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Preface

xix

The stimulus for this book was the publication of 
the Biology of Freshwater Crayfi sh, edited by 
David M. Holdich (2002, Blackwell Science Ltd). 
Several other books on marine lobsters have also 
been published over the last 25 years, however, the 
Holdich book is different. Although it deals with 
topics such as growth, nutrition, reproduction and 
behaviour, the full material for the commercial 
species is presented under each separate genera, 
rather than under fisheries, countries or topics such 
as management, aquaculture or conservation. We 
have followed the same approach except for a few 
minor instances where it was appropriate to make 
comparisons for clarity.

The amount of material which has been pub-
lished on marine lobsters is vast by comparison to 
the freshwater species. For this reason I have 
encouraged the authors to concentrate on publica-
tions which have appeared over approximately the 
last 10 years, particularly if the material has been 
reviewed.

Not all genera of marine lobsters are covered in 
this volume. In selecting the material, I have chosen 
those genera with the most commercially impor-
tant populations. Readers will no doubt find gaps 
in the topics examined. Space limitations precluded 
the inclusion of additional material.

Readers will find some overlap between chapters 
in this book. This is not a bad thing and essentially 
impossible to prevent. For example, Chapter 3 
(Behaviour), Chapter 1 (Growth) and Chapter 5 
(Pathogens, parasites and commensals), all include 
aspects discussed in a number of other chapters, 
but their comments are different, usually dealing 
with aspects of impact on fisheries, fishing, popula-
tions, or their detection or measurement.

Many people contributed to the development and 
production of this book. We cannot acknowledge 
them individually because there isn’t space, but all 
the authors wish to thank the many colleagues who 
assisted them with their contributions.

Bruce F. Phillips
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Chapter 1
Growth and Development: Understanding and 
Modelling Growth Variability in Lobsters
Richard A. Wahle1 and Michael J. Fogarty2

1Bigelow Laboratory for Ocean Sciences, USA
2National Oceanic and Atmospheric Administration, National Marine Fisheries Service, USA

1.1 Introduction

Lobsters are among the largest-bodied and longest-
lived modern marine arthropods (Wolff, 1978; 
Sheehy, 2001). They are ecologically important as 
consumers in a variety of temperate and tropical 
marine ecosystems (Robles et al., 1990; Mayfield 
et al., 2000). In many parts of the world, lobsters 
also support commercially valuable fisheries, in 
some regions the most economically important 
one (FAO, 2004). Because demographic processes 
such as survival, reproduction and movements are 
body-size dependent, understanding growth pro-
cesses is central to any understanding of population 
dynamics, ecological function and sustainable 
management.

This chapter builds upon several previous edited 
volumes with specific chapters on growth and 
development in the Crustacea (Wenner, 1985a, b; 
Lee & Wickins, 1992), and lobsters in particular 
(Cobb & Phillips, 1980a, b; Phillips et al., 1994a; 
Factor, 1995; Phillips & Kittaka, 2000). These 
reviews cover aspects of growth, such as the physi-
ology and endocrine control of moulting (Aiken, 
1980; Hartnoll, 1982, 1985; Waddy et al., 1995; 
Chang et al., 2001; Hartnoll, 2001), intrinsic and 
external factors affecting growth (Waddy et al.,
1995; Booth & Kittaka, 2000; Hartnoll, 2001), and 
practical approaches to culturing lobsters (Lee & 
Wickins, 1992; Aiken & Waddy, 1995; Booth & 
Kittaka, 2000; Kittaka, 2000). Although these 
publications provide a wealth of information on 
growth, spanning a range of lobster taxa, we did 

not find a synthesis or critical evaluation of the 
modelling approaches employed in the study of 
lobster population dynamics. An especially chal-
lenging aspect of the study of crustacean popula-
tions is the determination of age. The absence of 
conspicuous age markers in crustaceans makes it 
all the more necessary to have a clear understand-
ing of the age-to-body size relationship and the 
factors that contribute to its variability.

Lobster growth can be highly variable, reflecting 
the effect of quantum changes associated with 
moulting and in the probability distributions of 
moult increments (Fig. 1.1). Here we focus on 
recent developments in our understanding of the 
factors influencing growth and how to incorporate 
variability in population dynamics modelling to 
improve our ability to assess and forecast popula-
tion trends. We primarily draw upon peer-reviewed 
literature and technical reports on the relatively 
well-studied genera of clawed (Homarus, Nephrops)
and spiny (Panulirus, Palinurus, Jasus) lobsters. 
This chapter aims to provide an update of literature 
since 1980; however we frequently cite earlier lit-
erature where it is particularly relevant. First, we 
give a brief comparison of the different taxon-
specific patterns of development, growth and the 
onset of maturity, as well as an overview of the 
stages of the moult cycle. The second section 
reviews the tools employed to measure growth or 
determine age in lobsters. Third, we survey the 
range of environmental influences on growth and 
sexual maturity, and in the final section we describe 
different modelling approaches that have been used 
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to capture the influence of variability in size with 
age in population dynamics. This variability holds 
important implications for the development of 
demographic models for lobster populations.

1.2 Development, growth patterns 
and the moult

1.2.1 Larvae and postlarvae

All lobsters have a complex life cycle with a long-
lived adult phase, relatively late onset of maturity, 
fertilisation by stored sperm when the eggs are 
extruded by the female; external brooding of 
embryos for several months; larvae hatch and are 
planktonic for weeks to months and metamorphose 
to a postlarva that eventually settles, moults to a 
juvenile and takes up a benthic existence. In lob-
sters, the nauplius larva develops entirely within 
the embryonic membrane (Gore, 1985; Helluy & 
Beltz, 1991) and hatches as the developmental 
equivalent of the first zoea of brachyuran crabs. In 
clawed lobsters (nephropids) this is referred to as 
the stage I larva, and in spiny and slipper lobsters 
(palinurids and scyllarids) as the stage I phyllo-
soma. The larval forms of clawed and spiny lob-
sters are widely divergent in morphology, behaviour 
and duration. The size of larvae and postlarvae 

split quite clearly along taxonomic lines. The larvae 
and settling postlarvae of clawed lobsters tend to 
be substantially smaller than those of spiny and 
slipper lobsters. It is important to be aware of the 
distinction between stages and instars – the former 
relates to morphological changes, the latter to the 
number of moults (Kittaka, 1994). In clawed lob-
sters, there are just three morphologically distinct 
larval instars, stages I–III. In spiny lobsters, there 
are many more larval instars (Table 1.1) and the 
morphological stages of the phyllosoma can less 
dependably be linked to a particular instar. As a 
result, Jasus edwardsii, for example, will complete 
all phyllosoma stages in 13 to 17 instars (Kittaka, 
1994). The larvae of both spiny and clawed lobsters 
are planktivorous and preferentially feed on 
zooplankton (McConaugha, 1985; Kittaka, 1994; 
Ennis, 1995; Kittaka, 2000). After the final larval 
instar, lobsters undergo metamorphosis to a post-
larva which is developmentally equivalent to the 
megalopa in brachyuran crabs. In spiny lobsters 
this stage is called the puerulus. The postlarval 
stage more nearly resembles the adult and is the 
stage that starts its benthic existence. Unlike the 
postlarva of clawed lobsters, which continues to 
feed, the spiny lobster puerulus does not feed 
(Kittaka, 1994, 2000).

The daily energetic investment in growth during 
the larval stages is greater than during the first 
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Fig. 1.1 Individual growth trajec-
tories of American lobsters, 
Homarus americanus, reared in a 
culture facility illustrating variabil-
ity in growth patterns (B. Estrella, 
personal communication).
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Table 1.1 Comparison of selected lobster taxa by size and timing of larval, juvenile, and adult life history 
characteristics. CL = carapace length (mm). Numbers of larval instars for spiny lobsters were based on labora-
tory rearing studies and can vary; numbers in parentheses are presumed on the basis of observations of J.
verreauxi (Kittaka, 2000).

   Size at Size at Age at Postlarval
Number  Larval postlarval

a
female female to adult

of larval duration settlement maturity maturity growth
instars (weeks) stage (CL) (CL)

b
(years) factor

c
Sources

Nephrops 3 4–8 3.3–4.0 21–34 4.0–4.5 11.1 Morizur (1983), 
norvegicus      Pollock (1991),Tuck 

        et al. (1997, 2000),
       Ulmestrand & 
       Eggert (2001)
Homarus 3 4–8  4.5 55–120 5–8 19.4 Aiken (1980), Pollock

americanus      (1991), Estrella & 
      MacKiernan (1989),
      Comeau & Savoie 
      (2001)
Homarus   3 4–8  4.5 92–96 7–9

d
20.9 Sheehy et al. (1999), 

gammarus      Tully et al. (2000), 
       Sheehy & 
       Bannister (2002)
Jasus (17) 44 10 56–74 7+ 6.5 Annala (1991), 

lalandii        Pollock (1991, 
       1997), Kittaka 
       (1994, 2000)
Sagmariasus 17 44 10.5 155–184 6–7 16.1 Annala (1991), 

verreauxi        Pollock (1991),
      Montgomery (1991) 
       in Brown & Phillips 
       (1994), Kittaka
       (1994, 2000)
Jasus (17) 43 11.4–12.3 <65–114 8  7.8 McKoy (1985), 

edwardsii      Annala & Bycroft 
      (1988), MacDiarmid 
      (1989a, b),Annala 
       (1991), Pollock
       (1991), Brown & 
      Phillips (1994), 
       Kittaka (1994, 
       2000), Hobday & 
       Ryan (1997), 
      Phillips & Kittaka 
      (2000)
Palinurus  7–9 9–19 10 82–95 5–6  8.9 Kittaka (2000), 

elephas        Ceccaldi & 
       Latrouite (2000)
Panulirus   9 39–47 7–8 90–100 6–7 11.3 Brown & Phillips 

cygnus        (1994), Booth &
       Kittaka (2000), 
      Phillips & Kittaka 
      (2000)
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benthic stages. For example, in the American 
lobster, growth rates were found to be almost twice 
as fast for planktonic postlarvae (0.46 mg per day) 
as they were for initial benthic stages (0.26 mg per 
day) (Juinio & Cobb, 1994; James-Pirri & Cobb, 
1997). While clawed, spiny and slipper lobsters 
differ little with respect to the average growth 
factor between moults during larval development 
(Nephropidae: 127%, Palinuridae: 133%, Scyllari-
dae: 132%), the greater number of larval instars in 
spiny and slipper lobsters results in a dramatically 
greater overall length increase from first to last 
larval stage (Nephropidae: 185%, Palinuridae: 
1258%, Scyllaridae: 926%; Gore, 1985). In con-
trast to the dramatic proportional size increase 
during larval development, intermoult growth 
factors during the juvenile and adult stages rarely 
amount to more than 15% in length, regardless of 
taxon (Table 1.1). There has been little speculation 
and virtually no research on the functional signifi -
cance of the dramatic growth spiny and slipper 
lobsters undergo during their larval stages. For 
more detail on specific patterns of larval develop-

ment, growth and allometry, readers are referred to 
Wenner (1985a).

1.2.2 Juveniles and adults

Hartnoll (1982, 2001) refers to a range of growth 
patterns exhibited by the Crustacea, spanning taxa 
with indeterminate growth and reproduction at 
every instar after maturity to those with a terminal, 
or maturation moult that reproduce only once. Lob-
sters fall at one end of the continuum by uniformly 
exhibiting indeterminate growth and being capable 
of reproducing at every instar after the onset of 
maturity. The intermoult period increases with size 
from a few days in the larval and early juvenile 
stages to a few years in large, older adults. On the 
other hand, the percent increment of growth 
per moult typically diminishes with body size 
(e.g. Aiken, 1980). Although the intermoult growth 
factor during the benthic stages is small by com-
parison to the planktonic larvae, overall growth 
during benthic life is far greater, the difference 
between the settling postlarva and sexually mature 

Table 1.1 continued

   Size at Size at Age at Postlarval
Number  Larval postlarval

a
female female to adult

of larval duration settlement maturity maturity growth
instars (weeks) stage (CL) (CL)

b
(years) factor

c
Sources

Panulirus  11 26–34 6 75–91 2–3 13.8 Lewis (1951), Hunt & 
argus        Lyons (1986), 

       Baisre & Cruz
       (1994), Baisre 
      (2000)
Panulirus  10 ? 10 32 2–3 3.6 Pollock (1991), Sharp

guttatus        et al. (1997), 
      Briones-Fourzán & 
      McWilliam (1997),
      Robertson & Butler 
      (2003)
Panulirus  27 49 6–8 38–42 1.5–2.0 5.7 Kittaka (1994), 

japonicus      Nakamura (1994), 
      Nonaka et al.
      (2000)

a. Postlarva = stage IV for Nephrops and Homarus; puerulus for Jasus, Panulirus, and Palinurus.
b. Size at 50% egg bearing.
c. Ratio of postlarval and adult carapace length using midpoints of size ranges where given.
d. Based on age pigment analysis.
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adult often being many times in carapace length 
and several orders of magnitude in body mass 
(Table 1.1).

The early benthic phase of lobsters is typically 
cryptic, sedentary and solitary, rarely leaving 
shelter, the nursery habitat being a complex substra-
tum – rocks, coral rubble, macroalgae or sea grass 
– providing protection to the young lobster (e.g. 
Pollock, 1997). Most lobsters are omnivorous, 
consuming molluscs, other crustaceans and algae, 
although different levels of trophic specialisation 
are documented (J. lalandii – Mayfield et al., 2000). 
Suspension feeding has been documented in juve-
nile N. norvegicus and H. gammarus (Loo et al.,
1993). Juveniles undergo an ontogenetic shift in 
behaviour in which they either become wider 
ranging in their movements or change habitats alto-
gether. While clawed lobsters remain largely soli-
tary in their shelter use, spiny lobsters become more 
social and gregarious, and are often found sharing 
shelters or migrating in groups (Chapter 8).

The growth rate and onset of maturity varies 
widely among spiny and clawed lobsters, and in 
general the taxa from warmer environments grow 
faster and mature sooner than those in cooler 
regions (Table 1.1). Males of all taxa mature physi-
ologically at a smaller size than females, however, 
it is likely that males need to be as large as or larger 
than females to successfully mate. There is more 
than one mature instar and all female instars after 
maturity are capable of being ovigerous. The age 
and size at maturity varies from species to species 
(Table 1.1). Maturation, in turn, has a retarding 
effect on growth and the effect is usually greater 
on females than males because of the greater ener-
getic allocation to reproduction. Taxonomically or 
ecologically similar groups can vary widely in size 
at maturity (Table 1.1). Growth rates and the onset 
of maturity within taxa are strongly under the 
influence of the environment, and the nature of the 
proximate, environmentally induced variability is 
discussed in Section 1.4. The ultimate cause of this 
variability among taxa has been difficult to iden-
tify, although Hartnoll (1985) proposed the idea
that early survivorship will be an important deter-
minant of lifetime egg production, and therefore a 
significant force in the evolution of the size and age 
of maturity in Crustacea.

Maturation also brings on sex-specific allometric 
growth patterns. The onset of maturity is typically 
earlier and at a smaller size in male than in female 
lobsters and the instars over which it occurs depends 
on the environment. When females begin to mature, 
their intermoult period begins to increase relative 
to males in the same instar. Sexual differences in 
allometry can be a useful indicator of the size at 
onset of sexual maturity (Aiken & Waddy, 1989; 
Megumi & Satoru, 1997; Robertson & Butler, 
2003). For example, in H. americanus claws 
become relatively larger in males while the 
abdomen becomes relatively larger in females 
(Aiken & Waddy, 1989; Conan et al., 2001; 
MacCormack & DeMont, 2003). In spiny lobsters, 
the first and second pereiopods become relatively 
longer, but the surface area of pleopods becomes 
relatively smaller in males than in females 
(P. argus – Aiken, 1980; Hartnoll, 1985; Mykles 
& Skinner, 1985; Skinner et al., 1985; Waddy et
al., 1995; Panulirus japonicus – Megumi & Satoru, 
1997; Chang et al., 2001; Robertson & Butler, 
2003).

1.2.3 Moult stages and endocrine control

The mechanism and physiology of moulting has 
been reviewed in some detail by Aiken (1980), 
Hartnoll (1985), Skinner et al. (1985), and Waddy
et al. (1995). The key events of the moult cycle are 
summarised here. The moulting process undergoes 
a sequence of stages in which the old skeleton sepa-
rates from the underlying epidermal cells and a 
new cuticle is formed, which, after the old skeleton 
is shed, thickens and hardens to form the new one. 
As the old exoskeleton is decalcified from under-
neath, calcium carbonate is temporarily conserved 
in crystalline form as a pair of gastroliths on the 
lateral walls of the foregut. Given the opportunity, 
as another means of conserving calcium, lobsters 
will consume their cast-off exoskeleton after their 
mouthparts have hardened.

The externally-conspicuous characteristics of 
the five stages (A–E) of the moult cycle are out-
lined here, modified somewhat from an earlier 
scheme developed by Drach (1939). The stages 
have been particularly well illustrated for H. amer-
icanus by Waddy et al. (1995). Starting immedi-
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ately after ecdysis, stage A occupies the brief time 
– usually 24–48 hours – it takes for the soft and 
wrinkled newly-exposed integument to stretch out 
to its now larger form and deposit the first of several 
inner layers of the new exoskeleton, the endocuti-
cle. The endocuticle lies below the exocuticle and 
epicuticle already laid down just prior to the moult. 
Stage B is completed when the final layers of the 
endocuticle have been deposited. During stage C, 
the exoskeleton achieves maximum rigidity by 
virtue of chemical changes that harden the already 
deposited endocuticle; and at this point intermoult 
has been reached, the protracted period lasting 
until the onset of physiological changes that prepare 
the integument for another moult. Stage D, pre-
moult or proecdysis, involves the separation of the 
endocuticle of the old skeleton from the underlying 
epidermis, followed by the deposition of what will 
be the outer layers of the new exoskeleton, first the 
epicuticle and then the exocuticle. Through demin-
eralisation, a conspicuous softening in parts of the 
old skeleton and the ecdysial sutures occurs during 
this stage, that facilitates ecdysis. During ecdysis, 
stage E, water is ingested and absorbed with the 
effect of increasing hydrostatic pressure within the 
body which causes the ecdysial sutures, such as the 
one along the dorsal midline of the carapace, to 
break. In 10–20 minutes of immobility, the animal 
rolls on its side, the exoskeletal membrane between 
the thorax and abdomen ruptures, and the animal 
withdraws, thereby completing the cycle.

Most growth and regeneration occurs during 
intermoult and early premoult periods. Muscle 
tissue, for example, grows in size by elongation; the 
number and arrangement of muscle fibres (cells) 
remain constant while the number of thick and thin 
myofibrils (myosin and actin) increases (Skinner 
et al., 1985). The control of form and morphogen-
esis was reviewed by Mittenthal (1985). During 
proecdysis, just prior to the moult, the muscles 
atrophy temporarily by an enzyme-mediated deg-
radation of actin myofibrils (Mykles & Skinner, 
1985) presumably aiding the animal in withdraw-
ing from the old exoskeleton, although it is likely 
to be accompanied by partial and temporary loss 
of mobility.

While the hormonal regulation of moulting is 
often presented as a simple system of two antago-

nistic hormones, as so aptly put by Waddy et al. 
(1995), crustacean moulting physiology ‘is a pro-
foundly complex process about which much is 
known, but little is understood’. Hormonal bio-
chemistry and physiology has been intensively 
studied in H. americanus (Waddy et al., 1995; 
Chang et al., 2001). Three families of hormones 
come into play: (1) moulting hormones (ecdyster-
oids), (2) moult inhibiting hormone (MIH) and 
related crustacean hyperglycemic hormone (CHH) 
neuropeptides, and (3) terpenoid methyl farnesoate 
(MF). Each of these hormone groups serves a 
diversity of functions, in some cases changing at 
different stages of development. Their role in 
lobster growth is briefly summarised below. Greater 
detail may be found in useful reviews by Waddy
et al. (1995) and Chang et al. (2001).

Moulting hormones (ecdysteroids) induce the 
physiological changes that lead to the moult. 
This family of hormones is produced by the 
Y organ, a pair of hypodermal glands to either 
side of the thorax. Haemolymph titres of ecdyster-
oids peak at premoult sub-stage D1 and D2

when pre-exuvial cuticle is being formed. At sub-
stage D3, levels drop dramatically when the old 
exoskeleton is being resorbed and remain low 
after ecdysis from stage A to D0 when premoult 
begins.

The moult inhibiting hormone (MIH) is consid-
ered the main regulator of moulting. It is structur-
ally similar to crustacean hypoglycemic hormone, 
which may also play a role in moult regulation. The 
X organ–sinus gland complex, a specialised neural 
tissue located in the eyestalks, produces this family 
of neuropeptides. Heightened levels of MIH typi-
cally present during intermoult, suppress the syn-
thesis of moulting hormones in the Y organs. As 
the location of the X organ suggests, environmental 
factors, particularly light levels, photoperiod and 
temperature can influence the synthesis of MIH, 
explaining the responsiveness of the moult cycle to 
changes in the environment. The peptide sequence 
of MIH is very similar to CHH, however one deriv-
ative, CHHa, has both a hypoglycemic and moult 
inhibiting effect, while the other, CHHb, has only 
a hypoglycemic effect (Chang et al., 2001). Levels 
of CHH appear to increase in the haemolymph 
in the latter part of the moult, apparently play -
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ing a role in increasing water retention during 
exuviation.

Methyl farnesoate (MF), a sesquiterpene, is a 
precursor of juvenile hormone and can also play a 
role in the regulation of the moult cycle by retard-
ing the moult in larvae (Borst et al., 1987). MF is 
secreted by the mandibular organ. In adult lobsters 
it is also thought to play a role in reproduction; 
larger mandibular organs and higher haemolymph 
concentrations of MF in adult females suggest it 
has a sex-specific function and may be important 
in sexual differentiation (Chang et al., 2001).

1.3 Measuring growth

Growth in crustaceans has been measured by both 
direct and indirect methods. Direct measures of 
growth per moult or per unit time have been pro-
vided by rearing studies of captive animals or 
tag–recapture studies in the wild. Indirect mea-
sures of growth and size at age are provided by the 
analysis of size frequency distributions of samples 
of wild lobster populations. The quantification of 
so-called ‘age pigments,’ metabolic by-products 
that accumulate with age, have been used with 
varying degrees of success in lobsters and crayfish 
as a proxy for age. Additional methods such as 
RNA : DNA ratios can provide further information 
on the nutritional status of the animal and therefore 
its growth potential.

A large number of laboratory and hatchery-
based studies of lobster growth have accumulated 
over the decades. A comprehensive review of 
rearing techniques for larval and postlarval stages 
of lobsters is provided by Lee and Wickins (1992). 
Virtually all growth studies of larvae and a large 
number of post-settlement stage studies have been 
conducted in the laboratory. One of the great 
advantages of conducting laboratory growth studies 
is that it has provided a valuable setting in which 
to conduct factorial experiments to evaluate heri-
table and environmental effects (Van Olst et al.,
1976; Jong, 1993; Rahman et al., 1997; Crear et al.,
2000, 2003) as well as for detailed descriptive 
studies of the moult cycle (Aiken, 1980; Dupre, 
2000). Experiments have been conducted to evalu-
ate the effect of temperature, photoperiod, space, 

substrate, feeding regimes, and stocking density 
among other factors. Many of these studies report 
valuable information on growth increment, inter-
moult duration and factors affecting growth, 
and have demonstrated the potential for widely 
divergent growth patterns of individual lobsters 
(Fig. 1.1).

Exact estimates of intermoult duration (or alter-
natively, the number of moults per unit time) are 
particularly difficult to obtain in the field. Labora-
tory observations have proven to be extremely 
valuable in this regard although caution is always 
necessary in extrapolating their results to wild 
populations. An illustration of the variability in the 
number of moults for different age classes of 
American lobster in a culture facility is provided 
in Fig. 1.2. The variation in the number of moults 
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at younger age classes sets the stage for wide varia-
tion in length at age throughout the lifespan.

It is important to state at the outset that while 
carapace length is used almost universally as the 
measure of lobster body size, it cannot be assumed 
to vary isometrically with body mass. It is therefore 
important to determine the carapace-length-to-
body-mass relationship by sex for each species, 
and preferably by region within a species. 
Because body mass varies approximately as the 
cube of body length, some workers have used 
the cube root of body mass, the so called ‘nominal 
length,’ as a linear proxy for body mass, providing 
a way to study allometric deviations of actual 
linear dimensions of the body from an isometric 
slope of 1.0. For example, in a study of regional 
differences in allometry of the American lobster, 
MacCormack and DeMont (2003) found that rela-
tive to nominal length, carapace length became 
proportionally larger in males and smaller in 
females by scaling factors of 1.05 and 0.86, respec-
tively. To our knowledge, a similar analysis of cara-
pace length against nominal length has not been 
done for other lobster taxa. In practice, carapace 
length remains the conventional index of body size, 
and it is understood that the carapace-length-to-
body-mass relationship is one of the first morpho-
metrics to assess in any study of growth, so that 
size-dependent processes, whether physiological or 
ecological, may easily be expressed as a function 
of body mass.

1.3.1 First moult in captivity

A common approach to obtaining measures of 
growth increment that are likely to be free of labo-
ratory artefacts and representative of growth in the 
wild is to hold newly-captured premoult lobsters in 
captivity only long enough for them to moult and 
allow their new skeletons to harden (e.g. J. lalandii
– Hazell et al., 1998; N. norvegicus – Castro et al.,
2003). This provides a valuable measure of moult 
increment as a function of size before the moult 
(see the Hiatt model, Section 1.5.1). The assump-
tion is that the effects of laboratory artefacts on the 
growth increment are minimal because the factors 
affecting growth up to that moult would already 
have acted.

1.3.2 Tagging

Tag–recapture methods have been widely employed 
to assess growth of lobsters in the wild. This is 
probably the most widely used method of obtaining 
growth data that is in most cases unbiased by arte-
facts associated with handling or captivity (but see 
Brown & Caputi, 1985; Phillips et al., 1992). In the 
1960s, the development of internal spherion tags 
that are anchored in the musculature and not lost 
during the moult was a methodological break-
through for the study of growth in wild populations 
of crustaceans (e.g. Wilder, 1963). Since then a 
number of innovative tags have been invented for 
different applications ranging from internally 
anchored, but externally visible t-bar and streamer 
tags (e.g. Campbell, 1983a; Comeau & Savoie, 
2001) to entirely internal microwire tags that are 
detected magnetically (Walker, 1986; Bannister 
et al., 1994; Incze et al., 1997; Cowan, 1999) and 
internal coloured latex tags (Robertson & Butler, 
2003).

Internal tagging is not without risks, however. 
Of most concern is the mortality associated with 
tagging, either from the trauma of the tagging 
process itself or secondary infection. Also of 
concern is the loss of tags either from natural wear 
and tear, contact with other lobsters especially in 
traps, or during the moulting process itself. This is 
why it is highly recommended that any tagging 
study includes an assessment of tag-loss rates and 
lethal and sublethal effects (e.g. Brown & Caputi, 
1985). Double tagging is one way to assess tag 
losses in the field.

A particularly innovative tagging approach 
developed by Shelton and Belchier (1995) has been 
to embed a small section of cuticle and underlying 
dermal tissue within a large muscle. The embedded 
tissue continues to go through the normal moult 
cycle, but since the cast-off cuticles are trapped 
within the musculature, they accumulate in layers, 
thereby giving a record of the number of moults 
occurring over the time elapsed. However, this 
living tag method has yet to be used widely.

Aside from trauma-related effects of tagging or 
handling, it is important to be aware of more subtle 
biases that may occur in mark–recapture sampling. 
In developing size-transition probabilities from 


