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Preface 
Preface to first edition 

Using this book. 
This textbook provides material for a one-year graduate course on condensed 

matter physics. It contains introductions to classic subjects, and it also presents 
topics I believe will continue to occupy the field in the future. The book teaches 
not only about the effective masses of electrons in semiconductor crystals and band 
theory, but also about quasicrystals, dynamics of phase separation, why rubber is 
more floppy than steel, electron interference in nanometer-sized channels, and the 
quantum Hall effect. 

It is arranged in six parts, convenient for dividing into two semesters or three 
quarters. However, there is more material than can reasonably be covered in one 
year. My experience suggests that an instructor should aim to cover roughly two-
thirds of the material in each part. The remainder is available for reference. Ev-
ery instructor will find that some of the topics are very elementary and others are 
quite advanced. However, instructors with different backgrounds will disagree to 
a surprising extent on which are which. The web site associated with the book, 
h t t p : / / c h a o s . p h . u t e x a s . edu/~cmp, contains sample syllabi, as well as 
corrections, and other information. 

Each chapter is followed by a collection of problems. Some are brief deriva-
tions, but many introduce new topics and are fairly lengthy. An instructor's manual 
is available to aid in decisions on what to assign. Whether in academic or industrial 
posts, experimentalists and theorists must all become fluent in manipulating data 
and symbols with the computer. Therefore, many of the problems involve numeri-
cal work, ranging from no more than plotting graphs to a series of linked exercises 
that produces a simple band structure code. 

The book presumes a working knowledge of quantum mechanics, statistical 
mechanics, and electricity and magnetism. I decided to exclude many-body Green 
functions, which become such an absorbing formal world of their own that they too 
easily drive physical reasoning out of an introductory course. However, as the book 
proceeds I do begin to employ second quantization, and it becomes quite common 
by the time of the section on magnetism. 

If simple arguments explain a phenomenon, I present them, but I also have paid 
some attention to the actual historical process by which ideas were accepted, and I 
try to explain in detail some of the calculations and experimental data that actually 
convinced the specialists. Not all the subjects discussed in this book are closed; 
even simple questions do not always have answers; and theory and experiment do 
not always completely agree. The topics that can today be presented only within a 
distressing cloud of uncertainty are precisely the ones most likely to remain central 
to the development of condensed matter physics. 
References to original literature. There are two attitudes toward references to 
original literature. One is that it is ridiculous to "cite the original work of Maxwell, 
for example, which nobody bothers to look up anyway" [Aharoni (1996), p. vii]. 

xix 



XX Preface 

Maxwell himself disagreed. He believed that it "is of great advantage to the student 
of any subject to read the original memoirs on that subject, for science is always 
most completely assimilated when it is found in its nascent state" [Maxwell (1904), 
p. xi]. While it would be impossible to cite all papers responsible for the develop-
ment of condensed matter physics without having reference lists longer than the 
remainder of the book, I have cited some of the most influential papers for two 
reasons. First, anyone who is part of research today knows how strongly all au-
thors feel about having contributions recognized, and it hardly seems fair to have 
older generations drift entirely out of consciousness simply because they are no 
longer around to defend themselves. Second, original papers on difficult topics 
sometimes provide clearer explanations than anything that ever follows. Review 
articles quickly race over elementary points so as to provide comprehensive cover-
age of current developments, while textbooks easily make assertions, ignoring the 
complex web of evidence that eventually produced a consensus. 

To try to ensure that major portions of the field were not left unrepresented, I 
somewhat arbitrarily chose three series of review articles and included a reference 
to almost every article with a bearing on condensed matter physics in the last 30 
years. These are: Solid State Physics: Advances in Research and Applications, 
Reviews of Modern Physics, and Physics Today. Some of these articles have a very 
narrow focus, but the degree of difficulty can happily be estimated with little effort 
by using Ziman's "coefficient of non-specifìcity, calculated as follows: transform 
the title into a succession of A adjectives qualifying S substantives, omitting re-
dundant words like 'physics', 'effects', 'properties', 'materials', etc. Then take 
the ratio A/S. Inspection ... shows quite clearly that if the coefficient is greater 
than 3 the article is too specialized The optimum seems to be in the range 
1 < A/5 < 2" [Ziman (1961)]. 
Origin of the field. The discovery of quantum mechanics raised the hope of ex-
plaining the familiar world from equations at the atomic scale. In early stages this 
enterprise was largely restricted to metals in crystalline form. The field began as 
"metals physics," but the term excluded widely studied solids such as ionic crystals. 
"Solid state physics" was adopted instead, with creation of the Division of Solid 
State Physics by the American Physical Society in 1947. A decade later even "solid 
state" was becoming too restrictive for a field tackling liquid metals, liquid helium, 
liquid crystals, and polymer melts. In 1963, Busch began editing ajournai called 
Physik der Kondensierten Materie/Physique de la matière condensée/Physics of 
condensed matter. The daring term gained usage slowly. The American Physical 
Society Division of Solid State Physics voted in April 1978 to change its name to 
the Division of Condensed Matter Physics. 

Having set itself the modest goal of explaining the whole material world, in-
cluding structural and electronic properties of solids and liquids, the field of con-
densed matter physics has become enormous. It overlaps statistical physics, ma-
terials physics, and fluid and solid mechanics. The diversity in topics obscures a 
unity of approach. 

Experiments play a crucial role. The systems studied by condensed matter 
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physics are far too complicated for anyone to deduce their qualitative behavior 
from atomic scale considerations. Only once experience has determined the nature 
of the qualitative problem does theory have a chance of explaining it. On the 
other hand, most experiments are impossible to interpret quantitatively without 
theoretical support. 

Condensed matter theories search for relations between separate levels of de-
scription. The fundamental underlying equations are largely useless, so theories of 
condensed matter are largely based upon equations whose form is guessed rather 
than derived, and in which parameters or methods of approximation are constrained 
by symmetry and determined by experiment. Often there is a friendly competition 
between simple models, employed for conceptual understanding, and attempts at 
realistic computation. There is sometimes a tendency to speak a bit contemptuously 
of the simple models. However, "for many purposes a theory whose consequences 
are easily followed is preferable to one which is more fundamental but also more 
unwieldy" [Thomson (1907), p. 2]. 
Acknowledgements. In the course of preparing this manuscript, I received gen-
erous assistance from dozens of people who supplied figures, answered queries, 
and took the time to debunk anecdotes that not only seemed to good to be true, but 
were in fact too good to be true. Some who wrote comments include Martin Bazant, 
Hans Bethe, Danita Boonchaisri, Steve Girvin, Stefan Hiifner, David Lazarus, Neil 
Mathur, David Mermin, George Sawatzky, and John Ziman. Lynn Boatner, Janie 
Gardner, and Douglas Corrigan of Oak Ridge National Laboratory contributed the 
micrograph appearing on the front cover. At The University of Texas at Austin, I 
was particularly helped by Alex de Lozanne, John Markert, Jim Erskine, Ken Shih, 
and Hugo Steinfink. Bob Martinez was the first person after me to try teaching 
from the text. Ted Einstein of the University of Maryland, Sokrates Pantelides of 
Vanderbilt University, and Rashmi Desai of The University of Toronto have also 
taught from draft versions, and they found embarrassing errors that I am perfectly 
glad to see disappear with the drafts. Roberto Diener trapped many additional er-
rors. Caryn Cluiss assisted in the task of organizing permissions from numerous 
publishers. 

As part of writing the book, I wanted to learn about band structure calcula-
tions. My colleague Len Kleinman helped with a steady supply of physical in-
sight, provocative commentary, and warnings about the method of successful ap-
proximations, where twiddling hidden parameters stops as soon as one obtains 
an expected answer. Hans Skriver kindly supplied me with a copy of the code de-
scribed in Skriver (1984). Roland Stumpf supplied improved versions of the plane-
wave pseudopotential code described in Stumpf and Scheffler (1994), and he also 
answered interminable series of questions. Most recently, calculations were per-
formed using VASP (Vienna ab-initio simulation program) developed at the Institut 
für Theoretische Physik of the Technische Universität Wien by Kresse and Hafner 
(1993), Kresse and Hafner (1994), Kresse and Furthmüller (1996b), and Kresse 
and Furthmüller (1996a). 

I owe special thanks to Qian Niu. On many occasions I found myself baffled 



XXII Preface 

by an apparently simple point, and I asked one expert after another without finding 
a resolution. When all other avenues failed, I took the stairs one flight down to 
Qian's office, where after a brief smile he explained matters to me with perfect 
clarity. 

The Exxon Education Foundation and the National Science Foundation gave 
me the means to buy a laptop computer, which in turn allowed me to continue 
thinking about condensed metaphysics in unexpected places. My thanks to the cit-
izens of Gavdos for allowing me to use cast-off solar panels, to Elias Kyriakopoulos 
for repairing a 12-volt power inverter when all seemed hopeless, and to Nikos Pa-
panicolaou for unquestioning hospitality at the University of Crete whenever life 
without a library became just too difficult. Last thanks of all to my wife Elpida, 
without whose quiet encouragement and example of determination I would never 
have had the courage to complete this book. 

Austin, Texas MICHAEL MARDER 
September, 1999 
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Preface to second edition 

The goal of this second edition is to consolidate thousands of changes suggested 
by readers since the first was published, to improve presentation of several topics, 
and to add a small number of new ones. 

Minor typographical errors were originally very numerous, and over 40 indi-
viduals from all over the world contributed corrections. The top 5 error-finders 
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found so many that they deserve special recognition: Roberto Diener read the 
book cover to cover, checked every derivation, and found 244; Dominic Holland 
found 33; Erkki Thuneberg found 20; Dale Kitchen found 15; Qian Niu found 
11. Particularly extensive and detailed comments arrived from Wesley Matthews, 
Sasha Chernyshev, and Vincenzo Fiorentini. 

The primary reason for many students to learn Condensed Matter Physics is for 
the topics of electron and phonon band structures. The presentation of these topics 
had been rushed, and the new presentation is slower, working out one-dimensional 
examples before proceeding to the full three-dimensional and abstract formula-
tions. 

The entire discipline of condensed matter is roughly ten percent older than 
when the first edition was written, so adding some new topics seemed appropriate. 
For the most part, these new topics were ones whose importance is increasingly 
appreciated, rather than material first derived in the last few years. They include 
graphene and nanotubes, Berry phases, Luttinger liquids, diffusion, dynamic light 
scattering, and spin torques. 

The world in which this edition was produced is slightly different from that of 
the previous one. The first edition required many, many days walking up and down 
library stacks searching for articles. Now almost all academic publications are 
available through the internet in the world's most remote corners. Laptop comput-
ers were a rare luxury twelve years ago. Now they are a common commodity. The 
discipline of condensed matter physics itself underlies these technical advances. 
The benefits of instant connection everywhere to everything are partly offset by the 
corresponding demand to respond instantly to everyone everywhere about every-
thing. I thank the National Science Foundation for sustained support that allowed 
me some periods of peace where I could finish this book. 

Phalasarna, Crete MICHAEL MARDER 
June, 2010 
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