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Preface

To the best of our knowledge, this is the first book focusing on Bayesian analysis of
stochastic process models at large. We believe that recent developments in the field
and the growing interest in this topic deserve a book-length treatment.

The advent of cheap computing power and the developments in Markov chain
Monte Carlo simulation produced a revolution within the field of Bayesian statistics
around the beginning of the 1990s, allowing a true ‘model liberation’ that permitted
treating models that previously we could only dream of dealing with. This has
challenged analysts in trying to deal with more complex problems. Given this great
advance in computing power, it is no surprise that several researchers have attempted
to deal with stochastic processes in a Bayesian fashion, moving away from the usual
assumptions of independent and identically distributed (IID) data. In 1998, this led
us to organize the first Workshop on Bayesian Analysis of Stochastic Processes
in Madrid. The seventh edition of this conference was held in 2011, which is an
illustration of the great current interest in this subject area. Given the numerous
papers written, we felt, therefore, that the time was right to provide a systematic
account of developments in Bayesian analysis of stochastic processes. In doing this,
it is interesting to note that most books in stochastic processes have referred mainly to
probabilistic aspects and there are many fewer texts that treat them from a (classical)
statistical perspective.

In this monograph, we have emphasized five salient aspects:

1. The use of Bayesian methods as a unifying scientific paradigm.
2. Forecasting and decision-making problems, going beyond the usual focus on

inference.
3. Computational tools that facilitate dealing with complex stochastic process based

models.
4. The applicability of results. We include at least one real case study per chap-

ter. These examples come from engineering, business, geosciences and biology
contexts, showing the broad spectrum of possible applications.

5. Ample references and bibliographic discussions are provided at the end of each
chapter, so that readers may pursue a more in-depth study of the corresponding
topics and identify challenging areas for new research.

Our monograph is structured in three parts:

1. Part One refers to basic concepts and tools both in stochastic processes and
Bayesian analysis. We review key probabilistic results and tools to deal with



P1: OTA/XYZ P2: ABC
JWST172-Pre JWST172-Ruggeri March 3, 2012 15:29

xii PREFACE

stochastic processes, the definitions of the key processes that we shall face and
we set up the basic inference, prediction, and decision-making problems in rela-
tion with stochastic processes. We then review key results in Bayesian analysis
that we shall use later on, with emphasis on computations and decision-analytic
issues.

2. Part Two illustrates Bayesian analysis of some of the key stochastic process mod-
els. This section consists of four chapters. The first two are devoted to Markov
chains and extensions in discrete time and continuous time, respectively. The third
chapter contains a detailed analysis of Poisson processes, with particular empha-
sis on nonhomogeneous ones. Finally, the fourth chapter deals with continuous
time/continuous space processes, in particular Gaussian processes and diffusions.

3. Part Three also contains four chapters. These refer to application areas in which
there are several interrelated processes that make the situations analyzed more
complex. The first chapter refers to queueing models that include arrival and
service processes. The second chapter refers to reliability problems that include
failure and repair processes. The third provides a framework for Bayesian analysis
of extremely complex models that can only be described through discrete event
simulation models. Finally, we provide an approach to some problems in Bayesian
risk analysis.

We are grateful to the many institutions that have supported at various points our
research in this field. In particular, D.R.I. wants to acknowledge the Spanish Ministry
of Science and Education (eColabora and Riesgos), the Spanish Ministry of Industry,
the Government of Madrid through the Riesgos-CM program, the European Science
Foundation through the ALGODEC program, the SECONOMICS project, the Sta-
tistical and Applied Mathematical Sciences Institute, Apara Software and MTP. F.R.
wants to acknowledge the Statistical and Applied Mathematical Sciences Institute.
M.P.W. wishes to acknowledge support from projects of the Spanish Ministry of
Science and Education and the Government of Madrid.

We have also benefited of our collaboration in these areas over various years with
many colleagues and former students. Specifically, D.R.I. would like to thank Javier
Cano, Jesus Rı́os, Miguel Herrero, Javier Girón, Concha Bielza, Peter Müller, Javier
Moguerza, Dipak Dey, Mircea Grigoriu, Jim Berger, Armi Moreno, Simon French,
Jacinto Martin, David Banks, Raquel Montes, and Miguel Virto. He specially misses
many hours of discussion and collaboration with Sixto Rı́os, Sixto Rı́os Insua, and
Jorge Muruzábal. F.R. would like to thank Sara Pasquali, Antonio Pievatolo, Re-
nata Rotondi, Bruno Betrò, Refik Soyer, Siva Sivaganesan, Gianni Gilioli, Fernanda
D’Ippoliti, Cristina Mazzali, Loretta Masini, Emanuela Saccuman, Davide Cavallo,
Franco Caron, Enrico Cagno, and Mauro Mancini. Finally, M.P.W. has been much
helped by Andrés Alonso, Conchi Ausı́n, Carmen Broto, José Antonio Carnicero, Pe-
dro Galeano, Cristina Garcı́a, Ana Paula Palacios, Pepa Rodrı́guez-Cobo, and Nuria
Torrado.

The patience and competence of the personnel at Wiley, and in particular of
Richard Davies and Heather Kay, is heartily appreciated, as well as the support from
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Kathryn Sharples and Ilaria Meliconi who played a fundamental role in the start of
this project.

Last, but not least, our families (Susana, Isa, and Ota; Anna, Giacomo, and
Lorenzo; Imogen, Pike†, and Bo) have provided us with immense support and the
required warmth to complete this long-lasting project.

Valdoviño, Milano, and Getafe
November 2011
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1

Stochastic processes

1.1 Introduction

The theme of this book is Bayesian Analysis of Stochastic Process Models. In this
first chapter, we shall provide the basic concepts needed in defining and analyzing
stochastic processes. In particular, we shall review what stochastic processes are,
their most important characteristics, the important classes of processes that shall be
analyzed in later chapters, and the main inference and decision-making tasks that we
shall be facing. We also set up the basic notation that will be followed in the rest
of the book. This treatment is necessarily brief, as we cover material which is well
known from, for example, the texts that we provide in our final discussion.

1.2 Key concepts in stochastic processes

Stochastic processes model systems that evolve randomly in time, space or space-
time. This evolution will be described through an index t ∈ T . Consider a random
experiment with sample space �, endowed with a σ -algebra F and a base probability
measure P . Associating numerical values with the elements of that space, we may
define a family of random variables {Xt , t ∈ T }, which will be a stochastic process.
This idea is formalized in our first definition that covers our object of interest in
this book.

Definition 1.1: A stochastic process {Xt , t ∈ T } is a collection of random variables
Xt, indexed by a set T, taking values in a common measurable space S endowed with
an appropriate σ -algebra.

T could be a set of times, when we have a temporal stochastic process; a set of
spatial coordinates, when we have a spatial process; or a set of both time and spatial
coordinates, when we deal with a spatio-temporal process. In this book, in general,

Bayesian Analysis of Stochastic Process Models, First Edition. David Rios Insua, Fabrizio Ruggeri and Michael P. Wiper.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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4 BAYESIAN ANALYSIS OF STOCHASTIC PROCESS MODELS

we shall focus on stochastic processes indexed by time, and will call T the space
of times. When T is discrete, we shall say that the process is in discrete time and
will denote time through n and represent the process through {Xn, n = 0, 1, 2, . . .} .

When T is continuous, we shall say that the process is in continuous time. We shall
usually assume that T = [0,∞) in this case. The values adopted by the process will
be called the states of the process and will belong to the state space S. Again, S may
be either discrete or continuous.

At least two visions of a stochastic process can be given. First, for each ω ∈ �,
we may rewrite Xt (ω) = gω(t) and we have a function of t which is a realization or
a sample function of the stochastic process and describes a possible evolution of the
process through time. Second, for any given t, Xt is a random variable. To completely
describe the stochastic process, we need a joint description of the family of random
variables {Xt , t ∈ T }, not just the individual random variables. To do this, we may
provide a description based on the joint distribution of the random variables at any
discrete subset of times, that is, for any {t1, . . . , tn} with t1 < · · · < tn , and for any
{x1, . . . , xn}, we provide

P
(
Xt1 ≤ x1, . . . , Xtn ≤ xn

)
.

Appropriate consistency conditions over these finite-dimensional families of dis-
tributions will ensure the definition of the stochastic process, via the Kolmogorov
extension theorem, as in, for example, Øksendal (2003).

Theorem 1.1: Let T ⊆ [0,∞). Suppose that, for any {t1, . . . , tn} with t1 < · · · < tn,
the random variables Xt1 , . . . , Xtn satisfy the following consistency conditions:

1. For all permutations π of 1, . . . , n and x1, . . . , xn we have that P(Xt1 ≤
x1, . . . , Xtn ≤ xn) = P(Xtπ(1) ≤ xπ(1), . . . , Xtπ(n) ≤ xπ(n)).

2. For all x1, . . . , xn and tn+1, . . . , tn+m, we have P(Xt1 ≤ x1, . . . , Xtn ≤ xn) =
P(Xt1 ≤ x1, . . . , Xtn ≤ xn, Xtn+1 < ∞, . . . , Xtn+m < ∞).

Then, there exists a probability space (�,F , P) and a stochastic process Xt : T ×
� → R

n having the families Xt1 , . . . , Xtn as finite-dimensional distributions.

Clearly, the simplest case will hold when these random variables are inde-
pendent, but this is the territory of standard inference and decision analysis.
Stochastic processes adopt their special characteristics when these variables are
dependent.

Much as with moments for standard distributions, we shall use some tools to
summarize a stochastic process. The most relevant are, assuming all the involved
moments exist:

Definition 1.2: For a given stochastic process {Xt , t ∈ T } the mean function is

μX (t) = E[Xt ].
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The autocorrelation function of the process is the function

RX (t1, t2) = E[Xt1 Xt2 ].

Finally, the autocovariance function of the process is

CX (t1, t2) = E[(Xt1 − μX (t1))(Xt2 − μX (t2))].

It should be noted that these moments are merely summaries of the stochastic process
and do not characterize it, in general.

An important concept is that of a stationary process, that is a process whose
characterization is independent of the time at which the observation of the process is
initiated.

Definition 1.3: We say that the stochastic process {Xt , t ∈ T } is strictly station-
ary if for any n, t1, t2, . . . , tn and τ , (Xt1 , . . . , Xtn ) has the same distribution as
(Xt1+τ , . . . , Xtn+τ ).

A process which does not satisfy the conditions of Definition 1.3 will be called
nonstationary. Stationarity is a typical feature of a system which has been running
for a long time and has stabilized its behavior.

The required condition of equal joint distributions in Definition 1.3 has important
parameterization implications when n = 1, 2. In the first case, we have that all Xt

variables have the same common distribution, independent of time. In the second
case, we have that the joint distribution depends on the time differences between the
chosen times, but not on the particular times chosen, that is,

FXt1 ,Xt2
(x1, x2) = FX0,Xt2−t1

(x1, x2).

Therefore, we easily see the following.

Proposition 1.1: For a strictly stationary stochastic process {Xt , t ∈ T }, the mean
function is constant, that is,

μX (t) = μX ,∀t. (1.1)

Also, the autocorrelation function of the process is a function of the time differences,
that is,

RX (t1, t2) = R(t2 − t1). (1.2)

Finally, the autocovariance function is given by

CX (t1, t2) = R(t2 − t1) − μ2
X ,
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6 BAYESIAN ANALYSIS OF STOCHASTIC PROCESS MODELS

assuming all relevant moments exist.

A process that fulfills conditions (1.1) and (1.2) is commonly known as a weakly
stationary process. Such a process is not necessarily strictly stationary, whereas a
strictly stationary process will be weakly stationary if first and second moments
exist.

Example 1.1: A first-order autoregressive, or AR(1), process is defined through

Xn = φ0 + φ1 Xn−1 + εn,

where εn is a sequence of independent and identically distributed (IID) normal random
variables with zero mean and variance σ 2. This process is weakly, but not strictly,
stationary if |φ1| < 1. Then, we have μX = φ0 + φ1μX , which implies that μX =

φ0

1−φ1
. If |φ1| ≥ 1, the process is not stationary. 	

When dealing with a stochastic process, we shall sometimes be interested in
its transition behavior, that is, given some observations of the process, we aim at
forecasting some of its properties a certain time t ahead in the future. To do this, it
is important to provide the so called transition functions. These are the conditional
probability distributions based on the available information about the process, relative
to a specific value of the parameter t0.

Definition 1.4: Let t0, t1 ∈ T be such that t0 ≤ t1. The conditional transition distri-
bution function is defined by

F (x0, x1; t0, t1) = P
(
Xt1 ≤ x1 | Xt0 ≤ x0

)
.

When the process is discrete in time and space, we shall use the transition probabilities
defined, for m ≤ n, through

P (m,n)
ij = P (Xn = j | Xm = i) .

When the process is stationary, the transition distribution function will depend only
on the time differences t = t1 − t0,

F (x0, x ; t0, t0 + t) = F (x0, x ; 0, t) , ∀t0 ∈ T .

For convenience, the previous expression will sometimes be written as F (x0, x ; t) .

Analogously, for the discrete process {Xn}n we shall use the expression P (n)
ij .

Letting t → ∞, we may consider the long-term limiting behavior of the process,
typically associated with the stationary distribution. When this distribution exists,
computations are usually much simpler than doing short-term predictions based on
the use of the transition functions. These limit distributions reflect a parallelism with
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the laws of large numbers, for the case of IID observations, in that

1

n

n∑

i=1

Xti → E[X∞]

when tn → ∞, for some limiting random variable X∞. This is the terrain of ergodic
theorems and ergodic processes, see, e.g., Walters (2000).

In particular, for a given stochastic process, we may be interested in studying the
so-called time averages. For example, we may define the mean time average, which
is the random variable defined by

μX (T ) = 1

T

∫ T

0
Xt dt.

If the process is stationary, interchanging expectation with integration, we have

E[μX (T )] = 1

T
E

[∫ T

0
Xt dt

]
= 1

T

∫ T

0
E[Xt ]dt = 1

T

∫ T

0
μX = μX .

This motivates the following definition.

Definition 1.5: The process Xt is said to be mean ergodic if:

1. μX (T ) → μX , for some μX , and
2. var (μX (T )) → 0.

An autocovariance ergodic process can be defined in a similar way. Clearly, for a
stochastic process to be ergodic, it has to be stationary. The converse is not true.

1.3 Main classes of stochastic processes

Here, we define the main types of stochastic processes that we shall study in this
book. We start with Markov chains and Markov processes, which will serve as a
model for many of the other processes analyzed in later chapters and are studied in
detail in Chapters 3 and 4.

1.3.1 Markovian processes

Except for the case of independence, the simplest dependence form among the random
variables in a stochastic process is the Markovian one.

Definition 1.6: Consider a set of time instants {t0, t1, . . . , tn, t} with t0 < t1 < · · · <

tn < t and t, ti ∈ T . A stochastic process {Xt , t ∈ T } is Markovian if the distribution
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of Xt conditional on the values of Xt1 , . . . , Xtn depends only on Xtn , that is, the most
recent known value of the process

P
(
Xt ≤ x | Xtn ≤ xn, Xtn−1 ≤ xn−1, . . . , Xt0 ≤ x0

)

= P
(
Xt ≤ x | Xtn ≤ xn

) = F (xn, x ; tn, t) .
(1.3)

As a consequence of the previous relation, we have

F (x0, x ; t0, t0 + t) =
∫

y∈S
F (y, x ; τ, t) dF (x0, y; t0, τ ) (1.4)

with t0 < τ < t .
If the stochastic process is discrete in both time and space, then (1.3) and (1.4)

adopt the following form: For n > n1 > · · · > nk , we have

P
(
Xn = j | Xn1 = i1, Xn2 = i2, . . . , Xnk = ink

) =
P

(
Xn = j | Xn1 = i1

) = p(n1,n)
i1 j .

Using this property and taking r such that m < r < n, we have

p(m,n)
ij = P (Xn = j | Xm = i) (1.5)

=
∑

k∈S

P (Xn = j | Xr = k) P (Xr = k | Xm = i) .

Equations (1.4) and (1.5) are called the Chapman–Kolmogorov equations for the
continuous and discrete cases, respectively. In this book we shall refer to discrete
state space Markov processes as Markov chains and will use the term Markov process
to refer to processes with continuous state spaces and the Markovian property.

Discrete time Markov chains

Markov chains with discrete time space are an important class of stochastic processes
whose analysis serves as a guide to the study of other more complex processes. The
main features of such chains are outlined in the following text. Their full analysis is
provided in Chapter 3.

Consider a discrete state space Markov chain, {Xn}. Let p(m,n)
ij be defined as in

(1.5), being the probability that the process is at time n in j, when it was in i at time
m. If n = m + 1, we have

p(m,m+1)
ij = P (Xm+1 = j | Xm = i) ,

which is known as the one-step transition probability. When p(m,m+1)
ij is independent

of m, the process is stationary and the chain is called time homogeneous. Otherwise,



P1: TIX/XYZ P2: ABC
JWST172-c01 JWST172-Ruggeri March 3, 2012 15:53

STOCHASTIC PROCESSES 9

the process is called time inhomogeneous. Using the notation

pij = P (Xm+1 = j | Xm = i)
pn

ij = P (Xn+m = j | Xm = i)

for every m, the Chapman–Kolmogorov equations are now

pn+m
ij =

∑

k∈S

pn
ik pm

kj (1.6)

for every n, m ≥ 0 and i, j. The n-step transition probability matrix is defined as
P(n), with elements pn

ij. Equation (1.6) is written P(n+m) = P(n) · P(m). These matrices
fully characterize the transition behavior of an homogeneous Markov chain. When
n = 1, we shall usually write P instead of P(1) and shall refer to the transition matrix
instead of the one-step transition matrix.

Example 1.2: A famous problem in stochastic processes is the gambler’s ruin prob-
lem. A gambler with an initial stake, x0 ∈ N, plays a coin tossing game where at
each turn, if the coin comes up heads, she wins a unit and if the coin comes up tails,
she loses a unit. The gambler continues to play until she either is bankrupted or her
current holdings reach some fixed amount m. Let Xn represent the amount of money
held by the gambler after n steps. Assume that the coin tosses are IID with probabil-
ity of heads p at each turn. Then, {Xn} is a time homogeneous Markov chain with
p00 = pmm = 1, pii+1 = p and pii−1 = 1 − p, for i = 1, . . . , m − 1 and pij = 0 for
i ∈ {0, . . . , m} and j 
= i . 	

The analysis of the stationary behavior of an homogeneous Markov chain requires
studying the relations among states as follows.

Definition 1.7: A state j is reachable from a state i if pn
ij > 0, for some n. We say

that two states that are mutually reachable, communicate, and belong to the same
communication class.

If all states in a chain communicate among themselves, so that there is just one
communication class, we shall say that the Markov chain is irreducible. In the case
of the gambler’s ruin problem of Example 1.2, we can see that there are three
communication classes: {0}, {1, . . . , m − 1}, and {m}.

Definition 1.8: Given a state i, let pi be the probability that, starting from state i, the
process returns to such state. We say that state i is recurrent if pi = 1 and transitory
if pi < 1.

We may easily see that if state i is recurrent and communicates with another state
j, then j is recurrent. In the case of gambler’s ruin, only the states {0} and {m} are
recurrent.
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Definition 1.9: A state i has period k if pn
ii = 0 whenever n is not divisible by k and

k is the biggest integer with this property. A state with period one is aperiodic.

We may also see easily that if i has period k and states i and j communicate, then
state j has period k. In the gambler’s ruin problem, states {0, m} are aperiodic and the
remaining states have period two.

Definition 1.10: A state i is positive recurrent if, starting at i, the expected time until
return to i is finite.

Positive recurrence is also a class property in the sense that, if i is positively recurrent
and states i and j communicate, then state j is also positively recurrent. We may also
prove that in a Markov chain with a finite number of states all recurrent states are
positive recurrent. The final key definition is the following.

Definition 1.11: A positive recurrent, aperiodic state is called ergodic.

We then have the following important limiting result for a Markov chain, whose proof
may be seen in, for example, Ross (1995).

Theorem 1.2: For an ergodic and irreducible Markov chain, then π j = lim
n→∞ pn

ij,

which is independent of i π j is the unique nonnegative solution of π j = ∑
i πi pij,

j ≥ 0, with
∑∞

i=0 πi = 1.

Continuous time Markov chains

Here, we describe only the homogeneous case. Continuous time Markov chains are
stochastic processes with discrete-state space and continuous space time such that
whenever a system enters in state i, it remains there for an exponentially distributed
time with mean 1/λi , and when it abandons this state, it goes to state j 
= i with
probability pij, where

∑
j 
=i pij = 1.

The required transition and limited behavior of these processes and some gener-
alizations are presented in Chapter 4.

1.3.2 Poisson process

Poisson processes are continuous time, discrete space processes that we shall ana-
lyze in detail in Chapter 5. Here, we shall distinguish between homogeneous and
nonhomogeneous Poisson processes.

Definition 1.12: Suppose that the stochastic process {Xt }t∈T describes the number
of events of a certain type produced until time t and has the following properties:
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1. The number of events in nonoverlapping intervals are independent.
2. There is a constant λ such that the probabilities of occurrence of events over

‘small’ intervals of duration 	t are:
• P(number of events in (t, t + 	t] = 1) = λ	t + o(	t).
• P(number of events in (t, t + 	t] > 1) = o(	t), where o(	t) is such that

o(	t)/	t → 0 when 	t → 0.

Then, we say that {Xt } is an homogeneous Poisson process with parameter λ, char-
acterized by the fact that Xt ∼ Po(λt).

For such a process, it can be proved that the times between successive events are IID
random variables with distribution Ex(λ).

The Poisson process is a particular case of many important generic types of
processes. Among others, it is an example of a renewal process, that is, a process
describing the number of events of a phenomenon of interest occurring until a certain
time such that the times between events are IID random variables (exponential in the
case of the Poisson process). Poisson processes are also a special case of continuous
time Markov chains, with transition probabilities pi,i+1 = 1,∀i and λi = λ.

Nonhomogeneous Poisson processes

Nonhomogeneous Poisson processes are characterized by the intensity function λ(t)
or the mean function m(t) = ∫ t

0 λ(s)ds; we consider, in general, a time-dependent
intensity function but it could be space and space-time dependent as well. Note that,
when λ(t) = λ, we have an homogeneous Poisson process. For a nonhomogeneous
Poisson process, the number of events occurring in the interval (t, t + s] will have a
Po(m(t + s) − m(t)) distribution.

1.3.3 Gaussian processes

The Gaussian process is continuous in both time and state spaces. Let {Xt } be a
stochastic process such that for any n times {t1, t2, . . . , tn} the joint distribution of
Xti , i = 1, 2, .., n, is n-variate normal. Then, the process is Gaussian. Moreover, if
for any finite set of time instants {ti }, i = 1, 2, . . . the random variables are mutually
independent and Xt is normally distributed for every t, we call it a purely random
Gaussian process.

Because of the specific properties of the normal distribution, we may easily
specify many properties of a Gaussian process. For example, if a Gaussian process is
weakly stationary, then it is strictly stationary.

1.3.4 Brownian motion

This continuous time and state-space process has the following properties:

1. The process {Xt , t ≥ 0} has independent, stationary increments: for t1, t2 ∈ T and
t1 < t2, the distribution of Xt2 − Xt1 is the same of Xt2+h − Xt1+h for every h > 0
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and, for nonoverlapping intervals (t1, t2) and (t3, t4) , with t1 < t2 < t3 < t4, the
random variables Xt2 − Xt1 and Xt4 − Xt3 are independent.

2. For any time interval (t1, t2), the random variable Xt2 − Xt1 has distribution
N(0, σ 2(t2 − t1)).

1.3.5 Diffusion processes

Diffusion processes are Markov processes with certain continuous path properties
which emerge as solution of stochastic differential equations. Specifically,

Definition 1.13: A continuous time and state process is a diffusion process if it is
a Markov process {Xt } with transition density p(s, t ; x, y) such that there are two
functions μ(t, x) and β2(t, x), known as the drift and the diffusion coefficients, such
that

∫

|x−y|≤ε

p(t, t + �t ; x, y)dy = o(�t),

∫

|x−y|≤ε

(y − x)p(t, t + �t ; x, y)dy = μ(t, x) + o(�t),

∫

|x−y|≤ε

(y − x)2 p(t, t + �t ; x, y)dy = β2(t, x) + o(�t).

The previous three types of processes are dealt with in Chapter 6.

1.4 Inference, prediction, and decision-making

Given the key definitions and results concerning stochastic processes, we can now
informally set up the statistical and decision-making problems that we shall deal with
in the following chapters.

Clearly, stochastic processes will be characterized by their initial value and the
values of their parameters, which may be finite or infinite dimensional.

Example 1.3: In the case of the gambler’s ruin problem of Example 1.2 the process
is parameterized by p, the probability of heads. More generally, for a stationary finite
Markov chain model with states 1, 2, . . . , k, the parameters will be the transition
probabilities (p11, . . . ., pk,k), where pij satisfy that pij ≥ 0 and

∑
j pij = 1.

The AR(1) process of Example 1.1 is parameterized through the parameters φ0

and φ1.
A nonhomogeneous Poisson process with intensity function λ(t) = Mβtβ−1, cor-

responding to a Power Law model, is a finite parametric model with parameters
(M, β).



P1: TIX/XYZ P2: ABC
JWST172-c01 JWST172-Ruggeri March 3, 2012 15:53

STOCHASTIC PROCESSES 13

A normal dynamic linear model (DLM) with univariate observations Xn, is
described by

θ0|D0 ∼ N (m0, C0)

θn|θn−1 ∼ N (Gnθn−1, Wn)

Xn|θn ∼ N (F ′
nθn, Vn)

where, for each n, Fn is a known vector of dimension m × 1, Gn is a known m × m
matrix, Vn is a known variance, and Wn is a known m × m variance matrix. The
parameters are now {θ0, θ1, . . .}. 	

Inference problems for stochastic processes are stated as follows. Assume we
have observations of the stochastic process, which will typically be observations
Xt1 , . . . , Xtn at time points t1, . . . , tn . Sometimes we could have continuous obser-
vations in terms of one, or more, trajectories within a given interval. Our aim in
inference is then to summarize the available information about these parameters so
as to provide point or set estimates or test hypotheses about them. It is important to
emphasize that this available information comes from both the observed data and any
available prior information.

More important in the context of stochastic processes is the task of forecasting
the future behavior of the process, in both the transitory and limiting cases, that is, at
a fixed future time and in the long term, respectively.

We shall also be interested in several decision-making problems in relation with
stochastic processes. Typically, they will imply making a decision from a set of
available ones, once we have taken the process observations. A reward will be obtained
depending on the decision made and the future behavior of the process. We aim at
obtaining the optimal solution in some sense.

This book explores how the problems of inference, forecasting, and decision-
making with underlying stochastic processes may be dealt with using Bayesian
techniques. In the following chapter, we review the most important features of the
Bayesian approach, concentrating on the standard IID paradigm while in the later
chapters, we concentrate on the analysis of some of the specific stochastic processes
outlined earlier in Section 1.3.

1.5 Discussion

In this chapter, we have provided the key results and definitions for stochastic pro-
cesses that will be needed in the rest of this book. Most of these results are of a
probabilistic nature, as is usual in the majority of books in this field. Many texts
provide very complete outlines of the probabilistic aspects of stochastic processes.
For examples, see Karlin and Taylor (1975, 1981), Ross (1995), and Lawler (2006),
to name a few.
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There are also texts focusing on some of the specific processes that we have
mentioned. For example, Norris (1998) or Ching and Ng (2010) are full-length books
on Markov chains; Stroock (2005) deals with Markov processes; Poisson processes
are studied in Kingman (1993); Rasmussen and Williams (2005) study Gaussian
processes, whereas diffusions are studied by Rogers and Williams (2000a, 2000b).

As we have observed previously, there is less literature dedicated to inference for
stochastic processes. A quick introduction may be seen in Lehoczky (1990) and both
Bosq and Nguyen (1996), and Bhat and Miller (2002) provide applied approaches
very much in the spirit of this book, although from a frequentist point of view. Prabhu
and Basawa (1991), Prakasa Rao (1996), and Rao (2000) are much more theoretical.

Finally, we noted earlier that the index T of a stochastic process need not always
be a set of times. Rue and Held (2005) illustrate the case of spatial processes, when
T is a spatial set.
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