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Preface

Microstrip technology has been popular for microwave andmillimeter wave applications since

the 1970s and recently has taken off, with the tremendous growth in communications, wireless,

as well as space-borne/airborne applications, although the concept dates back to 1952 [1]. The

basic microstrip configuration is very similar to a printed circuit board (PCB) used for low

frequency electronic circuits. It constitutes a low-loss thin substrate, both sides being coated

with copper film. Printed transmission lines, patches, etc. are etched out on one side of the

microstrip board and the other copper-clad surface is used as the ground plane. In between the

ground plane and the microstrip structure, a quasi-TEM electromagnetic wave is launched and

allowed to spread.

Such a structure offers some unique basic advantages such as low profile, low cost, light

weight, ease of fabrication, suitability to conform on curved surface, etc. All these have made

microstrip technology attractive since the early phase of its development.

Within a year of the pioneering article “Microstrip – a new transmission technology for the

kilomegacycle range” appearing [1], Deschamps [2] had conceived of microstrip as

“microwave antenna.” But its practical application started nearly two decades later. Howell [3]

and Munson [4] may be regarded as the pioneer architects of microstrip antenna engineering.

These early developments immediately attracted some potential research groups and the

following studies were mainly concerned with theoretical analysis of different patch geome-

tries and experimental verifications [5–12]. A parallel trend also developed very quickly and

some researchers tried to implement conventional antennas such as dipole, wire, aperture, etc.

in planar form [13–16]. They are commonly referred to as printed circuit antennas or simply

printed antennas. Their operations and characteristics are completely different from those due

to microstrip patches, although microstrip patch antennas, in many papers, are casually called

printed circuit antennas. The topic printed antenna had acquired tremendous importance by the

late 1970s and a three-day workshop held at New Mexico State University in Las Crises in

October, 1979 was dedicated to Printed Circuit Antenna Technology.

The developments inmicrostrip antennas that occurred up to the late1970swere documented

by Bahl and Bhartia in their famous book [17], published in 1980. The analysis and design

aspects were addressed in another book by James, Hall and Wood [18], published in 1981. A

contemporary article by Carver andMink [19] discussed the fundamental aspects of microstrip

antennas and this is still regarded as a good review paper for a beginner.

More activities in the area grew gradually and many applications were realized. The

suitability of deploying such lightweight low profile antennas in airborne and space-borne



systems initiated major developments in microstrip array technology.With the development of

mobile and wireless communications, microstrip and other printed antennas attained a new

focus to serve in different technology from themobile handset to base station antennas. General

information, gathered from journals, symposia and conference articles, reveals that about 50%

of the whole antenna community has been active in microstrip or printed antenna practice for

the past two or three decades.

The first handbook [20] was published in 1989, nearly a decade after the first book by Bahl

and Bhartia [17]. Within another five years, microstrip antenna research had attained a level of

maturity as is reflected in the title and topics of the microstrip antenna books published around

the middle of 1990s [21–23]. The edited volume by Pozar and Shaubert [21] contains some

published articles bearing the results of contemporary interests, such as bandwidth enhance-

ment approaches, analysis and design techniques, aperture coupling and other feeding

methods, active integrated antennas, conformal and phased arrays, etc. Narrow impedance

bandwidth appears an inherent limitation of the microstrip element. The research and

consequent developments in bandwidth enhancement were documented in [22]. Lee and

Chen [23] covered some key areas of advances reported up to 1997.

The growing need and interest in microstrip antenna designs are reflected in three design

handbooks [24–26] published at close interval from 2001 to 2004. Compacting, along with

bandwidth widening of printed antennas, has attracted worldwide interest to support new

wireless technology since the beginning of this century and its importance was reflected in

titles [27–32] which appeared between 2002 and 2007.

The book edited by Lee andChen [23] was a timely effort to incorporatemajor technological

developments that had occurred up to1997, under the same cover. Since then, more than a

decade has passed during which many new trends, techniques and applications in planar

antenna technology have been developed. For example,RFID (Radio Frequency Identification)

is an ideal example to showcase the need to this day. This application needs low cost antennas,

printed on paper or very thin substrate. Another example is printed antenna using unconven-

tional and new innovations, such as using metamaterials and defected ground structures

(DGSs). Replacing a large parabolic dish with a flat microstrip array with a special feeding

mechanism is also a new area of activity. The design of small ultrawideband (UWB) antennas

with good performance is a challenging area. Antenna for the body area network is another

interesting new topic.

From our long experience in teaching andmentoring doctoral and post-doctoral students and

working with practicing engineers, we certainly feel there is a need for a book that is to address

more recent topics of microstrip and printed antennas. We have chosen some topics that have

recently been developed or have considerably advanced during the past decade and at the same

time appear to be important to the new generation of researchers, developers and application

engineers. We shared the ideas with some of our colleagues and friends who are the real

technical experts and potential developers in those selected topics. They fully agreed with our

views, gave valuable suggestions and delivered on their promise to contribute. Our collabora-

tive efforts have finally culminated in the present title.

As indicated by the title, the focus is on the New Trends, Techniques and Applications of

Microstrip and Printed Antennas. The chapters are organized as follows: Chapters 1–4 address

advances in design, analysis, and optimization techniques, Chapters 5–10 focus on some

important new techniques and applications, Chapters 11 and 12 deal with engineered materials

xiv Preface



applied to printed antenna designs, and finally Chapter 13 addresses advanced methods and

designs of printed leaky wave antenna.

Chapter 1 deals with numerical techniques, which are essential in analyzing and designing

planar antennas of any arbitrary geometry. A brief overview of the commonly usedmethods are

discussed and the finite difference time domain (FDTD) technique is elaborated on, with

special emphasis on the recent developments that occurred after 2003. Chapter 2 presents the

advances in computer aided designs (CAD) of microstrip antennas reported during 2001 and

onwards. The aim of this chapter is to provide accurate closed form expressions, which can be

reliably used to compute essential design parameters such as operating frequency, input

impedance and matched feed-location for a given antenna involving single or multiple

dielectric layers. Chapter 3 embodies the Generalized Scattering Matrix (GSM) approach to

analyzing the multilayer finite printed array structures. The methodology is demonstrated

through examples. Chapter 4 deals with antenna optimization techniques. Optimization in

terms of performance, size and cost is discussed and the basic concept of stochastic

optimization techniques is demonstrated.

Chapter 5 describes microstrip reflectarray technology, its general principle, design,

operation, and applications. Microstrip’s inherent demerit of narrow bandwidth is dealt with

in terms of spatial and frequency dispersions and some of the techniques to suppress these

factors are presented. Chapter 6 deals with Reconfigurable Microstrip Antennas, which use

switches, tunable materials, or control circuitry to give additional degrees of operational

freedom or to make a single element operative in multiple frequencies. A wide variety of

reconfigurability is discussed. The emerging trends and directions for future research have also

been indicated.

Chapter 7 describes wearable antennas for body area networks. The properties of the human

body in terms of electromagnetic radiations and the performance of multiple antenna systems

in presence of the human body are described. Chapter 8 presents printed wireless antennas.

These include three primary configurations: microstrip patch, slot, and monopole showing

multiband, wideband, or ultra wideband performances. Significant developments reported

since 2000 are addressed in this chapter. Chapter 9 deals with printed antennas for RFID tags.

An RFID systemmay be one of the following types: active, passive, or in between of these two,

based on the nature of the devices used and also any of LF, HF, or UHF type based on the

frequency of operations. Passive tags operating at UHF place several specialized requirements

on the associated antenna structures and these are described in this chapter. Chapter 10 deals

with printed antennas for ultra-wideband (UWB) applications. This incorporates the innovative

technologies to minimize ground plane effects on the performance of small printed antennas.

Chapter 11 presents applications of metamaterials to planar antenna and radiative system

designs. Both leaky wave and resonant metamaterial antennas are discussed with special

emphasis on their recent and somewhat exotic applications. Chapter 12 deals with defected

ground structures (DGS) applied to microstrip antennas. This is a recently developed topic and

all the major developments that have occurred after 2002 are discussed, indicating the future

scope of development. This is probably addressed here as an exclusive book chapter for the first

time. Chapter 13 concludes with printed leakywave antennas. It includes both theory and some

applications based on recent advances in technology.

Each chapter is designed to cover the range from fundamental concepts to the state-of-the-art

developments.Wehave tried to satisfy awide cross-section of readers.A student or a researcher

may consider this a guide book to understanding the strength and weaknesses of the
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contemporary topics. To a practicing engineer, we hope that the book will be a ready reference

tomany new areas of applications. To an educator, the book appears as a comprehensive review

and a source of up-to-date information.

Our sincere efforts and exercise will be successful if our readers appreciate and find it useful

for their respective purposes.

Debatosh Guha

Yahia M. M. Antar
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Numerical Analysis Techniques

Ramesh Garg
Indian Institute of Technology, Kharagpur, India

1.1 Introduction

Microstrip and other printed antennas are constituted of, in general, patches, strips, slots,

packaged semiconductor devices, radome, feed, etc. in a nonhomogeneous dielectric medium.

Finite substrate and ground plane size are the norm. The dielectric used is very thin compared to

the other dimensions of the antenna. The design of these antennas based on models such as

transmission linemodel or cavitymodel is approximate. Besides, these designs fit regular-shaped

geometries (rectangular, circular, etc.) only, whereas most of the useful antenna geometries are

complex and do not conform to these restrictions [1]. The effect of surface waves, mutual

coupling, finitegroundplane size, anisotropic substrate, etc. is difficult to include in these types of

design. The numerical techniques, on the other hand, can be used to analyze any complex antenna

geometry including irregular shape, finite dielectric and ground plane size, anisotropic dielectric,

radome, etc. The popular numerical techniques for antenna analysis includemethod ofmoments

(MoM), finite element method (FEM), and finite difference time domainmethod (FDTD).MoM

analysis technique, though efficient, is not versatile because of its dependence on Green’s

function. FEM and FDTD are the most suitable numerical analysis techniques for printed

antennas. FDTD is found to be versatile because any embedded semiconductor device in the

antenna can be included in the analysis at the device-field interaction level. This leads to an

accurate analysis of active antennas. Maxwell’s equations are solved as such in FDTD, without

analytical pre-processing, unlike the other numerical techniques. Therefore, almost any antenna

geometry can be analyzed. However, this technique is numerically intensive, and therefore

require careful programming to reduce computation cost. We shall describe the advances in

FDTD. Our reference in this respect is the classic book on FDTD by Taflove and Hagness [2].

A large number of FDTD algorithms have been developed. These can be classified as

conditionally stable and unconditionally stable. The conditionally stable schemes include the

original or Yee’s FDTD also called FDTD (2,2), FDTD (2,4), sampling bi-orthogonal time-

domain (SBTD) and their variants; and the unconditionally stable schemes include ADI

Microstrip and Printed Antennas: New Trends, Techniques and Applications. Edited by Debatosh Guha

and Yahia M.M. Antar

� 2011 John Wiley & Sons, Ltd



(Alternate Direction Implicit), CN (CrankNicolson), CNSS (CrankNicolson Split Step), LOD

(Local One-Dimensional) and their variants. The updating of fields in conditionally stable

schemes does not require a solution of matrix equation as an intermediate step, and are

therefore fully explicit. However, these schemes have a limit on themaximumvalue of the time

step, which is governed by theminimum value of the space step through the Courant-Friedrich-

Levy (CFL) condition.

c:DtCFL � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=Dx2þ1=Dy2þ1=Dz2

p ð1:1Þ

Due to the heterogeneous nature of the dielectric in the printed antennas, the wave velocity is

less than c and may vary from cell to cell and from one frequency to another. We therefore

introduce a safetymargin and chooseDt ¼ ð1=2ÞDtCFL uniformly to simplify coding and avoid

instability. Defining the Courant number q as

q ¼ Dt=DtCFL ð1:2Þ

implies that q¼ 1/2 and the wave takes 2Dt time to travel to the next node.

The value ofDtCFL puts a severe computational constraint on the structures as they have fine

geometrical features such as narrow strips or slots or thin dielectric sheets. Since the simulation

time of an antenna is independent of space and time steps, the number of updates of fields

increases linearly with the decrease in the time step. This results in an increase in processor

time. The limitation on DtCFL is removed in some of the FDTD algorithms and these are

therefore called unconditionally stable schemes. In these schemes one can use the same value

of the time step over the whole geometry even if fine geometrical features exist without

significantly affecting the accuracy of simulation results. Updating fields in unconditionally

stable schemes is carried out in stages called time splitting and involves solving a set of

simultaneous equations before going on to the next stage. These schemes therefore are more

computationally intensive. However, their accuracy is similar to that of conditionally stable

FDTD schemes.

The FDTD analysis of open region problems such as antennas necessitates the truncation

of the domain to conserve computer resources. The truncation of the physical domain of the

antenna is achieved through absorbing boundary conditions, either analytical ABC or

material ABC. Material ABC in the form of PML can achieve a substantial truncation of

domain with very low reflection. The design of PML should be compatible with the FDTD

scheme employed for the rest of the antenna. A number of PML formulations are available.

These are split-field and non split-field PML. Non split-field types are convenient for coding

and are therefore preferred. Of the various PML formulations available now, uniaxial PML

looks promising.

All the FDTD algorithms suffer from computational error, and the amount of error is related

to the space and time step sizes employed. The error is quantified in the form of numerical

dispersion. The goal of various FDTD schemes is to analyze multi-wavelength long complex

geometries, efficiently and accurately. The complexity of the geometry may be in the form of

fine geometrical dimensions, anisotropic dispersive medium, embedded packged semicon-

ductor device, feed, mounting structure, etc. The efficient FDTD algorithms try to achieve this
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aim by increasing the permissible space step size without increasing dispersion, by an increase

in the time step size compatible with fine geometrical features, the applicability of the

algorithm to anisotropic and dispersivemedium and reduced reflection from the PMLmedium.

The presence of thin strips/slotsmakes uniform discretization an inefficient approach. New and

efficient solutions are being tested in the form of a sub-cell approach, quasi-static approxima-

tion, etc. The treatment of PEC and PMC boundary conditions presented by irregular

geometries is receiving due attention, while the interface conditions interior to the device

are somewhat difficult to implement accurately. Modeling of fast variation of fields in metal,

and analysis of curved geometries is being attempted. We shall now discuss the advances in

FDTD analysis since 2003.

Yee’s algorithm is outlined first in order to define the grid structure and the placement of

electric andmagnetic field components on the Yee cell. This grid will be used as a reference for

other FDTD algorithms.

1.2 Standard (Yee’s) FDTD Method

The FDTD method was first proposed by Yee in 1966 [3] and has been used by many

investigators because of its host of advantages. However, computer memory and processing

time for FDTD have to be huge to deal with the problems which can be analyzed using

techniques based on the analytical pre-processing ofMaxwell’s equations such asMoM,mode

matching, method of lines, FEM, etc. Therefore, the emphasis in the development of FDTD

technique is to reduce the requirement for computer resources so that this technique can be used

to analyze electrically large complex electromagnetic problems.

To determine time-varying electromagnetic fields in any linear, isotropic media with

constants e, m, s Maxwell’s curl equations are sufficient; the curl equations are

r�H ¼ sEþe
@E

@t
ð1:3aÞ

�r � E ¼ m
@E

@t
ð1:3bÞ

The partial differential equations (1.3) are solved subject to the conditions that: (i) the fields are

zero at all nodes in the device at t¼ 0 except at the plane of excitation; (ii) the tangential

components of E andHon the boundary of the domain of the antennamust be given for all t> 0.

For computer implementation of Equation (1.3), the partial derivatives are implemented as

finite difference approximations, and are partly responsible for the inaccuracy of the solution.

For better accuracy, the central difference approximation is used in FDTD and is defined as,

@F

@u

�����
uo

¼
F uoþDu

2

� �
�F uo�Du

2

� �
Du

�����
Du! 0

þOðDuÞ2 ð1:4Þ

where O(�) stands for the order of. Use of Equation (1.4) converts Equation (1.3) into the

following form:
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Enþ1
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Theindices i, j, andkdefinethepositionofthefieldnodes, suchthatx ¼ iDx; y ¼ jDy; z ¼ kDz.
The time instant is defined by t ¼ nDt. To implement the finite difference scheme in three

dimensions, theantenna isdividedintoanumberofcells,calledYeecells,ofdimensionDxDyDz.
One such cell is shown inFigure 1.1.Remarkably the positions of different components ofE and

H on the cell satisfy the differential and integral forms of Maxwell’s equations. One may note

fromFigure1.1 that theplacements of theEandHnodes areoffset in spacebyhalf a space step; it

is called staggeredgrid.Wenote fromEquation (1.5) that the time instantswhen theEandHfield

componentsarecalculatedareoffsetbyhalf a timestep, that is, componentsofEarecalculatedat

nDt and components ofHare calculated at (n þ 1/2)Dt. The alternate update ofE andHfields is

called leap frog and saves computer processing time.

1.3 Numerical Dispersion of FDTD and Hybrid Schemes

The finite difference form of derivative (1.4) has an error term OðDuÞ2. As a result,

Equations (1.5 a–f) are second-order accurate, resulting in an approximate solution of the

problem. The first sign of this approximation appears in the phase velocity vph for the numerical

wave being different from that in the continuous case. This phenomenon is called numerical

dispersion. The amount of dispersion depends on the wavelength, the direction of propagation

in the grid, time step Dt and the discretization size Du. The above algorithm is second-order

accurate in space and time, and is therefore called FDTD(2,2). The numerical dispersion for

plane wave propagation may be determined from the following expression

Ey

Ey

Ey

Ey

Ex

Ex

Ex

Ex

x

y

z

Ez

Ez

Ez

Δh

Ez

Hz

Hz

Hy Hy

Hx

Hx

Figure 1.1 Geometry of Yee’s cell used in FDTD analysis
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sinðoDt=2Þ
cDt

0
@

1
A

2

¼ sinð�k sin y cos jDx=2Þ
Dx

0
@

1
A

2

þ sinð�k sin y sinjDy=2Þ
Dy

0
@

1
A

2

þ sinð�k cos yDz=2Þ
Dz

0
@

1
A

2
ð1:6Þ

where �k is thewave number for the numerical wave. The phase velocity�v ¼ o=�k is determined

by solving Equation (1.6) as a function of discretizationsDx;Dy;Dz;Dt and propagation angle
y;f. The phase velocity is found to be maximum and close to the velocity of light for

propagation along the diagonals and minimum for waves propagating along the axis.

1.3.1 Effect of Non-Cubic Cells on Numerical Dispersion

Devices with high aspect ratio may be analyzed by using uniform or non-uniform cell size. An

alternative is to employ non-square or non-cubic cells. The influence of the aspect ratio of the

unit cell on the numerical dispersion of FDTD(2,2) has been reported by Zhao [4]. It is found

that the dispersion error ðc��vÞ=c increases with the increase in aspect ratio of the cell but

reaches an upper limit for aspect ratios greater than 10. For N (number of cells per wavelength,

l=D)¼ 10, the maximum dispersion error for non-cubic cells is 1.6%which decreases to 0.4%

for N¼ 20, showing second-order accuracy. In general, the maximum error for non-cubic cells

is about 1.5 times that of the corresponding error for cubic cells. For the non-square cells, this

ratio is twice that of square cells [4]. For guidance, the minimum mesh resolution required to

achieve a desired phase velocity error is plotted in Figure 1.2 for the cubic and non-cubic cells.

Figure 1.2 Comparison of minimum mesh resolution required for a given accuracy of phase velocity

when non-cubic (with high aspect ratio) or cubic unit cells are employed. Reproduced by permission of

�2004 IEEE, Figure 8 of [4]
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