensed Matter, 69, 179–183, ©1987, Springer-Verlag Figure 23.12: F. Patthey, J. M. Imer, W. D. Schneider, H. Beck, Y. Baer, and B. Delly (1990), High-resolution photoemission study of the low-energy excitations in 4f-electron systems, Physical Review B, 42, 8864-8881, ©1990 by the American Physical Society. Figure 23.14: E. Jensen, R. A. Bartynski, T. Gustafsson, E. W. Plummer, M. Y. Chou, M. L. Cohen, and G. B. Hoflund, Angle-resolved photoemission study of the electronic structure of beryllium: bulk band dispersions and many-electron effects, *Physical Review B*, **30**, 5500–5507, ©1984 by the American Physical Society Figure 23.15: Reprinted from S. G. Louie Quasiparticle excitations and photoemission, in Angle-Resolved Photoemission: Theory and Current Practice, S. D. Kevan, ed., vol. 74 of Studies in Surface Science and Catalysis, pp. 33–98, Elsevier, Amsterdam, ©1992 with permission of Elsevier Science. Figure 23.17: R. J. Powell and W. E. Spicer, Optical properties of NiO and CoO, Physical Review B, 2, 2182–93, ©1970 by the American Physical Society. Figure 24.3: R. S. Preston, S. S. Hanna, and J. Heberle, Mössbauer effect in metallic iron, Physical Review, 128, 2207-2218, ©1962, by the American Physical Society. Figure 24.4(A): Reprinted from J. A. Hofmann, A. Paskin, K. J. Tauer, and R. J. Weiss (1956), Analysis of ferromagnetic and antiferromagnetic second-order transitions, Journal of Physics and Chemistry of Solids, 1, 45–60 with permission from Elsevier Science. Figure 24.4(B): B. T. Matthias, R. M. Bozorth, and J. H. van Vleck, Ferromagnetic interactions in

EuO, Physical Review Letters, 7, 160-161, ©1961 by the American Physical Society. Figure 24.5: Reprinted with permission from F. Bertaut and R. Pauthenet (1957), Crystalline structure and magnetic properties of ferrites having the general formula $5Fe_2O_3 \cdot 3M_2O_3$, Proceedings of the Institution of Electrical Engineering, Part B, 104, Supplement 5, 261-264. Figure 24.13(A): P. Heller and G. B. Benedek, Nuclear magnetic resonance in MnF2 near the critical point, Physical Review Letters, 8, 428–432, ©1962 by the American Physical Society. Figure 24.13(B): E. A. Guggenheim, The principle of corresponding states, Journal of Chemical Physics, 13, 253-261, ©1945, the American Institute of Physics. Figure 24.14: Reprinted with permission from M. Vicentini-Missoni, Equilibrium scaling in fluids and magnets, in Phase Transitions and Critical Phenomena, C. Domb and M. S. Green, eds., vol. 2, pp. 39-77, Academic Press, London, ©1972 Academic Press. Figure 25.5: Reprinted with permission from A. Tonomura, Electron Holography, Springer-Verlag, Berlin, ©1993, Springer-Verlag. Figure 25.7: Reprinted with permission from M. E. Cage, Experimental aspects and metrological applications, in The Quantum Hall Effect, R. E. Prange and S. M. Girvin, eds., pp. 37-68, Springer-Verlag, New York, ©1987, Springer-Verlag. Figure 25.10: Reprinted with permission from A. M. Chang, Experimental aspects, in *The Quantum Hall Effect*, R. E. Prange and S. M. Girvin, eds., pp. 175-232, Springer-Verlag, New York, ©1987, Springer-Verlag. Figure 25.11: L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Observation of the e/3 fractionally charged Laughlin quasiparticle, Physical Review Letters, 79, 2526-2529, ©1997 by the American Physical Society. Figure 26.4(A): M. Yethiraj, R. A. Robinson, D. S. Sivia, J. W. Lynn, and H. A. Mook, Neutron-scattering study of the magnon energies and intensities in iron, Physical Review B, 43, 2565–2574, ©1991 by the American Physical Society and J. W. Lynn, Temperature dependence of the magnetic excitations in iron, Physical Review B, 11, 2624-2637, ©1975 by the American Physical Society. Figure 26.4(B): Reprinted from M. Aïn, W. Reichardt, B. Hennion, G. Pepy, and B. M. Wanklyn (1989), Magnetic excitations in CuO, Physica C, 162-164, 1279-1280, with permission from Elsevier Science. Figure 26.5(A): After G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn (1989), Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange, Physical Review B, 39, 4828-4830, Figure 2d, ©1989, American Physical Figure 26.5(B): After M. N. Baibich, J. M. Broto, A. Fert, et al. (1988), Giant magne-Society. toresistance of (001)Fe/(001)Cr magnetic superlattices, Physical Review Letters, 61(21), 2472-2475 , Figure 3, ©1988, American Physical Society. Figure 26.7 Adapted from D. Ralph and M. Stiles (2008), Spin transfer torques, Journal of Magnetism and Magnetic Materials, 320(7), 1190-1216 with permission from Elsevier. Figure 26.8: M. Sarachik, E. Corenzwit, and L. D. Longinotti, Resistivity of MoNb and MoRe alloys containing 1% Fe. Physical Review, 135, A1041-A1045, C)1964 by the American Physical Society. Figure 26.11: H. R. Ott, H. Rudigier, Z. Fisk, and J. L. Smith, Ube13: An unconventional actinide superconductor, Physical Review Letters, 50, 1595-98, ©1983 by the American Physical Society. Figure 27.2(A): Reprinted with permission from A. Tonomura, Electron Holography, Springer-Verlag, Berlin, ©1993, Springer-Verlag. Figure 27.4: B. S. Deaver and W. M. Fairbank, Experimental evidence for quantized flux in superconducting cylinders, *Physi*cal Review Letters, 7, 43-46, ©1961 by the American Physical Society. Figure 27.5: Courtesy of R. C. Jaklevic. Figure 27.8: C. A. Reynolds, B. Serin, W. H. Wright, and L. B. Nesbitt, Superconductivity of isotopes of mercury, *Physical Review*, 78, 487, ©1950, the American Physical Society. Figure 27.11(A): H. A. Boorse, Superconducting electronic specific heats, the "exponential law," and the Bardeen, Cooper, Schrieffer theory, Physical Review Letters, 2, 391-393, ©1959, the American Physical Society. Figure 27.11 (B): Y. Masuda and A. G. Redfield, Nuclear spin relaxation in superconducting aluminum, Physical Review, 125, 159-163, ©1962 by the American Physical Society. Figure 27.14: Using several sources, but primarily T. Nakano, N. Momono, M. Oda, and M. Ido (1998), Correlation between the doping dependences of superconducting gap magnitude 2δ and pseudogap temperature t^* in high- t_c cuprates, Journal of the Physical Society of Japan, 67, 2622–2625 Figure 27.15: After H. Ding, M. R. Norman, J. C. Campuzano, et al. (1996), Angle-resolved photoemission spectroscopy study of the superconducting gap anisotropy in $Bi_2Sr_2CaCu_2O_{8+x}$, Physical Review B, 54(14), R9678-R9681, Figure 2, ©1996, American Physical Society.

This page intentionally left blank