Bayesian Analysis of Stochastic Process Models

Bayesian analysis of complex models based on stochastic processes has seen a surge in research activity in recent years. *Bayesian Analysis of Stochastic Process Models* provides a unified treatment of Bayesian analysis of models based on stochastic processes, covering the main classes of stochastic processing including modeling, computational, inference, forecasting, decision making and important applied models.

Bayesian Analysis of Stochastic Process Models:
- Explores Bayesian analysis of models based on stochastic processes, providing a unified treatment.
- Provides a thorough introduction for research students.
- Includes computational tools to deal with complex problems, illustrated with real-life case studies.
- Examines inference, prediction and decision making.

Researchers, graduate and advanced undergraduate students interested in stochastic processes in fields such as statistics, operations research (OR), engineering, finance, economics, computer science and Bayesian analysis will benefit from reading this book. With numerous applications included, practitioners of OR, stochastic modeling and applied statistics will also find this book useful.

David Rios Insua, Fabrizio Ruggeri, Michael P. Wiper
Bayesian Analysis of Stochastic Process Models
WILEY SERIES IN PROBABILITY AND STATISTICS

Established by WALTER A. SHEWHART and SAMUEL S. WILKS

Editors: David J. Balding, Noel A.C. Cressie, Garrett M. Fitzmaurice, Harvey Goldstein, Iain M. Johnstone, Geert Molenberghs, David W. Scott, Adrian F.M. Smith, Ruey S. Tsay, Sanford Weisberg

Editors Emeriti: Vic Barnett, Ralph A. Bradley, J. Stuart Hunter, J.B. Kadane, David G. Kendall, Jozef L. Teugels

A complete list of the titles in this series appears at the end of this volume.
Bayesian Analysis of Stochastic Process Models

David Rios Insua
Department of Statistics and Operations Research
Universidad Rey Juan Carlos, Madrid, Spain

Fabrizio Ruggeri
CNR-IMATI, Milan, Italy

Michael P. Wiper
Department of Statistics, Universidad Carlos III de Madrid, Spain
Contents

Preface xi

PART ONE BASIC CONCEPTS AND TOOLS

1 **Stochastic processes** 3
 1.1 Introduction 3
 1.2 Key concepts in stochastic processes 3
 1.3 Main classes of stochastic processes 7
 1.3.1 Markovian processes 7
 1.3.2 Poisson process 10
 1.3.3 Gaussian processes 11
 1.3.4 Brownian motion 11
 1.3.5 Diffusion processes 12
 1.4 Inference, prediction, and decision-making 12
 1.5 Discussion 13
 References 14

2 **Bayesian analysis** 16
 2.1 Introduction 16
 2.2 Bayesian statistics
 2.2.1 Parameter estimation 18
 2.2.2 Hypothesis testing 20
 2.2.3 Prediction 22
 2.2.4 Sensitivity analysis and objective Bayesian methods 24
 2.3 Bayesian decision analysis 25
 2.4 Bayesian computation
 2.4.1 Computational Bayesian statistics 26
 2.4.2 Computational Bayesian decision analysis 34
 2.5 Discussion 37
 References 39

PART TWO MODELS

3 **Discrete time Markov chains and extensions** 45
 3.1 Introduction 45
vi CONTENTS

3.2 Important Markov chain models
 3.2.1 Reversible chains 46
 3.2.2 Higher order chains and mixtures 46
 3.2.3 Discrete time Markov processes with continuous state space 47
 3.2.4 Branching processes 48
 3.2.5 Hidden Markov models 48

3.3 Inference for first-order, time homogeneous, Markov chains 49
 3.3.1 Advantages of the Bayesian approach 50
 3.3.2 Conjugate prior distribution and modifications 50
 3.3.3 Forecasting short-term behavior 53
 3.3.4 Forecasting stationary behavior 54
 3.3.5 Model comparison 54
 3.3.6 Unknown initial state 55
 3.3.7 Partially observed data 57

3.4 Special topics 58
 3.4.1 Reversible Markov chains 58
 3.4.2 Higher order chains and mixtures of Markov chains 59
 3.4.3 AR processes and other continuous state space processes 60
 3.4.4 Branching processes 63
 3.4.5 Hidden Markov models 66
 3.4.6 Markov chains with covariate information and nonhomogeneous Markov chains 68

3.5 Case study: Wind directions at Gijón 68
 3.5.1 Modeling the time series of wind directions 70
 3.5.2 Results 72

3.6 Markov decision processes 74

3.7 Discussion 77

References 78

4 Continuous time Markov chains and extensions 82
 4.1 Introduction 82
 4.2 Basic setup and results 83
 4.3 Inference and prediction for CTMCs 85
 4.3.1 Inference for the chain parameters 85
 4.3.2 Forecasting short-term behavior 86
 4.3.3 Forecasting long-term behavior 88
 4.3.4 Predicting times between transitions 88
 4.4 Case study: Hardware availability through CTMCs 88
 4.5 Semi-Markovian processes 93
 4.6 Decision-making with semi-Markovian decision processes 97
 4.7 Discussion 102

References 103

5 Poisson processes and extensions 105
 5.1 Introduction 105
CONTENTS vii

5.2 Basics on Poisson processes 106
 5.2.1 Definitions and basic results 106
 5.2.2 Arrival and interarrival times 107
 5.2.3 Some relevant results 108
5.3 Homogeneous Poisson processes 109
 5.3.1 Inference on homogeneous Poisson processes 110
5.4 Nonhomogeneous Poisson processes 117
 5.4.1 Intensity functions 118
 5.4.2 Inference for nonhomogeneous Poisson processes 119
 5.4.3 Change points in NHPPs 121
5.5 Compound Poisson processes 122
5.6 Further extensions of Poisson processes 124
 5.6.1 Modulated Poisson process 124
 5.6.2 Marked Poisson processes 124
 5.6.3 Self-exciting processes 125
 5.6.4 Doubly stochastic Poisson processes 126
5.7 Case study: Earthquake occurrences 126
 5.7.1 Data 126
 5.7.2 Poisson model 127
 5.7.3 Data analysis 128
5.8 Discussion 130
References 131

6 Continuous time continuous space processes 135
 6.1 Introduction 135
 6.2 Gaussian processes 135
 6.2.1 Bayesian inference for Gaussian processes 137
 6.2.2 Gaussian process emulators 138
 6.3 Brownian motion and FBM 139
 6.3.1 Brownian motion 139
 6.3.2 Fractional Brownian motion 141
 6.4 Diffusions 144
 6.5 Case study: Predator–prey systems 147
 6.6 Discussion 153
References 155

PART THREE APPLICATIONS

7 Queueing analysis 163
 7.1 Introduction 163
 7.2 Basic queueing concepts 163
 7.3 The main queueing models 165
 7.3.1 $M/M/1$ and related systems 165
 7.3.2 $GI/M/1$ and $GI/M/c$ systems 167
CONTENTS

7.3.3 The M/G/1 system 168
7.3.4 GI/G/1 systems 168

7.4 Bayesian inference for queueing systems 169

7.5 Bayesian inference for the M/M/1 system 170
7.5.1 The likelihood function and maximum likelihood estimation 170
7.5.2 Bayesian inference with conjugate priors 171
7.5.3 Alternative prior formulations 174
7.5.4 Alternative experiments 178

7.6 Inference for non-Markovian systems 180
7.6.1 GI/M/1 and GI/M/c systems 180
7.6.2 M/G/1 systems 183
7.6.3 G/G/1 systems 187

7.7 Decision problems in queueing systems 187

7.8 Case study: Optimal number of beds in a hospital 188
7.8.1 Modeling the stay times 189
7.8.2 Characteristics of the hospital queueing system 191
7.8.3 Optimizing the number of beds 192

7.9 Discussion 194

References 195

8 Reliability 200
8.1 Introduction 200

8.2 Basic reliability concepts 201
8.2.1 Reliability data 201
8.2.2 Basic definitions 202

8.3 Renewal processes 203

8.4 Poisson processes 205
8.4.1 Selection of the intensity function 205
8.4.2 Reliability measures 208
8.4.3 Failure count data 209

8.5 Other processes 212

8.6 Maintenance 214

8.7 Case study: Gas escapes 215
8.7.1 Cast iron pipe models 216
8.7.2 Steel pipes 217
8.7.3 Different causes of corrosion 219

8.8 Discussion 222

References 223

9 Discrete event simulation 226
9.1 Introduction 226

9.2 Discrete event simulation methods 227

9.3 A Bayesian view of DES 230

9.4 Case study: A G/G/1 queueing system 231
CONTENTS ix

9.5 Bayesian output analysis 233
9.6 Simulation and optimization 237
9.7 Discussion 238
References 240

10 Risk analysis 243
10.1 Introduction 243
10.2 Risk measures 243
 10.2.1 Modeling financial time series 244
 10.2.2 Bayesian inference for financial time series models 248
10.3 Ruin problems 256
 10.3.1 Modeling the claim size distribution 257
 10.3.2 Bayesian inference 258
10.4 Case study: Estimation of finite-time ruin probabilities in the Sparre Andersen model 261
 10.4.1 Data modeling: The Coxian distribution 262
 10.4.2 Bayesian inference for the interclaim time and claim size distributions 263
 10.4.3 Results 265
10.5 Discussion 266
References 268

Appendix A Main distributions 273

Appendix B Generating functions and the Laplace–Stieltjes transform 283

Index 285
Preface

To the best of our knowledge, this is the first book focusing on Bayesian analysis of stochastic process models at large. We believe that recent developments in the field and the growing interest in this topic deserve a book-length treatment.

The advent of cheap computing power and the developments in Markov chain Monte Carlo simulation produced a revolution within the field of Bayesian statistics around the beginning of the 1990s, allowing a true ‘model liberation’ that permitted treating models that previously we could only dream of dealing with. This has challenged analysts in trying to deal with more complex problems. Given this great advance in computing power, it is no surprise that several researchers have attempted to deal with stochastic processes in a Bayesian fashion, moving away from the usual assumptions of independent and identically distributed (IID) data. In 1998, this led us to organize the first Workshop on Bayesian Analysis of Stochastic Processes in Madrid. The seventh edition of this conference was held in 2011, which is an illustration of the great current interest in this subject area. Given the numerous papers written, we felt, therefore, that the time was right to provide a systematic account of developments in Bayesian analysis of stochastic processes. In doing this, it is interesting to note that most books in stochastic processes have referred mainly to probabilistic aspects and there are many fewer texts that treat them from a (classical) statistical perspective.

In this monograph, we have emphasized five salient aspects:

1. The use of Bayesian methods as a unifying scientific paradigm.
2. Forecasting and decision-making problems, going beyond the usual focus on inference.
3. Computational tools that facilitate dealing with complex stochastic process based models.
4. The applicability of results. We include at least one real case study per chapter. These examples come from engineering, business, geosciences and biology contexts, showing the broad spectrum of possible applications.
5. Ample references and bibliographic discussions are provided at the end of each chapter, so that readers may pursue a more in-depth study of the corresponding topics and identify challenging areas for new research.

Our monograph is structured in three parts:

1. Part One refers to basic concepts and tools both in stochastic processes and Bayesian analysis. We review key probabilistic results and tools to deal with
stochastic processes, the definitions of the key processes that we shall face and we set up the basic inference, prediction, and decision-making problems in relation with stochastic processes. We then review key results in Bayesian analysis that we shall use later on, with emphasis on computations and decision-analytic issues.

2. Part Two illustrates Bayesian analysis of some of the key stochastic process models. This section consists of four chapters. The first two are devoted to Markov chains and extensions in discrete time and continuous time, respectively. The third chapter contains a detailed analysis of Poisson processes, with particular emphasis on nonhomogeneous ones. Finally, the fourth chapter deals with continuous time/continuous space processes, in particular Gaussian processes and diffusions.

3. Part Three also contains four chapters. These refer to application areas in which there are several interrelated processes that make the situations analyzed more complex. The first chapter refers to queueing models that include arrival and service processes. The second chapter refers to reliability problems that include failure and repair processes. The third provides a framework for Bayesian analysis of extremely complex models that can only be described through discrete event simulation models. Finally, we provide an approach to some problems in Bayesian risk analysis.

We are grateful to the many institutions that have supported at various points our research in this field. In particular, D.R.I. wants to acknowledge the Spanish Ministry of Science and Education (eColabora and Riesgos), the Spanish Ministry of Industry, the Government of Madrid through the Riesgos-CM program, the European Science Foundation through the ALGODEC program, the SECONOMICS project, the Statistical and Applied Mathematical Sciences Institute, Apara Software and MTP. F.R. wants to acknowledge the Statistical and Applied Mathematical Sciences Institute. M.P.W. wishes to acknowledge support from projects of the Spanish Ministry of Science and Education and the Government of Madrid.

We have also benefited of our collaboration in these areas over various years with many colleagues and former students. Specifically, D.R.I. would like to thank Javier Cano, Jesus Ríos, Miguel Herrero, Javier Girón, Concha Bielza, Peter Müller, Javier Moguerza, Dipak Dey, Mircea Grigoriu, Jim Berger, Armi Moreno, Simon French, Jacinto Martín, David Banks, Raquel Montes, and Miguel Virto. He specially misses many hours of discussion and collaboration with Sixto Ríos, Sixto Ríos Insua, and Jorge Muruzábal. F.R. would like to thank Sara Pasquali, Antonio Pievato, Renata Rotondi, Bruno Betrò, Refik Soyer, Siva Sivaganesan, Gianni Gilioli, Fernanda D’Ippoliti, Cristina Mazzali, Loretta Masini, Emanuela Saccuman, Davide Cavallo, Franco Caron, Enrico Cagno, and Mauro Mancini. Finally, M.P.W. has been much helped by Andrés Alonso, Conchi Ausín, Carmen Broto, José Antonio Carnicer, Pedro Galeano, Cristina García, Ana Paula Palacios, Pepa Rodríguez-Cobo, and Nuria Torrado.

The patience and competence of the personnel at Wiley, and in particular of Richard Davies and Heather Kay, is heartily appreciated, as well as the support from
Kathryn Sharples and Ilaria Meliconi who played a fundamental role in the start of this project.

Last, but not least, our families (Susana, Isa, and Ota; Anna, Giacomo, and Lorenzo; Imogen, Pike, and Bo) have provided us with immense support and the required warmth to complete this long-lasting project.

Valdoviño, Milano, and Getafe
November 2011
Part One

BASIC CONCEPTS AND TOOLS
1

Stochastic processes

1.1 Introduction

The theme of this book is Bayesian Analysis of Stochastic Process Models. In this first chapter, we shall provide the basic concepts needed in defining and analyzing stochastic processes. In particular, we shall review what stochastic processes are, their most important characteristics, the important classes of processes that shall be analyzed in later chapters, and the main inference and decision-making tasks that we shall be facing. We also set up the basic notation that will be followed in the rest of the book. This treatment is necessarily brief, as we cover material which is well known from, for example, the texts that we provide in our final discussion.

1.2 Key concepts in stochastic processes

Stochastic processes model systems that evolve randomly in time, space or space-time. This evolution will be described through an index \(t \in T \). Consider a random experiment with sample space \(\Omega \), endowed with a \(\sigma \)-algebra \(\mathcal{F} \) and a base probability measure \(P \). Associating numerical values with the elements of that space, we may define a family of random variables \(\{ X_t, t \in T \} \), which will be a stochastic process. This idea is formalized in our first definition that covers our object of interest in this book.

Definition 1.1: A stochastic process \(\{ X_t, t \in T \} \) is a collection of random variables \(X_t \), indexed by a set \(T \), taking values in a common measurable space \(S \) endowed with an appropriate \(\sigma \)-algebra.

\(T \) could be a set of times, when we have a temporal stochastic process; a set of spatial coordinates, when we have a spatial process; or a set of both time and spatial coordinates, when we deal with a spatio-temporal process. In this book, in general,
we shall focus on stochastic processes indexed by time, and will call T the *space of times*. When T is discrete, we shall say that the process is in *discrete time* and will denote time through n and represent the process through $\{X_n, n = 0, 1, 2, \ldots\}$. When T is continuous, we shall say that the process is in *continuous time*. We shall usually assume that $T = [0, \infty)$ in this case. The values adopted by the process will be called the *states* of the process and will belong to the *state space* S. Again, S may be either discrete or continuous.

At least two visions of a stochastic process can be given. First, for each $\omega \in \Omega$, we may rewrite $X_t(\omega) = g_\omega(t)$ and we have a function of t which is a realization or a sample function of the stochastic process and describes a possible evolution of the process through time. Second, for any given t, X_t is a random variable. To completely describe the stochastic process, we need a joint description of the family of random variables $\{X_t, t \in T\}$, not just the individual random variables. To do this, we may provide a description based on the joint distribution of the random variables at any discrete subset of times, that is, for any $\{t_1, \ldots, t_n\}$ with $t_1 < \cdots < t_n$, and for any $\{x_1, \ldots, x_n\}$, we provide

$$P \left(X_{t_1} \leq x_1, \ldots, X_{t_n} \leq x_n \right).$$

Appropriate consistency conditions over these finite-dimensional families of distributions will ensure the definition of the stochastic process, via the Kolmogorov extension theorem, as in, for example, Øksendal (2003).

Theorem 1.1: Let $T \subseteq [0, \infty)$. Suppose that, for any $\{t_1, \ldots, t_n\}$ with $t_1 < \cdots < t_n$, the random variables X_{t_1}, \ldots, X_{t_n} satisfy the following consistency conditions:

1. For all permutations π of $1, \ldots, n$ and x_1, \ldots, x_n we have that $P(X_{t_1} \leq x_1, \ldots, X_{t_n} \leq x_n) = P(X_{\pi(1)} \leq x_{\pi(1)}, \ldots, X_{\pi(n)} \leq x_{\pi(n)})$.
2. For all x_1, \ldots, x_n and t_{n+1}, \ldots, t_{n+m}, we have $P(X_{t_1} \leq x_1, \ldots, X_{t_n} \leq x_n, X_{t_{n+1}} < \infty, \ldots, X_{t_{n+m}} < \infty)$.

Then, there exists a probability space (Ω, \mathcal{F}, P) and a stochastic process $X_t : T \times \Omega \to \mathbb{R}^n$ having the families X_{t_1}, \ldots, X_{t_n} as finite-dimensional distributions.

Clearly, the simplest case will hold when these random variables are independent, but this is the territory of standard inference and decision analysis. Stochastic processes adopt their special characteristics when these variables are dependent.

Much as with moments for standard distributions, we shall use some tools to summarize a stochastic process. The most relevant are, assuming all the involved moments exist:

Definition 1.2: For a given stochastic process $\{X_t, t \in T\}$ the mean function is

$$\mu_X(t) = E[X_t].$$
The autocorrelation function of the process is the function

\[R_X(t_1, t_2) = E[X_{t_1}X_{t_2}] \]

Finally, the autocovariance function of the process is

\[C_X(t_1, t_2) = E[(X_{t_1} - \mu_X(t_1))(X_{t_2} - \mu_X(t_2))] \]

It should be noted that these moments are merely summaries of the stochastic process and do not characterize it, in general.

An important concept is that of a stationary process, that is a process whose characterization is independent of the time at which the observation of the process is initiated.

Definition 1.3: We say that the stochastic process \(\{X_t, t \in T\} \) is strictly stationary if for any \(n, t_1, t_2, \ldots, t_n \) and \(\tau \), \((X_{t_1}, \ldots, X_{t_n}) \) has the same distribution as \((X_{t_1 + \tau}, \ldots, X_{t_n + \tau}) \).

A process which does not satisfy the conditions of Definition 1.3 will be called nonstationary. Stationarity is a typical feature of a system which has been running for a long time and has stabilized its behavior.

The required condition of equal joint distributions in Definition 1.3 has important parameterization implications when \(n = 1, 2 \). In the first case, we have that all \(X_t \) variables have the same common distribution, independent of time. In the second case, we have that the joint distribution depends on the time differences between the chosen times, but not on the particular times chosen, that is,

\[F_{X_{t_1}, X_{t_2}}(x_1, x_2) = F_{X_{t_2-t_1}}(x_1, x_2). \]

Therefore, we easily see the following.

Proposition 1.1: For a strictly stationary stochastic process \(\{X_t, t \in T\} \), the mean function is constant, that is,

\[\mu_X(t) = \mu_X, \forall t. \quad (1.1) \]

Also, the autocorrelation function of the process is a function of the time differences, that is,

\[R_X(t_1, t_2) = R(t_2 - t_1). \quad (1.2) \]

Finally, the autocovariance function is given by

\[C_X(t_1, t_2) = R(t_2 - t_1) - \mu_X^2. \]
6 BAYESIAN ANALYSIS OF STOCHASTIC PROCESS MODELS

assuming all relevant moments exist.

A process that fulfills conditions (1.1) and (1.2) is commonly known as a weakly stationary process. Such a process is not necessarily strictly stationary, whereas a strictly stationary process will be weakly stationary if first and second moments exist.

Example 1.1: A first-order autoregressive, or AR(1), process is defined through

\[X_n = \phi_0 + \phi_1 X_{n-1} + \epsilon_n, \]

where \(\epsilon_n \) is a sequence of independent and identically distributed (IID) normal random variables with zero mean and variance \(\sigma^2 \). This process is weakly, but not strictly, stationary if \(|\phi_1| < 1 \). Then, we have \(\mu_X = \phi_0 + \phi_1 \mu_X \), which implies that \(\mu_X = \frac{\phi_0}{1 - \phi_1} \). If \(|\phi_1| \geq 1 \), the process is not stationary. \(\triangle \)

When dealing with a stochastic process, we shall sometimes be interested in its transition behavior, that is, given some observations of the process, we aim at forecasting some of its properties a certain time \(t \) ahead in the future. To do this, it is important to provide the so called transition functions. These are the conditional probability distributions based on the available information about the process, relative to a specific value of the parameter \(t_0 \).

Definition 1.4: Let \(t_0, t_1 \in T \) be such that \(t_0 \leq t_1 \). The conditional transition distribution function is defined by

\[F(x_0, x_1; t_0, t_1) = P(X_{t_1} \leq x_1 \mid X_{t_0} \leq x_0). \]

When the process is discrete in time and space, we shall use the transition probabilities defined, for \(m \leq n \), through

\[P_{ij}^{(m,n)} = P(X_n = j \mid X_m = i). \]

When the process is stationary, the transition distribution function will depend only on the time differences \(t = t_1 - t_0 \),

\[F(x_0, x; t_0, t_0 + t) = F(x_0, x; 0, t), \text{ } \forall t_0 \in T. \]

For convenience, the previous expression will sometimes be written as \(F(x_0, x; t) \).

Analogously, for the discrete process \(\{X_n\} \), we shall use the expression \(P_{ij}^{(m)} \).

Letting \(t \to \infty \), we may consider the long-term limiting behavior of the process, typically associated with the stationary distribution. When this distribution exists, computations are usually much simpler than doing short-term predictions based on the use of the transition functions. These limit distributions reflect a parallelism with
the laws of large numbers, for the case of IID observations, in that

$$\frac{1}{n} \sum_{i=1}^{n} X_i \to E[X_\infty]$$

when $t_n \to \infty$, for some limiting random variable X_∞. This is the terrain of ergodic theorems and ergodic processes, see, e.g., Walters (2000).

In particular, for a given stochastic process, we may be interested in studying the so-called time averages. For example, we may define the mean time average, which is the random variable defined by

$$\mu_X(T) = \frac{1}{T} \int_{0}^{T} X_t \, dt.$$

If the process is stationary, interchanging expectation with integration, we have

$$E[\mu_X(T)] = \frac{1}{T} E \left[\int_{0}^{T} X_t \, dt \right] = \frac{1}{T} \int_{0}^{T} E[X_t] \, dt = \frac{1}{T} \int_{0}^{T} \mu_X = \mu_X.$$

This motivates the following definition.

Definition 1.5: The process X_t is said to be mean ergodic if:

1. $\mu_X(T) \to \mu_X$, for some μ_X, and
2. $\text{var}(\mu_X(T)) \to 0$.

An autocovariance ergodic process can be defined in a similar way. Clearly, for a stochastic process to be ergodic, it has to be stationary. The converse is not true.

1.3 Main classes of stochastic processes

Here, we define the main types of stochastic processes that we shall study in this book. We start with Markov chains and Markov processes, which will serve as a model for many of the other processes analyzed in later chapters and are studied in detail in Chapters 3 and 4.

1.3.1 Markovian processes

Except for the case of independence, the simplest dependence form among the random variables in a stochastic process is the Markovian one.

Definition 1.6: Consider a set of time instants $\{t_0, t_1, \ldots, t_n, t\}$ with $t_0 < t_1 < \cdots < t_n < t$ and $t, t_i \in T$. A stochastic process $\{X_t, t \in T\}$ is Markovian if the distribution
8 BAYESIAN ANALYSIS OF STOCHASTIC PROCESS MODELS

of \(X_t \) conditional on the values of \(X_n, \ldots, X_1 \), depends only on \(X_n \), that is, the most recent known value of the process

\[
P(X_t \leq x | X_n, X_{n-1}, \ldots, X_0 \leq x_0) = P(X_t \leq x | X_n \leq x_n) = F(x_n, x; t_n, t).
\]

(1.3)

As a consequence of the previous relation, we have

\[
F(x_0, x; t_0, t_0 + t) = \int_{y \in S} F(y, x; \tau, t) dF(x_0, y; t_0, \tau)
\]

(1.4)

with \(t_0 < \tau < t \).

If the stochastic process is discrete in both time and space, then (1.3) and (1.4) adopt the following form: For \(n > n_1 > \cdots > n_k \), we have

\[
P(X_n = j | X_{n_1} = i_1, X_{n_2} = i_2, \ldots, X_{n_k} = i_n) = P(X_n = j | X_{n_1} = i_1) = p^{(n, n)}_{i_1, j}.
\]

Equations (1.4) and (1.5) are called the Chapman–Kolmogorov equations for the continuous and discrete cases, respectively. In this book we shall refer to discrete state space Markov processes as Markov chains and will use the term Markov process to refer to processes with continuous state spaces and the Markovian property.

Discrete time Markov chains

Markov chains with discrete time and space are an important class of stochastic processes whose analysis serves as a guide to the study of other more complex processes. The main features of such chains are outlined in the following text. Their full analysis is provided in Chapter 3.

Consider a discrete state space Markov chain, \(\{X_n\} \). Let \(p^{(m,n)}_{ij} \) be defined as in (1.5), being the probability that the process is at time \(n \) in \(j \), when it was in \(i \) at time \(m \). If \(n = m + 1 \), we have

\[
p^{(m,m+1)}_{ij} = P(X_m = j | X_m = i),
\]

which is known as the one-step transition probability. When \(p^{(m,m+1)}_{ij} \) is independent of \(m \), the process is stationary and the chain is called time homogeneous. Otherwise,
the process is called time inhomogeneous. Using the notation

\[p_{ij} = P(X_{m+1} = j \mid X_m = i) \]
\[p_{ij}^n = P(X_{n+m} = j \mid X_m = i) \]

for every \(m \), the Chapman–Kolmogorov equations are now

\[p_{ij}^{n+m} = \sum_{k \in S} p_{ik}^n p_{kj}^m \] (1.6)

for every \(n, m \geq 0 \) and \(i, j \). The \(n \)-step transition probability matrix is defined as \(P^{(n)} \), with elements \(p_{ij}^n \). Equation (1.6) is written \(P^{(n+m)} = P^{(n)} \cdot P^{(m)} \). These matrices fully characterize the transition behavior of an homogeneous Markov chain. When \(n = 1 \), we shall usually write \(P \) instead of \(P^{(1)} \) and shall refer to the transition matrix instead of the one-step transition matrix.

Example 1.2: A famous problem in stochastic processes is the gambler’s ruin problem. A gambler with an initial stake, \(x_0 \in \mathbb{N} \), plays a coin tossing game where at each turn, if the coin comes up heads, she wins a unit and if the coin comes up tails, she loses a unit. The gambler continues to play until she either is bankrupted or her current holdings reach some fixed amount \(m \). Let \(X_n \) represent the amount of money held by the gambler after \(n \) steps. Assume that the coin tosses are IID with probability of heads \(p \) at each turn. Then, \(\{X_n\} \) is a time homogeneous Markov chain with \(p_{00} = p_{mm} = 1 \), \(p_{ii} = p \) and \(p_{ii-1} = 1 - p \), for \(i = 1, \ldots, m - 1 \) and \(p_{ij} = 0 \) for \(i \in \{0, \ldots, m\} \) and \(j \neq i \).

The analysis of the stationary behavior of an homogeneous Markov chain requires studying the relations among states as follows.

Definition 1.7: A state \(j \) is reachable from a state \(i \) if \(p_{ij}^n > 0 \), for some \(n \). We say that two states that are mutually reachable, communicate, and belong to the same communication class.

If all states in a chain communicate among themselves, so that there is just one communication class, we shall say that the Markov chain is irreducible. In the case of the gambler’s ruin problem of Example 1.2, we can see that there are three communication classes: \(\{0\} \), \(\{1, \ldots, m - 1\} \), and \(\{m\} \).

Definition 1.8: Given a state \(i \), let \(p_i \) be the probability that, starting from state \(i \), the process returns to such state. We say that state \(i \) is recurrent if \(p_i = 1 \) and transitory if \(p_i < 1 \).

We may easily see that if state \(i \) is recurrent and communicates with another state \(j \), then \(j \) is recurrent. In the case of gambler’s ruin, only the states \(\{0\} \) and \(\{m\} \) are recurrent.
Definition 1.9: A state \(i \) has period \(k \) if \(p^n_{ij} = 0 \) whenever \(n \) is not divisible by \(k \) and \(k \) is the biggest integer with this property. A state with period one is aperiodic.

We may also see easily that if \(i \) has period \(k \) and states \(i \) and \(j \) communicate, then state \(j \) has period \(k \). In the gambler’s ruin problem, states \(\{0, m\} \) are aperiodic and the remaining states have period two.

Definition 1.10: A state \(i \) is positive recurrent if, starting at \(i \), the expected time until return to \(i \) is finite.

Positive recurrence is also a class property in the sense that, if \(i \) is positively recurrent and states \(i \) and \(j \) communicate, then state \(j \) is also positively recurrent. We may also prove that in a Markov chain with a finite number of states all recurrent states are positive recurrent. The final key definition is the following.

Definition 1.11: A positive recurrent, aperiodic state is called ergodic.

We then have the following important limiting result for a Markov chain, whose proof may be seen in, for example, Ross (1995).

Theorem 1.2: For an ergodic and irreducible Markov chain, then \(\pi_j = \lim_{n \to \infty} p^n_{ij} \), which is independent of \(i \). \(\pi_j \) is the unique nonnegative solution of \(\pi_j = \sum_i \pi_i p_{ij} \), \(j \geq 0 \), with \(\sum_i \pi_i = 1 \).

Continuous time Markov chains

Here, we describe only the homogeneous case. Continuous time Markov chains are stochastic processes with discrete-state space and continuous space time such that whenever a system enters in state \(i \), it remains there for an exponentially distributed time with mean \(1/\lambda_i \), and when it abandons this state, it goes to state \(j \neq i \) with probability \(p_{ij} \), where \(\sum_{j \neq i} p_{ij} = 1 \).

The required transition and limited behavior of these processes and some generalizations are presented in Chapter 4.

1.3.2 Poisson process

Poisson processes are continuous time, discrete space processes that we shall analyze in detail in Chapter 5. Here, we shall distinguish between homogeneous and nonhomogeneous Poisson processes.

Definition 1.12: Suppose that the stochastic process \(\{X_t\}_{t \in T} \) describes the number of events of a certain type produced until time \(t \) and has the following properties:
1. The number of events in nonoverlapping intervals are independent.
2. There is a constant λ such that the probabilities of occurrence of events over ‘small’ intervals of duration Δt are:
 - $P(\text{number of events in } (t, t + \Delta t]) = \lambda \Delta t + o(\Delta t)$.
 - $P(\text{number of events in } (t, t + \Delta t]) > 1 = o(\Delta t)$, where $o(\Delta t)$ is such that $o(\Delta t)/\Delta t \to 0$ when $\Delta t \to 0$.

Then, we say that $\{X_t\}$ is an homogeneous Poisson process with parameter λ, characterized by the fact that $X_t \sim \text{Po}(\lambda t)$.

For such a process, it can be proved that the times between successive events are IID random variables with distribution $\text{Ex}(\lambda)$.

The Poisson process is a particular case of many important generic types of processes. Among others, it is an example of a renewal process, that is, a process describing the number of events of a phenomenon of interest occurring until a certain time such that the times between events are IID random variables (exponential in the case of the Poisson process). Poisson processes are also a special case of continuous time Markov chains, with transition probabilities $p_{i,i+1} = 1$, $\forall i$ and $\lambda_i = \lambda$.

Nonhomogeneous Poisson processes

Nonhomogeneous Poisson processes are characterized by the intensity function $\lambda(t)$ or the mean function $m(t) = \int_0^t \lambda(s) \, ds$; we consider, in general, a time-dependent intensity function but it could be space and space-time dependent as well. Note that, when $\lambda(t) = \lambda$, we have an homogeneous Poisson process. For a nonhomogeneous Poisson process, the number of events occurring in the interval $(t, t + s]$ will have a $\text{Po}(m(t + s) - m(t))$ distribution.

1.3.3 Gaussian processes

The Gaussian process is continuous in both time and state spaces. Let $\{X_t\}$ be a stochastic process such that for any n times $\{t_1, t_2, \ldots, t_n\}$ the joint distribution of $X_{t_i}, i = 1, 2, \ldots, n$, is n-variate normal. Then, the process is Gaussian. Moreover, if for any finite set of time instants $\{t_i\}, i = 1, 2, \ldots$ the random variables are mutually independent and X_t is normally distributed for every t, we call it a purely random Gaussian process.

Because of the specific properties of the normal distribution, we may easily specify many properties of a Gaussian process. For example, if a Gaussian process is weakly stationary, then it is strictly stationary.

1.3.4 Brownian motion

This continuous time and state-space process has the following properties:

1. The process $\{X_t, t \geq 0\}$ has independent, stationary increments: for $t_1, t_2 \in T$ and $t_1 < t_2$, the distribution of $X_{t_2} - X_{t_1}$ is the same of $X_{t_1} + h - X_{t_1 + h}$ for every $h > 0$
and, for nonoverlapping intervals \((t_1, t_2)\) and \((t_3, t_4)\), with \(t_1 < t_2 < t_3 < t_4\), the random variables \(X_{t_2} - X_{t_1}\) and \(X_{t_4} - X_{t_3}\) are independent.

2. For any time interval \((t_1, t_2)\), the random variable \(X_{t_2} - X_{t_1}\) has distribution \(\mathcal{N}(0, \sigma^2(t_2 - t_1))\).

1.3.5 Diffusion processes

Diffusion processes are Markov processes with certain continuous path properties which emerge as solution of stochastic differential equations. Specifically,

Definition 1.13: A continuous time and state process is a diffusion process if it is a Markov process \(\{X_t\}\) with transition density \(p(s, t; x, y)\) such that there are two functions \(\mu(t, x)\) and \(\beta^2(t, x)\), known as the drift and the diffusion coefficients, such that

\[
\begin{align*}
\int_{|y-x| \leq \epsilon} p(t + \Delta t; x, y) dy &= o(\Delta t), \\
\int_{|y-x| \leq \epsilon} (y-x) p(t + \Delta t; x, y) dy &= \mu(t, x) + o(\Delta t), \\
\int_{|y-x| \leq \epsilon} (y-x)^2 p(t + \Delta t; x, y) dy &= \beta^2(t, x) + o(\Delta t).
\end{align*}
\]

The previous three types of processes are dealt with in Chapter 6.

1.4 Inference, prediction, and decision-making

Given the key definitions and results concerning stochastic processes, we can now informally set up the statistical and decision-making problems that we shall deal with in the following chapters.

Clearly, stochastic processes will be characterized by their initial value and the values of their parameters, which may be finite or infinite dimensional.

Example 1.3: In the case of the gambler’s ruin problem of Example 1.2 the process is parameterized by \(p\), the probability of heads. More generally, for a stationary finite Markov chain model with states 1, 2, \ldots, \(k\), the parameters will be the transition probabilities \((p_{11}, \ldots, p_{kk})\), where \(p_{ij}\) satisfy that \(p_{ii} \geq 0\) and \(\sum_j p_{ij} = 1\).

The AR(1) process of Example 1.1 is parameterized through the parameters \(\phi_0\) and \(\phi_1\).

A nonhomogeneous Poisson process with intensity function \(\lambda(t) = M t^{\beta-1}\), corresponding to a Power Law model, is a finite parametric model with parameters \((M, \beta)\).
A normal dynamic linear model (DLM) with univariate observations X_n, is described by

\[\theta_0 | D_0 \sim N(m_0, C_0) \]
\[\theta_n | \theta_{n-1} \sim N(G_n \theta_{n-1}, W_n) \]
\[X_n | \theta_n \sim N(F_n' \theta_n, V_n) \]

where, for each n, F_n is a known vector of dimension $m \times 1$, G_n is a known $m \times m$ matrix, V_n is a known variance, and W_n is a known $m \times m$ variance matrix. The parameters are now $\{\theta_0, \theta_1, \ldots\}$. \hfill \triangle

Inference problems for stochastic processes are stated as follows. Assume we have observations of the stochastic process, which will typically be observations X_{t_1}, \ldots, X_{t_n} at time points t_1, \ldots, t_n. Sometimes we could have continuous observations in terms of one, or more, trajectories within a given interval. Our aim in inference is then to summarize the available information about these parameters so as to provide point or set estimates or test hypotheses about them. It is important to emphasize that this available information comes from both the observed data and any available prior information.

More important in the context of stochastic processes is the task of forecasting the future behavior of the process, in both the transitory and limiting cases, that is, at a fixed future time and in the long term, respectively.

We shall also be interested in several decision-making problems in relation with stochastic processes. Typically, they will imply making a decision from a set of available ones, once we have taken the process observations. A reward will be obtained depending on the decision made and the future behavior of the process. We aim at obtaining the optimal solution in some sense.

This book explores how the problems of inference, forecasting, and decision-making with underlying stochastic processes may be dealt with using Bayesian techniques. In the following chapter, we review the most important features of the Bayesian approach, concentrating on the standard IID paradigm while in the later chapters, we concentrate on the analysis of some of the specific stochastic processes outlined earlier in Section 1.3.

1.5 Discussion

In this chapter, we have provided the key results and definitions for stochastic processes that will be needed in the rest of this book. Most of these results are of a probabilistic nature, as is usual in the majority of books in this field. Many texts provide very complete outlines of the probabilistic aspects of stochastic processes. For examples, see Karlin and Taylor (1975, 1981), Ross (1995), and Lawler (2006), to name a few.
There are also texts focusing on some of the specific processes that we have mentioned. For example, Norris (1998) or Ching and Ng (2010) are full-length books on Markov chains; Stroock (2005) deals with Markov processes; Poisson processes are studied in Kingman (1993); Rasmussen and Williams (2005) study Gaussian processes, whereas diffusions are studied by Rogers and Williams (2000a, 2000b).

As we have observed previously, there is less literature dedicated to inference for stochastic processes. A quick introduction may be seen in Lehoczky (1990) and both Bosq and Nguyen (1996), and Bhat and Miller (2002) provide applied approaches very much in the spirit of this book, although from a frequentist point of view. Prabhu and Basawa (1991), Prakasa Rao (1996), and Rao (2000) are much more theoretical.

Finally, we noted earlier that the index T of a stochastic process need not always be a set of times. Rue and Held (2005) illustrate the case of spatial processes, when T is a spatial set.

References

