Improving Natural Resource Management
Statistics in Practice

Series Advisors

Human and Biological Sciences
Stephen Senn
University of Glasgow, UK

Earth and Environmental Sciences
Marian Scott
University of Glasgow, UK

Industry, Commerce and Finance
Wolfgang Jank
University of Maryland, USA

Statistics in Practice is an important international series of texts which provide detailed coverage of statistical concepts, methods and worked case studies in specific fields of investigation and study.

With sound motivation and many worked practical examples, the books show in down-to-earth terms how to select and use an appropriate range of statistical techniques in a particular practical field within each title’s special topic area.

The books provide statistical support for professionals and research workers across a range of employment fields and research environments. Subject areas covered include medicine and pharmaceutics; industry, finance and commerce; public services; the earth and environmental sciences, and so on.

The books also provide support to students studying statistical courses applied to the above areas. The demand for graduates to be equipped for the work environment has led to such courses becoming increasingly prevalent at universities and colleges.

It is our aim to present judiciously chosen and well-written workbooks to meet everyday practical needs. Feedback of views from readers will be most valuable to monitor the success of this aim.

A complete list of titles in this series appears at the end of the volume.
Improving Natural Resource Management
Ecological and Political Models

Timothy C. Haas
Sheldon B. Lubar School of Business
University of Wisconsin-Milwaukee, USA
Dedicated to the next generation of ecosystem managers
CONTENTS

Preface xiii
List of Figures xv
List of Tables xvii
Nomenclature xix

Part I MANAGING A POLITICAL–ECOLOGICAL SYSTEM 1

1 Introduction 3
 1.1 The problem to be addressed 3
 1.2 The book’s running example: East African cheetah 5
 1.2.1 Background 7
 1.3 The EMT simulator 8
 1.3.1 Characteristics of an ideal simulator 8
 1.4 How to use the EMT to manage an ecosystem 9
 1.4.1 Ecosystem state goals 10
 1.4.2 No valuation of ecosystem services 10
 1.5 Chapter topics and order 11
 1.6 The book’s accompanying web resources 12

2 Simulator architecture, operation, and example output 15
 2.1 Introduction 15
 2.2 Theory for agent-based simulation 16
 2.2.1 Other agent-based social system simulators 17
 2.3 Action messages and IntIDs model operation 17
 2.3.1 Input–output nomenclature 17
 2.3.2 ID basics 18
 2.3.3 Example of a group ID simulating an ecosystem management decision 18
 2.3.4 IntIDs model operation 20
 2.4 A plot for displaying an actions history 21
 2.4.1 Plot description 23
3 Blue whale population management

3.1 Introduction .. 27
 3.1.1 Blue whale facts 27
 3.1.2 Some terminology 28
3.2 Current status of blue whales 28
 3.2.1 Blue whale prevalence over the past 500 years 28
 3.2.2 Ecosystems to which blue whales belong 28
 3.2.3 Current causes of blue whale mortality 28
3.3 Groups that affect blue whale populations 30
 3.3.1 Anti-whaling complex of the USA 30
 3.3.2 Pro-whaling complex of Iceland 31
 3.3.3 Pro-whaling complex of Japan 33
 3.3.4 Pro-whaling complex of Norway 34
 3.3.5 IWC ... 36
3.4 Blue whale ecosystem ID 36
 3.4.1 Models of whale population dynamics 37
 3.4.2 A continuous-time model 37
 3.4.3 ID .. 38
3.5 Interactions between IDs 39
3.6 Data sets for the blue whale EMT 39
 3.6.1 Group actions data 40
 3.6.2 Blue whale prevalence data 40
3.7 Main points of this chapter’s example 41
3.8 Exercises ... 41

4 Finding the most practical ecosystem management plan

4.1 Introduction 43
4.2 Some methods for developing ecosystem management plans .. 44
 4.2.1 Leadbeater’s possum 44
 4.2.2 Ecological/economic modeling 44
 4.2.3 Adaptive management 45
 4.2.4 MPEMP compared to these methods 46
4.3 Overview of the consistency analysis parameter estimator .. 46
 4.3.1 Agreement functions 48
4.4 The MPEMP: definition and construction 52
 4.4.1 Definition 52
 4.4.2 MPEMP construction procedure 52
4.5 The MPEMP for East African cheetah 54
 4.5.1 Setup and computation 54
Contents

4.6 Conclusions ... 57
4.7 Exercises ... 58

5 An open, web-based ecosystem management tool 59
5.1 Introduction ... 59
5.2 Components of a politically realistic EMT 59
5.2.1 User interface 59
5.2.2 Data collection 60
5.2.3 Actions history plots 60
5.2.4 EMT website architecture 60
5.3 \textit{id} language and software system 61
5.3.1 Language overview 61
5.3.2 \textit{id} language file example 63
5.3.3 Descriptions of \textit{influence_diagram} and node ... 63
5.3.4 Description of context 70
5.3.5 Description of report 71
5.3.6 Structure of \textit{id} language file 76
5.3.7 Structure of a surface file 76
5.3.8 Discussion ... 76
5.4 How the EMT website would be used 77

Part II Model Formulation, Estimation, and Reliability 79

6 Influence diagrams of political decision making 81
6.1 Introduction ... 81
6.2 Theories of political decision making 81
6.2.1 New institutionalism 81
6.2.2 Descriptive models of political decision making ... 83
6.2.3 Synthesizing rational actors and mental models 83
6.3 Architecture of a group decision-making ID 83
6.3.1 Overview ... 83
6.3.2 Ecosystem status perception nodes 86
6.3.3 Image nodes 88
6.3.4 Economic, militaristic, and institutional goal nodes ... 88
6.3.5 Audience effects 89
6.3.6 Resource nodes 90
6.3.7 Group memory 91
6.3.8 Action and target nodes 92
6.3.9 Overall goal attainment node 92
6.3.10 How an ID simulates a decision 92
6.4 Related modeling efforts 92
6.4.1 Welfare disbursement decision making 92
6.4.2 Landuse decision making 94
CONTENTS

6.5 Conclusions ... 95
6.6 Exercises ... 95

7 Group IDs for the East African cheetah EMT 97
7.1 Introduction ... 97
7.2 Country backgrounds 97
 7.2.1 Kenya overview 97
 7.2.2 Tanzania overview 98
 7.2.3 Uganda overview 99
7.3 Selection of groups to model 99
7.4 President IDs .. 100
7.5 EPA IDs .. 101
7.6 Rural residents IDs 103
7.7 Pastoralists IDs .. 104
7.8 Conservation NGOs ID 105
7.9 Conclusions .. 107
7.10 Exercises .. 108

8 Modeling wildlife population dynamics with an influence diagram 109
8.1 Introduction ... 109
8.2 Model of cheetah and prey population dynamics 110
 8.2.1 Inputs ... 110
 8.2.2 Habitat .. 110
 8.2.3 Direct effect 110
 8.2.4 Population dynamics 111
 8.2.5 Observable (output) random variables 117
 8.2.6 Aggregating outputs across a country’s districts 119
8.3 Solving SDEs within an ID 119
 8.3.1 Approximating the solution of a system of SDEs 119
8.4 Example of ecosystem ID output 120
8.5 Conclusions .. 121
8.6 Exercises .. 121

9 Political action taxonomies, collection protocols, and an actions history example 123
9.1 Introduction ... 123
9.2 Political action taxonomies 124
 9.2.1 BCOW action taxonomy 124
9.3 Adapting the BCOW taxonomy to ecosystem management actions 126
 9.3.1 EMAT listing 127
9.4 EMAT coding protocol 137
 9.4.1 Coding manual for group actions data 137
 9.4.2 EMAT coding examples 140
9.5 Actions history data for the East African cheetah EMT 140
 9.5.1 Data sources 140
 9.5.2 Discussion .. 141
9.6 Conclusions .. 141
10 Ecosystem data 143
10.1 Introduction 143
10.2 Wildlife monitoring 144
 10.2.1 Overview and issues 144
 10.2.2 Direct and indirect methods 146
10.3 Wildlife abundance estimation methods 146
 10.3.1 Direct method 1: transect surveys 146
 10.3.2 Direct method 2: nonsurvey sightings 147
 10.3.3 Direct method 3: camera traps 148
 10.3.4 Direct method 4: presence–absence data 149
 10.3.5 Direct method 5: hyper-spatial resolution satellite imagery 150
 10.3.6 Indirect method: spoor counts 151
 10.3.7 Summary 151
10.4 East African cheetah and prey abundance data 152
 10.4.1 Cheetah data 152
 10.4.2 Prey data 152
10.5 Data on cheetah habitat suitability nodes 156
 10.5.1 Map sources 156
10.6 Conclusions 160
10.7 Exercises 160

11 Statistical fitting of the political–ecological system simulator 161
11.1 Introduction 161
11.2 Consistency analysis applied to an actions history 162
 11.2.1 Matching IntIDs output to observed actions ... 162
 11.2.2 The Initialize step 163
 11.2.3 Initialize step algorithm 166
11.3 Consistency analysis of the East African cheetah EMT simulator ... 169
 11.3.1 Optimization problem configuration 169
 11.3.2 Consistency analysis results 170
11.4 Conclusions and another collection initialization algorithm 174
 11.4.1 Simulated annealing 175
11.5 Exercises 177

12 Assessing the simulator’s reliability and improving its construct validity 179
12.1 Introduction 179
12.2 Steps for assessing simulator reliability 180
12.3 Sensitivity analysis 181
 12.3.1 Rationale 181
 12.3.2 Deterministic sensitivity analysis algorithm 182
 12.3.3 Sensitivity analysis example 184
12.4 One-step-ahead prediction error rates 186
 12.4.1 One-step-ahead predicted actions error rate 186
 12.4.2 One-step-ahead root mean squared predicted error rate of ecosystem values 187
Preface

This is a how-to book for finding the most politically acceptable but effective plan for managing an at-risk ecosystem. In this book, finding such a plan is accomplished by first fitting mechanistic political and ecological models to a data set composed of both observations on political actions that impact an ecosystem and observations on variables that describe the ecological processes that are occurring within it. Then, the parameters of these fitted models are perturbed just enough so as to produce desired ecosystem state endpoints. This perturbed model gives the ecosystem management plan needed to reach the desired ecosystem state. To construct such a set of interacting models, topics from political science, ecology, probability, and statistics are developed. These group decision-making models capture group belief systems in their structure and parameter values. Hence, perturbing parameters to achieve needed shifts in behavior to cause desired ecosystem responses is equivalent to asking the question: ‘What is the smallest change in group belief systems that would cause behavioral changes towards the ecosystem that would, in turn, result in the ecosystem responding in a desired way?’ By focusing on belief system change, the tool is ideally suited to a non command and control ecosystem management system. Such non hierarchical management systems describe many at-risk ecosystems including those that straddle country boundaries. The book’s running example is of one such trans-boundary ecosystem management case: conservation of cheetahs across Kenya, Tanzania, and Uganda (East Africa).

To demonstrate the proposed management tool’s wide applicability, a sketch of how the tool could be used to manage the world’s remaining population of blue whales is given in Chapter 2. These two examples of managing at-risk species are appropriate for a book devoted to managing natural resources when biodiversity is viewed as a natural resource.

Two types of readers will get the most from this book. The first type of reader is a person who is in, or is training for, a job in environmental and/or wildlife management wherein one of the decreed management goals is the protection of some part of the ecosystem, for example, wildlife that is at threat from anthropogenic forces. This first type of reader might be a student in a natural resources management program – or a member of a forestry, fish and game, national park, environmental protection agency, or other conservation-focused agency. This reader might also be employed by a wildlife advocacy organization such as the African Wildlife Foundation or the World Wildlife Fund. The prerequisites needed by this first type
of reader are some familiarity with natural resources and elementary statistics. This type of reader should read Chapters 1–5 to acquire a working knowledge of how to use the book’s methods to manage an at-risk ecosystem. Section 4.3 in Chapter 4 does, however, contain material that is best understood by a reader possessing a knowledge of calculus-based probability and statistics along with the notion of a vector of random variables.

The second type of reader is one who is trained in both the social sciences and mathematical statistics and is interested in how social science theory, ecology, probability, inferential statistics, and computers can be synthesized to create a decision support system for the scientific management of an at-risk ecosystem. This second type of reader would typically be a student or academic in political science, political economy, ecology, natural resources management, or statistics. This type of reader would be best prepared by having some background in one or more of the areas of political science, ecology, or mathematical statistics. This reader should read all of the book’s chapters in order.

This book has the following pedagogical features:

1. The East African cheetah management application of the proposed ecosystem management tool is used as a running example through all of the chapters.
2. Exercises are at the end of most chapters – making the book suitable for a graduate lecture course on natural resource and/or wildlife management.
3. A companion website (www4.uwm.edu/people/haas/cheetah.emt) contains all computer code and data used in this book. Specifically, this website contains the software for, and an example of, the book’s main contribution: a web-based Ecosystem Management Tool (EMT). The following can be freely downloaded:

 • All software described in the book (namely, the id software package) in the form of Java source (.java) and Windows class (.class) files.
 • A user’s manual for id.
 • The political actions data set for the East African cheetah EMT along with the data collection protocol and a suite of web-based data acquisition aids.
 • The ecosystem data set for the East African cheetah EMT.
 • Output files from (a) the East African cheetah EMT’s ecosystem management plan search, (b) statistical estimation of the EMT simulator, and (c) the simulator’s sensitivity analysis.
 • A web-based tutorial that covers the basics of probability, statistics, and influence diagrams.
 • Answers to all of the book’s exercises.
List of Figures

1.1 Area of East Africa that is the subject of the politically realistic East African cheetah EMT. ... 6
2.1 Illustrative example of a decision-making ID. 19
2.2 Schematic of the IntIDs model of interacting political and ecological processes. ... 21
2.3 Sequential updating scheme of an IntIDs model consisting of \(m \) groups and an ecosystem. ... 22
2.4 East African cheetah EMT simulator output over the year 2004. 24
3.1 Blue whale sightings between the years 1965 and 2010. 29
3.2 Anti-whaling complex of the US group ID. 32
3.3 Pro-whaling complex of Japan group ID. .. 35
3.4 Ecosystem ID in the blue whale EMT simulator. 39
4.1 A political–ecological data set. ... 55
4.2 Simulator output over the time period of 2010 through 2060 using consistent parameter values. ... 56
4.3 Simulator predictions for 2010–2060 using MPEMP parameter values. 57
5.1 Directory tree of a typical EMT website. .. 61
5.2 id language file for modeling NO\(_3\) deposition through precipitation. 65
6.1 Architecture of the group decision-making ID. 87
7.1 Kenya president ID. ... 101
7.2 Kenya EPA ID. ... 104
7.3 Kenya rural resident ID. ... 105
7.4 Kenya pastoralist ID. ... 106
7.5 Conservation NGOs ID. .. 107
8.1 Ecosystem ID for the East African cheetah EMT. 111
8.2 Kenya’s regions of approximately homogeneous climate and vegetation regimes. ... 112
8.3 District boundaries for Tanzania. .. 113
8.4 District boundaries for Uganda. .. 114
8.5 East African cheetah ecosystem ID output. 120
10.1 Cheetah sightings reported by tourists in Tanzania over the time period April 1, 2003 to December 1, 2008. 153
10.2 Climate zones of Kenya, Tanzania, and Uganda. 157
LIST OF FIGURES

10.3 Protected areas maintained by the governments of Kenya, Tanzania, and Uganda. .. 158
10.4 Unprotected area landuse regions of Kenya, Tanzania, and Uganda. .. 159
11.1 Simulator actions output under β_C values over the time period 1997 to 2009. .. 175
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>CPT for the Goal: Feed Family node.</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>CPT for the Goal: Avoid Prosecution node.</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Relative importance weights for the Utility: Overall Goal Attainment node.</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>Reassembling the middle pentad in a three-pentad sequence.</td>
<td>23</td>
</tr>
<tr>
<td>3.1</td>
<td>Example actions data for the blue whale EMT.</td>
<td>40</td>
</tr>
<tr>
<td>5.1</td>
<td>Qualifiers and relations for the id language words influence_diagram and node</td>
<td>62</td>
</tr>
<tr>
<td>5.2</td>
<td>Qualifiers and relations for the id language word context.</td>
<td>63</td>
</tr>
<tr>
<td>5.3</td>
<td>Qualifiers and relations for the id language word report.</td>
<td>64</td>
</tr>
<tr>
<td>5.4</td>
<td>Qualifiers and relations for the id language word: report, continued.</td>
<td>66</td>
</tr>
<tr>
<td>6.1</td>
<td>Definition of symbols used to express nodes in the Situation subID of the group decision-making ID.</td>
<td>85</td>
</tr>
<tr>
<td>6.2</td>
<td>Definition of symbols used to express nodes in the Scenario subID of the group decision-making ID.</td>
<td>86</td>
</tr>
<tr>
<td>7.1</td>
<td>Input actions that affect economic and/or militaristic resource nodes in a president ID.</td>
<td>102</td>
</tr>
<tr>
<td>7.2</td>
<td>Actions and targets for a typical president ID.</td>
<td>103</td>
</tr>
<tr>
<td>8.1</td>
<td>Hypothesis values of parameters that define the population dynamics SDE system.</td>
<td>116</td>
</tr>
<tr>
<td>8.2</td>
<td>Hypothesis values of parameters that define areal fraction detection chance nodes of the ecosystem ID.</td>
<td>117</td>
</tr>
<tr>
<td>9.1</td>
<td>Some BCOW actions and their codes.</td>
<td>125</td>
</tr>
<tr>
<td>9.2</td>
<td>Fields for coding an observed action for entry into an EMAT database.</td>
<td>138</td>
</tr>
<tr>
<td>10.1</td>
<td>Summary of wildlife abundance estimators.</td>
<td>151</td>
</tr>
<tr>
<td>10.2</td>
<td>Transect survey sightings reported by Maddox (2003).</td>
<td>152</td>
</tr>
<tr>
<td>10.3</td>
<td>Nonsurvey sightings from tourists in Tanzania over the time period April 1, 2003 to December 1, 2008.</td>
<td>153</td>
</tr>
<tr>
<td>10.4</td>
<td>Areal detection fraction data on cheetahs in Kenya.</td>
<td>154</td>
</tr>
<tr>
<td>10.5</td>
<td>Areal detection fraction observations computed from herbivore abundance data reported by Mbugua (1986) and Peden (1984).</td>
<td>154</td>
</tr>
<tr>
<td>10.6</td>
<td>Line transect survey prey counts, estimated values of survey half-widths (μ), total transect length (L), and region areas (A) as reported by Maddox (2003).</td>
<td>155</td>
</tr>
</tbody>
</table>
LIST OF TABLES

10.7 Nighttime prey sightings reported by Wambua (2008) in the Kenyan districts of Machakos and Makueni. ... 155
11.1 Nodes that represent evaluation dimensions. 167
11.2 A truth table to relate Situation Change and Scenario Change node value combinations to values of a Scenario Goal node. .. 167
11.3 Situation subID to Scenario subID relationships that produce three unique out-combinations. ... 168
11.4 Initial collection match statistics. ... 170
11.5 Initialize step match statistics. ... 171
11.6 Consistency analysis agreement function values. 173
12.1 Observed and one-step-ahead predictions on the cheetah nonsurvey sightings node. ... 188
13.1 Fields where modern ecosystem managers need in-depth knowledge along with suggested texts. .. 206
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AER</td>
<td>Actual Error Rate</td>
</tr>
<tr>
<td>AERS</td>
<td>Actual Error Rate Sum</td>
</tr>
<tr>
<td>ASCII</td>
<td>American Standard Code for Information Interchange</td>
</tr>
<tr>
<td>BCOW</td>
<td>Behavioral Correlates of War</td>
</tr>
<tr>
<td>CITES</td>
<td>Convention on International Trade in Endangered Species</td>
</tr>
<tr>
<td>CPT</td>
<td>Conditional Probability Table</td>
</tr>
<tr>
<td>DAN</td>
<td>Document Archive Number</td>
</tr>
<tr>
<td>DBO</td>
<td>Desires, Beliefs, and Opportunities</td>
</tr>
<tr>
<td>DM-group</td>
<td>Decision-Making Group</td>
</tr>
<tr>
<td>DSA</td>
<td>Deterministic Sensitivity Analysis</td>
</tr>
<tr>
<td>ECA</td>
<td>Empirically Calibrated Agent-based model</td>
</tr>
<tr>
<td>EER</td>
<td>Expected Error Rate</td>
</tr>
<tr>
<td>EMAT</td>
<td>Ecosystem Management Actions Taxonomy</td>
</tr>
<tr>
<td>EMT</td>
<td>Ecosystem Management Tool</td>
</tr>
<tr>
<td>EOS</td>
<td>Earth Observation System</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>GBIF</td>
<td>Global Biodiversity Information Facility</td>
</tr>
<tr>
<td>GCM</td>
<td>Global Climate Model</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>GW</td>
<td>Global Workspace</td>
</tr>
<tr>
<td>ID</td>
<td>Influence Diagram</td>
</tr>
<tr>
<td>IntIDs</td>
<td>Interacting Influence Diagrams</td>
</tr>
<tr>
<td>IQR</td>
<td>Interquartile Range</td>
</tr>
<tr>
<td>IUCN</td>
<td>International Union for Conservation of Nature</td>
</tr>
<tr>
<td>IWC</td>
<td>International Whaling Commission</td>
</tr>
<tr>
<td>MC</td>
<td>Monte Carlo</td>
</tr>
<tr>
<td>MCMC</td>
<td>Markov Chain Monte Carlo</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>MDAS</td>
<td>Multiple Dimensions Ahead Search</td>
</tr>
<tr>
<td>MIT</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>MPEMP</td>
<td>Most Practical Ecosystem Management Plan</td>
</tr>
<tr>
<td>NGO</td>
<td>Nongovernmental Organization</td>
</tr>
<tr>
<td>OGA</td>
<td>Overall Goal Attainment</td>
</tr>
<tr>
<td>OSAPAER</td>
<td>One-Step-Ahead Predicted Actions Error Rate</td>
</tr>
<tr>
<td>OSARMSPE</td>
<td>One-Step-Ahead Root Mean Squared Prediction Error</td>
</tr>
<tr>
<td>PBSS</td>
<td>Parallel Best Step Search</td>
</tr>
<tr>
<td>PDPF</td>
<td>Probability Density Probability Function</td>
</tr>
<tr>
<td>POMP</td>
<td>Privately Optimal Management Problem</td>
</tr>
<tr>
<td>PRA</td>
<td>Probabilistic Reduction Approach</td>
</tr>
<tr>
<td>PSOSV</td>
<td>Parallel Search Over Subsets of Variables</td>
</tr>
<tr>
<td>RMSPE</td>
<td>Root Mean Squared Prediction Error</td>
</tr>
<tr>
<td>SA</td>
<td>Simulated Annealing</td>
</tr>
<tr>
<td>SDE</td>
<td>stochastic differential equation</td>
</tr>
<tr>
<td>SEM</td>
<td>Structural Equation Model</td>
</tr>
<tr>
<td>SML</td>
<td>Simulated Maximum Likelihood</td>
</tr>
<tr>
<td>SOMP</td>
<td>Socially Optimal Management Problem</td>
</tr>
<tr>
<td>subID</td>
<td>Sub-influence Diagram</td>
</tr>
<tr>
<td>TEEB</td>
<td>The Economics of Ecosystems and Biodiversity (Project)</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>USDA</td>
<td>US Department of Agriculture</td>
</tr>
</tbody>
</table>
Part I

MANAGING A POLITICAL-ECOLOGICAL SYSTEM
1

Introduction

1.1 The problem to be addressed

In this book, biodiversity is considered a nonrenewable natural resource (USAID 2005, p. 6, USGS 1997, Wikipedia 2010, UFZ 2008). Many species are headed for extinction in habitats that straddle two or more developing countries. With our current understanding of biological processes (circa 2010), the loss of a species is irreversible. Because of this irreversibility, it can be argued that this problem should be of high priority to all countries. This book gives one way to address this problem.

Two characteristics of this problem make solutions difficult to find. First, within developed countries, constituencies prefer their policy makers to spend most of their conservation budget on internal conservation programs. Because of this internal focus, developing countries, with inadequate budgets for conservation programs, can expect to receive (currently) only modest supplemental conservation resources from developed countries. Second, because the habitat of many at-risk species straddles the political boundaries of several developing countries, conventional wildlife conservation strategies (such as government-run command and control programs) may not be implemented with sufficient completeness to achieve a species’ long-term survival.

These considerations have motivated the development here of an approach to ecosystem management that does not assume central control but instead, after building scientific models of both the political processes at work in the habitat-hosting countries and the dynamics of the ecosystem in which the managed species is a participant, searches for politically feasible management plans. In other words, this book proposes a two-step procedure: first understand how the political–ecological system works at a mechanistic level and only then begin a search for management
plans that require the least change in human belief systems in order to effect behavioral changes that result in a sequence of actions that leads to the survival of the species being managed. The term political–ecological system is used rather than socio-ecological system to emphasize the active, institution- and ecosystem-changing tendencies of human groups across an ecosystem.

Such an approach to ecosystem management is different from so-called ‘adaptive management’ because it emphasizes a positivist and reductionist understanding of the entire political–ecological system before attempts are made to manipulate it. Adaptive management, on the other hand, can be viewed as a sequence of ecosystem management experiments that are conducted with the hope that a successful strategy will be found before the managed species becomes globally extinct. For example, Moir and Block (2001) argue that adaptive management’s eight-step cycle of Propose Actions, Form Hypotheses, Determine Data Needs, Design Monitoring Program, Install Monitoring Program, Monitor, Analyze Collected Data, Implement a Management Action results in a monitoring protocol over a time scale that is not derived from an understanding of the ecosystem’s dynamics but, rather, is short in duration so that feedback (adaptation) can be used to possibly adjust the management plan. These authors argue that this forced short time interval in the feedback loop invites ‘False Effects’ to drive management action revisions. Further, many applications of adaptive management depend on statistical hypothesis testing which, in turn, usually relies on linear statistical models of ecosystem processes rather than mechanistic, (possibly) nonlinear models of ecosystem dynamics that may be dominated by cycles with long periods (Moir and Block 2001).

But in this author’s view, wildlife management is in a state of crisis. Environmental degradation and loss of biodiversity are occurring at unprecedented rates while efforts to stem this often-irreversible damage are on the whole inadequate. Funding for these problems, however, is low relative to other fields such as defense or human health. In developing countries, where most species reside, such funding is glaringly inadequate. The ecosystem management problem on the other hand is complex in that effective management strategies need to take into account how political realities impede or promote the implementation of options that could protect an ecosystem. If a freely available system, based on the best available science, existed and was capable of finding politically feasible but effective (this book’s definition of ‘practical’) ecosystem management plans, managers and observers of at-risk ecosystems could use this tool to develop specific, defensible proposals for stemming this destruction. Because of their practicality, these proposals would have the best chance of actually being implemented.

There is a dearth of books that combine the social sciences and conservation and few individuals have training in both areas. The need to integrate the social sciences and conservation disciplines, however, has been recognized by the conservation community, see Fox et al. (2006) and Liu et al. (2007) for extended discussions of this deficiency.

Decisions to actually implement an ecosystem management policy typically have a political component. The majority of current ecosystem management research, however, is concerned with ecological and/or physical processes.
Management plans that are suggested by examining the output of these models and/or data analyses may not be supported by the affected human population unless the option addresses the goals of each involved social group (hereafter, \textit{group}).

As a step towards meeting this need, this book describes an Ecosystem Management Tool (EMT) that links political processes and political goals to ecosystem processes and ecosystem health goals. Because of this effort to incorporate the effects of politics on ecosystem management decision making, the EMT described in this book is referred to as a \textit{politically realistic EMT} – or simply the \textit{EMT}. This tool can help managers identify ecosystem management plans that have a realistic chance of being accepted by all involved groups and that are the most beneficial to the ecosystem. Haas (2001) gives one way of defining the main components, workings, and delivery of an EMT (referred to there as an Ecosystem Management System). The central component of this EMT is a quantitative, stochastic and causal model of the ecosystem being managed and the social groups involved with this management. This model is called the \textit{political–ecological system simulator} (hereafter, \textit{simulator}). In this simulator, group decision-making models and the ecosystem model are developed in a probabilistic form known as an influence diagram (ID) (see Pearl 1988, p. 125). The other components of the EMT are links to data streams, freely available software for performing all ecosystem management computations and displays, and, lastly, a web-based archive and delivery system for the first three of these components.

The two main uses of the EMT are first to find practical ecosystem management plans, and second to allow any literate person with access to the Web the ability to assess for themselves the status of a species being managed with the EMT. This second use is intended to make more accessible to developed countries the status and challenges of managing critical ecosystems in distant, developing countries.

A core message of this book is that ecosystem analyses and optimal management plan studies cannot be one-off and performed at only one time point. Rather, such applied ecosystem research needs to be on going and constantly updated. Present journal publishing practices encourage one-off studies but ecosystems are on going and dynamic. The tools contained in this book’s EMT are in part meant to make such on going analysis easier to perform repeatedly and more cost effective in both hardware and labor.

\section{1.2 The book’s running example: East African cheetah}

To fix ideas and to show feasibility, a politically realistic EMT for the management of the cheetah (\textit{Acinonyx jubatus}) in a portion of East Africa is developed and applied as a running example throughout the book. The cheetah is listed as \textit{vulnerable} in the Red List of Threatened Species maintained by the International Union for Conservation of Nature (IUCN) (Cat Specialist Group 2007). The portion of East Africa studied in this example is the land enclosed by the political boundaries
of Kenya, Tanzania, and Uganda (Figure 1.1). This ecosystem involves at least the cheetahs themselves, their prey, and the habitat in which these animals live. Humans are also a part of this ecosystem but here are modeled separately from the nonhuman aspects of the ecosystem. Specifically, along with an ID of the ecosystem, this EMT’s simulator represents the following groups: (a) within each of the countries