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Risto Näätänen, Kimmo Alho, and Erich Schröger
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Preface

The precise origins of experimental psychol-
ogy can be debated, but by any count the field
is more than a hundred years old. The past
10 years have been marked by tremendous
progress: a honing of experimental strategies
and clearer theoretical conceptualizations in
many areas combined with a more vigorous
cross-fertilization across neighboring fields.

Despite the undeniable progress, vigorous
debate continues on many of the most funda-
mental questions. From the nature of learning
to the psychophysical functions relating sen-
sory stimuli to sensory experiences and from
the underpinnings of emotion to the nature of
attention, a good many of the questions posed
in the late 19th century remain alive and in
some cases highly controversial.

Although some have viewed this fact as
discouraging, it should scarcely be surpris-
ing. As in the biological sciences generally,
early hopes that a few simple laws and prin-
ciples would explain everything that needed
to be explained have gradually given way to a
recognition of the vast complexity of human
(and nonhuman) organisms in general, and of
their mental faculties in particular. There is no
contradiction between recognizing the magni-
tude of the progress that has been made and
appreciating the gap between current under-
standing and the fuller understanding that we
hope to achieve in the future.

Stanley Smith (“Smitty”) Stevens’ Hand-
book of Experimental Psychology, of which
this is the third edition, has made notable
contributions to the progress of the field. At
the same time, from one edition to the next,
the Handbook has changed in ways that re-
flect growing recognition of the complexity
of its subject matter. The first edition was
published in 1951 under the editorship of the
great psychophysical pioneer himself. This
single volume (described by some review-
ers as the last successful single-volume hand-
book of psychology) contained a number of
very influential contributions in the theory
of learning, as well as important contribu-
tions to psychophysics for which Stevens was
justly famous. The volume had a remarkably
wide influence in the heyday of a period in
which many researchers believed that princi-
ples of learning theory would provide the ba-
sic theoretical underpinning for psychology
as a whole.

Published in 1988, the second edition
was edited by a team comprised of Richard
Atkinson, Richard J. Herrnstein, Gardner
Lindzey, and Duncan Luce. The editors of the
second edition adopted a narrower definition
of the field, paring down material that over-
lapped with physics or physiology and reduc-
ing the role of applied psychology. The result
was a set of two volumes, each of which was

ix
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substantially smaller than the single volume
in the first edition.

Discussions of a third edition of the
Stevens’ Handbook began in 1998. My fel-
low editors and I agreed that experimental
psychology had broadened and deepened to
such a point that two volumes could no longer
reasonably encompass the major accomplish-
ments that have occurred in the field since
1988. We also felt that a greatly enlarged treat-
ment of methodology would make the Hand-
book particularly valuable to those seeking
to undertake research in new areas, whether
graduate students in training or researchers
venturing into subfields that are new to them.

The past 10 years have seen a marked in-
crease in efforts to link psychological phe-
nomena to neurophysiological foundations.
Rather than eschewing this approach, we have
embraced it without whittling down the core
content of traditional experimental psychol-
ogy, which has been the primary focus of the
Handbook since its inception.

The most notable change from the previ-
ous edition to this one is the addition of a
new volume on methodology. This volume
provides rigorous but comprehensible tuto-

rials on the key methodological concepts of
experimental psychology, and it should serve
as a useful adjunct to graduate education in
psychology.

I am most grateful to Wiley for its strong
support of the project from the beginning.
The development of the new Handbook was
initially guided by Kelly Franklin, now Vice
President and Director of Business Develop-
ment at Wiley. Jennifer Simon, Associate Pub-
lisher, took over the project for Wiley in 1999.
Jennifer combined a great measure of good
sense, good humor, and the firmness essen-
tial for bringing the project to a timely com-
pletion. Although the project took somewhat
longer than we initially envisioned, progress
has been much faster than it was in the sec-
ond edition, making for an up-to-date pre-
sentation of fast-moving fields. Both Isabel
Pratt at Wiley and Noriko Coburn at Univer-
sity of California at San Diego made essential
contributions to the smooth operation of the
project. Finally, I am very grateful to the
four distinguished volume editors, Randy
Gallistel, Doug Medin, John Wixted, and
Steve Yantis, for their enormous contributions
to this project.

Hal Pashler
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CHAPTER 1

Representational Measurement Theory

R. DUNCAN LUCE AND PATRICK SUPPES

CONCEPT OF REPRESENTATIONAL
MEASUREMENT

Representational measurement is, on the one
hand, an attempt to understand the nature of
empirical observations that can be usefully
recoded, in some reasonably unique fashion,
in terms of familiar mathematical structures.
The most common of these representing struc-
tures are the ordinary real numbers ordered in
the usual way and with the operations of ad-
dition, +, and/or multiplication, ·. Intuitively,
such representations seems a possibility when
dealing with variables for which people have
a clear sense of “greater than.” When data can
be summarized numerically, our knowledge
of how to calculate and to relate numbers can
usefully come into play. However, as we will
see, caution must be exerted not to go beyond
the information actually coded numerically. In
addition, more complex mathematical struc-
tures such as geometries are often used, for
example, in multidimensional scaling.

On the other hand, representational mea-
surement goes well beyond the mere construc-
tion of numerical representations to a careful
examination of how such representations re-
late to one another in substantive scientific

The authors thank János Aczél, Ehtibar Dzhafarov, Jean-
Claude Falmagne, and A.A.J. Marley for helpful com-
ments and criticisms of an earlier draft.

theories, such as in physics, psychophysics,
and utility theory. These may be thought of
as applications of measurement concepts for
representing various kinds of empirical rela-
tions among variables.

In the 75 or so years beginning in 1870,
some psychologists (often physicists or phy-
sicians turned psychologists) attempted to
import measurement ideas from physics, but
gradually it became clear that doing this suc-
cessfully was a good deal trickier than was
initially thought. Indeed, by the 1940s a num-
ber of physicists and philosophers of physics
concluded that psychologists really did not
and could not have an adequate basis for mea-
surement. They concluded, correctly, that the
classical measurement models were for the
most part unsuited to psychological phenom-
ena. But they also concluded, incorrectly, that
no scientifically sound psychological mea-
surement is possible at all. In part, the theory
of representational measurement was the re-
sponse of some psychologists and other social
scientists who were fairly well trained in the
necessary physics and mathematics to under-
stand how to modify in substantial ways the
classical models of physical measurement to
be better suited to psychological issues. The
purpose of this chapter is to outline the high
points of the 50-year effort from 1950 to the
present to develop a deeper understanding of
such measurement.

1
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Empirical Structures

Performing any experiment, in particular a
psychological one, is a complex activity that
we never analyze or report completely. The
part that we analyze systematically and re-
port on is sometimes called a model of the
data or, in terms that are useful in the the-
ory of measurement, an empirical structure.
Such an empirical structure of an experiment
is a drastic reduction of the entire experi-
mental activity. In the simplest, purely psy-
chological cases, we represent the empirical
model as a set of stimuli, a set of responses,
and some relations observed to hold between
the stimuli and responses. (Such an empirical
restriction to stimuli and responses does not
mean that the theoretical considerations are
so restricted; unobservable concepts may well
play a role in theory.) In many psychological
measurement experiments such an empirical
structure consists of a set of stimuli that vary
along a single dimension, for example, a set
of sounds varying only in intensity. We might
then record the pairwise judgments of loud-
ness by a binary relation on the set of stimuli,
where the first member of a pair represents
the subject’s judgment of which of two sounds
was louder.

The use of such empirical structures in
psychology is widespread because they come
close to the way data are organized for subse-
quent statistical analysis or for testing a theory
or hypothesis.

An important cluster of objections to the
concept of empirical structures or models of
data exists. One is that the formal analysis
of empirical structures includes only a small
portion of the many problems of experimen-
tal design. Among these are issues such as
the randomization of responses between left
and right hands and symmetry conditions in
the lighting of visual stimuli. For example, in
most experiments that study aspects of vision,
having considerably more intense light on the

left side of the subject than on the right would
be considered a mistake. Such considerations
do not ordinarily enter into any formal de-
scription of the experiment. This is just the
beginning. There are understood conditions
that are assumed to hold but are not enumer-
ated: Sudden loud noises did not interfere with
the concentration of the subjects, and neither
the experimenter talked to the subject nor the
subject to the experimenter during the collec-
tion of the data—although exceptions to this
rule can certainly be found, especially in lin-
guistically oriented experiments.

The concept of empirical structures is just
meant to isolate the part of the experimental
activity and the form of the data relevant to
the hypothesis or theory being tested or to the
measurements being made.

Isomorphic Structures

The prehistory of mathematics, before
Babylonian, Chinese, or Egyptian civiliza-
tions began, left no written record but none-
theless had as a major development the con-
cept of number. In particular, counting of
small collections of objects was present. Oral
terms for some sort of counting seem to exist
in every language. The next big step was the
introduction, no doubt independently in sev-
eral places, of a written notation for numbers.
It was a feat of great abstraction to develop
the general theory of the constructive opera-
tions of counting, adding, subtracting, multi-
plying, and dividing numbers. The first prob-
lem for a theory of measurement was to show
how this arithmetic of numbers could be con-
structed and applied to a variety of empirical
structures.

To investigate this problem, as we do in
the next section, we need the general no-
tion of isomorphism between two structures.
The intuitive idea is straightforward: Two
structures are isomorphic when they exhibit
the same structure from the standpoint of
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their basic concepts. The point of the formal
definition of isomorphism is to make this no-
tion of same structure precise.

As an elementary example, consider a
binary relational structure consisting of a
nonempty set A and a binary relation R de-
fined on this set. We will be considering pairs
of such structures in which both may be empir-
ical structures, both may be numerical struc-
tures, or one may be empirical and the other
numerical. The definition of isomorphism is
unaffected by which combination is being
considered.

The way we make the concept of having
the same structure precise is to require the ex-
istence of a function mapping the one struc-
ture onto the other that preserves the binary
relation. Formally, a binary relation structure
(A, R) is isomorphic to a binary relation struc-
ture (A′, R′) if and only if there is a function
f such that

(i) the domain of f is A and the codomain
of f is A′, i.e., A′ is the image of A
under f,

(ii) f is a one-one function,1 and

(iii) for a and b in A, aRb iff2 f (a)R′ f (b).

To illustrate this definition of isomorph-
ism, consider the question: Are any two finite
binary relation structures with the same num-
ber of elements isomorphic? Intuitively, it
seems clear that the answer should be neg-
ative, because in one of the structures all the
objects could stand in the relation R to each
other and not so in the other. This is indeed
the case and shows at once, as intended, that
isomorphism depends not just on a one-one
function from one set to another, but also
on the structure as represented in the binary
relation.

1In recent years, conditions (i) and (ii) together have
come to be called bijective.
2This is a standard abbreviation for “if and only if.”

Ordered Relational Structures

Weak Order

An idea basic to measurement is that the ob-
jects being measured exhibit a qualitative at-
tribute for which it makes sense to ask the
question: Which of two objects exhibits more
of the attribute, or do they exhibit it to the same
degree? For example, the attribute of having
greater mass is reflected by placing the two
objects on the pans of an equal-arm pan bal-
ance and observing which deflects downward.
The attribute of loudness is reflected by which
of two sounds a subject deems as louder or
equally loud. Thus, the focus of measurement
is not just on the numerical representation of
any relational structures, but of ordered ones,
that is, ones for which one of the relations is a
weak order, denoted �∼, which has two defin-
ing properties for all elements a, b, c in the
domain A:

(i) Transitive: if a �∼ b and b �∼ c, then a �∼ c.

(ii) Connected: either a �∼ b or b �∼ a or both.

The intuitive idea is that �∼ captures the order-
ing of the attribute that we are attempting to
measure.

Two distinct relations can be defined in
terms of �∼:

a � b iff a �∼ b and not (b �∼ a);
a ∼ b iff both a �∼ b and b �∼ a.

It is an easy exercise to show that � is transi-
tive and irreflexive (i.e., a � a cannot hold),
and that ∼ is an equivalence relation (i.e.,
transitive, symmetric in the sense that a ∼ b
iff b ∼ a, and reflexive in the sense that
a ∼ a). The latter means that ∼ partitions A
into equivalence classes.

Homomorphism

For most measurement situations one really
is working with weak orders—after all, two
entities having the same weight are not in gen-
eral identical. But often it is mathematically
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easier to work with isomorphisms to the or-
dered real numbers, in which case one must
deal with the following concept of simple or-
ders. We do this by inducing the preference
order over the equivalence classes defined by
∼. When ∼ is =, each element is an equiva-
lence class, and the weak order � is called a
simple order. The mapping from the weakly
ordered structure via the isomorphisms of
the (mutually disjoint) equivalences classes
to the ordered real numbers is called a ho-
momorphism. Unlike an isomorphism, which
is one to one, an homomorphism is many to
one. In some cases, such as additive conjoint
measurement, discussed later, it is somewhat
difficult, although possible, to formulate the
theory using the equivalence classes.

Two Fundamental Problems
of Representational Measurement

Existence

The most fundamental problem for a theory of
representational measurement is to construct
the following representation: Given an empir-
ical structure satisfying certain properties, to
which numerical structures, if any, is it iso-
morphic? These numerical structures, thus,
represent the empirical one. It is the existence
of such isomorphisms that constitutes the
representational claim that measurement of
a fundamental kind has taken place.

Quantification or measurement, in the
sense just characterized, is important in some
way in all empirical sciences. The primary
significance of this fact is that given the iso-
morphism of structures, we may pass from the
particular empirical structure to the numerical
one and then use all our familiar computa-
tional methods, as applied to the isomorphic
arithmetical structure, to infer facts about the
isomorphic empirical structure. Such passage
from simple qualitative observations to quan-
titative ones—the isomorphism of structures

passing from the empirical to the numerical—
is necessary for precise prediction or control
of phenomena. Of course, such a representa-
tion is useful only to the extent of the precision
of the observations on which it is based. A va-
riety of numerical representations for various
empirical psychological phenomena is given
in the sections that follow.

Uniqueness

The second fundamental problem of repre-
sentational measurement is to discover the
uniqueness of the representations. Solving the
representation problem for a theory of mea-
surement is not enough. There is usually a
formal difference between the kind of assign-
ment of numbers arising from different pro-
cedures of measurement, as may be seen in
three intuitive examples:

1. The population of California is greater than
that of New York.

2. Mary is 10 years older than John.

3. The temperature in New York City this
afternoon will be 92 ◦F.

Here we may easily distinguish three kinds
of measurements. The first is an example of
counting, which is an absolute scale. The
number of members of a given collection that
is counted is determined uniquely in the ideal
case, although that can be difficult in prac-
tice (witness the 2000 presidential election
in Florida). In contrast, the second example,
the measurement of difference in age, is a
ratio scale. Empirical procedures for mea-
suring age do not determine the unit of age—
chosen in the example to be the year rather
than, for example, the month or the week.
Although the choice of the unit of a per-
son’s age is arbitrary—that is, not empiri-
cally prescribed—that of the zero, birth, is
not. Thus, the ratio of the ages of any two peo-
ple is independent of its choice, and the age
of people is an example of a ratio scale. The
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measurement of distance is another example
of such a ratio scale. The third example, that
of temperature, is an example of an interval
scale. The empirical procedure of measuring
temperature by use of a standard thermometer
or other device determines neither a unit nor
an origin.

We may thus also describe the second fun-
damental problem for representational mea-
surement as that of determining the scale type
of the measurements resulting from a given
procedure.

A BRIEF HISTORY
OF MEASUREMENT

Pre-19th-Century Measurement

Already by the fifth century B.C., if not before,
Greek geometers were investigating problems
central to the nature of measurement. The
Greek achievements in mathematics are all of
relevance to measurement. First, the theory of
number, meaning for them the theory of the
positive integers, was closely connected with
counting; second, the geometric theory of pro-
portion was central to magnitudes that we now
represent by rational numbers (= ratios of in-
tegers); and, finally, the theory of incommen-
surable geometric magnitudes for those mag-
nitudes that could not be represented by ratios.
The famous proof of the irrationality of the
square root of two seems arithmetic in spirit
to us, but almost certainly the Greek discov-
ery of incommensurability was geometric in
character, namely, that the length of the di-
agonal of a square, or the hypotenuse of an
isosceles right-angled triangle, was not com-
mensurable with the sides. The Greeks well
understood that the various kinds of results
just described applied in general to magni-
tudes and not in any sense only to numbers
or even only to the length of line segments.
The spirit of this may be seen in the first def-
inition of Book 10 of Euclid, the one dealing

with incommensurables: “Those magnitudes
are said to be commensurable which are mea-
sured by the same measure, and those incom-
mensurable which cannot have any common
measure” (trans. 1956, p. 10).

It does not take much investigation to de-
termine that theories and practices relevant to
measurement occur throughout the centuries
in many different contexts. It is impossible
to give details here, but we mention a few
salient examples. The first is the discussion
of the measurement of pleasure and pain in
Plato’s dialogue Protagoras. The second is
the set of partial qualitative axioms, character-
izing in our terms empirical structures, given
by Archimedes for measuring on unequal bal-
ances (Suppes, 1980). Here the two qualitative
concepts are the distance from the focal point
of the balance and the weights of the objects
placed in the two pans of the balance. This
is perhaps the first partial qualitative axiom-
atization of conjoint measurement, which is
discussed in more detail later. The third ex-
ample is the large medieval literature giving a
variety of qualitative axioms for the measure-
ment of weight (Moody and Claggett, 1952).
(Psychologists concerned about the difficulty
of clarifying the measurement of fundamen-
tal psychological quantities should be encour-
aged by reading O’Brien’s 1981 detailed ex-
position of the confused theories of weight in
the ancient world.) The fourth example is the
detailed discussion of intensive quantities by
Nicole Oresme in the 14th century A.D. The
fifth is Galileo’s successful geometrization in
the 17th century of the motion of heavenly
bodies, done in the context of stating essen-
tially qualitative axioms for what, in the ear-
lier tradition, would be called the quantity of
motion. The final example is also perhaps the
last great, magnificent, original treatise of nat-
ural science written wholly in the geometrical
tradition—Newton’s Principia of 1687. Even
in his famous three laws of motion, concepts
were formulated in a qualitative, geometrical
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way, characteristic of the later formulation of
qualitative axioms of measurement.

19th- and Early 20th-Century
Physical Measurement

The most important early 19th-century work
on measurement was the abstract theory of
extensive quantities published in 1844 by
H. Grassmann, Die Wissenschaft der Exten-
siven Grösse oder die Ausdehnungslehre. This
abstract and forbidding treatise, not properly
appreciated by mathematicians at the time
of its appearance, contained at this early
date the important generalization of the con-
cept of geometric extensive quantities to
n-dimensional vector spaces and, thus, to the
addition, for example, of n-dimensional vec-
tors. Grassmann also developed for the first
time a theory of barycentric coordinates in n
dimensions. It is now recognized that this was
the first general and abstract theory of exten-
sive quantities to be treated in a comprehen-
sive manner.

Extensive Measurement

Despite the precedent of the massive work
of Grassmann, it is fair to say that the mod-
ern theory of one-dimensional, extensive mea-
surement originated much later in the cen-
tury with the fundamental work of Helmholtz
(1887) and Hölder (1901). The two funda-
mental concepts of these first modern at-
tempts, and later ones as well, is a binary
operation ◦ of combination and an ordering
relation �∼, each of which has different inter-
pretations in different empirical structures.
For example, mass ordering �∼ is determined
by an equal-arm pan balance (in a vacuum)
with a◦b denoting objects a and b both placed
on one pan. Lengths of rods are ordered by
placing them side-by-side, adjusting one end
to agree, and determining which rod extends
beyond the other at the opposite end, and ◦
means abutting two rods along a straight line.

The ways in which the basic axioms can be
stated to describe the intertwining of these two
concepts has a long history of later develop-
ment. In every case, however, the fundamental
isomorphism condition is the following: For
a, b in the empirical domain,

f (a) ≥ f (b) ⇔ a �∼ b, (1)

f (a ◦ b) = f (a) + f (b), (2)

where f is the mapping function from the
empirical structure to the numerical structure
of the additive, positive real numbers, that is,
for all entities a, f (a) > 0.

Certain necessary empirical (testable)
properties must be satisfied for such a rep-
resentation to hold. Among them are for all
entities a, b, and c,

Commutativity: a ◦ b ∼ b ◦ a.

Associativity: (a ◦ b) ◦ c ∼ a ◦ (b ◦ c).
Monotonicity: a �∼ b ⇔ a ◦ c �∼ b ◦ c.
Positivity: a ◦ a � a.

Let a be any element. Define a standard
sequence based on a to be a sequence a(n),

where n is an integer, such that a(1) = a,
and for i > 1, a(i) ∼ a(i – 1) ◦ a. An example
of such a standard sequence is the centimeter
marks on a meter ruler. The idea is that the
elements of a standard sequence are equally
spaced. The following (not directly testable)
condition ensures that the stimuli are com-
mensurable:

Archimedean: For any entities a, b,

there is an integer n such that a(n) � b.

These, together with the following struc-
tural condition that ensures very small ele-
ments,

Solvability: if a � b,

then for some c, a � b ◦ c,

were shown to imply the existence of the rep-
resentation given by Equations (1) and (2).
By formulating the Archimedean axiom dif-
ferently, Roberts and Luce (1968) showed that
the solvability axiom could be eliminated.
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Such empirical structures are called exten-
sive. The uniqueness of their representations
is discussed shortly.

Probability and Partial Operations

It is well known that probability P is an addi-
tive measure in the sense that it maps events
into [0, 1] such that, for events A and B that
are disjoint,

P(A ∪ B) = P(A) + P(B).

Thus, probability is close to extensive mea-
surement—but not quite, because the opera-
tion is limited to only disjoint events. How-
ever, the theory of extensive measurement can
be generalized to partial operations having the
property that if a and b are such that a ◦ b is
defined and if a �∼ c and b �∼ d, then c ◦ d is
also defined. With some adaptation, this can
be applied to probability; the details can be
found in Chapter 3 of Krantz, Luce, Suppes,
and Tversky (1971). (This reference is subse-
quently cited as FM I for Volume I of Foun-
dations of Measurement. The other volumes
are Suppes, Krantz, Luce, & Tversky, 1990,
cited as FM II, and Luce, Krantz, Suppes, &
Tversky, 1990, cited as FM III.)

Finite Partial Extensive Structures

Continuing with the theme of partial opera-
tion, we describe a recent treatment of a finite
extensive structure that also has ratio scale
representation and that is fully in the spirit of
the earlier work involving continuous models.
Suppose X is a finite set of physical objects,
any two of which balance on an equal-arm
balance; that is, if a1, . . . , an are the objects,
for any i and j, i 	= j, then ai ∼ a j . Thus, they
weigh the same. Moreover, if A and B are two
sets of these objects, then on the balance we
have A ∼ B if and only if A and B have the
same number of objects. We also have a con-
catenation operation, union of disjoint sets. If
A ∩ B = ∅, then A ∪ B ∼ C if and only if
the objects in C balance the objects in A

together with the objects in B. The qualitative
strict ordering A � B has an obvious opera-
tional meaning, which is that the objects in
A, taken together, weigh more on the balance
than the objects in B, taken together.

This simple setup is adequate to establish,
by fundamental measurement, a scheme for
numerically weighing other objects not in X.
First, our homomorphism f on X is really
simple. Since for all ai and a j and X, ai∼ a j ,

we have

f (ai ) = f (a j ),

with the restriction that f (ai ) > 0. We extend
f to A, a subset of X, by setting f (A) = |A| =
the cardinality of (number of objects in) A.
The extensive structure is thus transparent:
For A and B subsets of X, if A ∩ B = ∅ then

f (A ∪ B) = |A ∪ B| = |A| + |B|
= f (A) + f (B).

If we multiply f by any α > 0 the equation
still holds, as does the ordering. Moreover,
in simple finite cases of extensive measure-
ment such as the present, it is easy to prove di-
rectly that no transformations other than ratio
transformations are possible. Let f ∗ denote
another representation. For some object a, set
α = f (a)/ f ∗(a). Observe that if |A| = n, then
by a finite induction

f (A)

f ∗(A)
= n f (a)

n f ∗(a)
= α,

so the representation forms a ratio scale.

Finite Probability

The “objects” a1, . . . , an are now interpreted
as possible outcomes of a probabilistic mea-
surement experiment, so the ai s are the possi-
ble atomic events whose qualitative probabil-
ity is to be judged.

The ordering A �∼ B is interpreted as mean-
ing that event A is at least as probable as event
B; A ∼ B as A and B are equally probable;
A � B as A is strictly more probable than B.
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Then we would like to interpret f (A) as the
numerical probability of event A, but if f is
unique up to only a ratio scale, this will not
work since f (A) could be 50.1, not exactly a
probability.

By adding another concept, that of the
probabilistic independence of two events, we
can strengthen the uniqueness result to that
of an absolute scale. This is written A ⊥ B.
Given a probability measure, the definition of
independence is familiar: A ⊥ B if and only if
P(A ∩ B) = P(A)P(B). Independence can-
not be defined in terms of the qualitative con-
cepts introduced for arbitrary finite qualitative
probability structures, but can be defined by
extending the structure to elementary random
variables (Suppes and Alechina, 1994). How-
ever, a definition can be given for the spe-
cial case in which all atoms are equiproba-
ble; it again uses the cardinality of the sets:
A ⊥ B if and only if |X | · |A ∩ B| = |A| · |B|.
It immediately follows from this definition
that X ⊥ X , whence in the interpretation of
⊥ we must have

P(X) = P(X ∩ X) = P(X)P(X),

but this equation is satisfied only if P(X)= 0,
which is impossible since P(∅) = 0 and
X � ∅, or P(X) = 1, which means that the
scale type is an absolute—not a ratio—scale,
as it should be for probability.

Units and Dimensions

An important aspect of 19th century physics
was the development, starting with Fourier’s
work (1822/1955), of an explicit theory of
units and dimensions. This is so common-
place now in physics that it is hard to be-
lieve that it only really began at such a late
date. In Fourier’s famous work, devoted to
the theory of heat, he announced that in or-
der to measure physical quantities and express
them numerically, five different kinds of units
of measurement were needed, namely, those
of length, time, mass, temperature, and heat.

Of even greater importance is the specific
table he gave, for perhaps the first time in the
history of physics, of the dimensions of vari-
ous physical quantities. A modern version of
such a table appears at the end of FM I.

The importance of this tradition of units
and dimensions in the 19th century is to be
seen in Maxwell’s famous treatise on electric-
ity and magnetism (1873). As a preliminary,
he began with 26 numbered paragraphs on
the measurement of quantities because of the
importance he attached to problems of mea-
surement in electricity and magnetism, a topic
that was virtually unknown before the 19th
century. Maxwell emphasized the fundamen-
tal character of the three fundamental units
of length, time, and mass. He then went on
to derive units, and by this he meant quanti-
ties whose dimensions may be expressed in
terms of fundamental units (e.g., kinetic en-
ergy, whose dimension in the usual notation is
M L2T –2). Dimensional analysis, first put in
systematic form by Fourier, is very useful in
analyzing the consistency of the use of quan-
tities in equations and can also be used for
wider purposes, which are discussed in some
detail in FM I.

Derived Measurement

In the Fourier and Maxwell analyses, the ques-
tion of how a derived quantity is actually to be
measured does not enter into the discussion.
What is important is its dimensions in terms of
fundamental units. Early in the 20th century
the physicist Norman Campbell (1920/1957)
used the distinction between fundamental and
derived measurement in a sense more intrinsic
to the theory of measurement itself. The dis-
tinction is the following: Fundamental mea-
surement starts with qualitative statements
(axioms) about empirical structures, such as
those given earlier for an extensive structure,
and then proves the existence of a representa-
tional theorem in terms of numbers, whence
the phrase “representational measurement.”
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In contrast, a derived quantity is measured in
terms of other fundamental measurements. A
classical example is density, measured as the
ratio of separate measurements of mass and
volume. It is to be emphasized, of course, that
calling density a derived measure with respect
to mass and volume does not make a funda-
mental scientific claim. For example, it does
not allege that fundamental measurement of
density is impossible. Nevertheless, in under-
standing the foundations of measurement, it
is always important to distinguish whether
fundamental or derived measurement, in
Campbell’s sense, is being analyzed or used.

Axiomatic Geometry

From the standpoint of representational mea-
surement theory, another development of
great importance in the 19th century was the
perfection of the axiomatic method in geom-
etry, which grew out of the intense scrutiny
of the foundations of geometry at the be-
ginning of that century. The driving force
behind this effort was undoubtedly the dis-
covery and development of non-Euclidean ge-
ometries at the beginning of the century by
Bolyai, Lobachevski, and Gauss. An impor-
tant and intuitive example, later in the cen-
tury, was Pasch’s (1882) discovery of the ax-
iom named in his honor. He found a gap in
Euclid that required a new axiom, namely, the
assertion that if a line intersects one side of a
triangle, it must intersect also a second side.
More generally, it was the high level of rigor
and abstraction of Pasch’s 1882 book that was
the most important step leading to the mod-
ern formal axiomatic conception of geometry,
which has been so much a model for repre-
sentational measurement theory in the 20th
century. The most influential work in this line
of development was Hilbert’s Grundlagen der
Geometrie, first edition in 1899, much of its
prominence resulting from Hilbert’s position
as one of the outstanding mathematicians of
this period.

It should be added that even in one-
dimensional geometry numerical representa-
tions arise even though there is no order
relation. Indeed, for dimensions ≥2, no stan-
dard geometry has a weak order. Moreover, in
geometry the continuum is not important for
the fundamental Galilean and Lorentz groups.
An underlying denumerable field of algebraic
numbers is quite adequate.

Invariance

Another important development at the end
of the 19th century was the creation of the
explicit theory of invariance for spatial prop-
erties. The intuitive idea is that the spatial
properties in analytical representations are in-
variant under the transformations that carry
one model of the axioms into another model
of the axioms. Thus, for example, the ordi-
nary Cartesian representation of Euclidean
geometry is such that the geometrical prop-
erties of the Euclidean space are invariant un-
der the Euclidean group of transformations
of the Cartesian representation. These are the
transformations that are composed from trans-
lations (in any direction), rotations, and re-
flections. These ideas were made particularly
prominent by the mathematician Felix Klein
in his Erlangen address of 1872 (see Klein,
1893). These important concepts of invariance
had a major impact in the development of the
theory of special relativity by Einstein at the
beginning of the 20th century. Here the invari-
ance is that under the Lorentz transformations,
which are those that leave invariant geomet-
rical and kinematic properties of the space-
time of special relativity. Without giving the
full details of the Lorentz transformations, it is
still possible to give a clear physical sense of
the change from classical Newtonian physics
to that of special relativity.

In the case of classical Newtonian me-
chanics, the invariance that characterizes the
Galilean transformations is just the invariance
of the distance between any two simultaneous
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points together with the invariance of any tem-
poral interval, under any permissible change
of coordinates. Note that this characterization
requires that the units of measurement for both
spatial distance and time be held constant. In
the case of special relativity, the single in-
variant is what is called the proper time τ12

between two space-time points (x1, y1, z1, t1)
and (x2, y2, z2, t2), which is defined as

τ12 =√
(t1 − t2)2 − 1

c2

[
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2
]
,

where c is the velocity of light in the given
units of measurement. It is easy to see the
conceptual nature of the change. In the case
of classical mechanics, the invariance of spa-
tial distance between simultaneous points is
separate from the invariance of temporal in-
tervals. In the case of special relativity, they
are intertwined. Thus, we properly speak of
space-time invariance in the case of special
relativity. As will be seen in what follows,
the concepts of invariance developed so thor-
oughly in the 19th and early 20th century in
geometry and physics have carried over and
are an important part of the representational
theory of measurement.

Quantum Theory and the Problem
of Measurement

Still another important development in the
first half of the 20th century, of special rel-
evance to the topic of this chapter, was the
creation of quantum mechanics and, in par-
ticular, the extended analysis of the problem
of measurement in that theory. In contrast with
the long tradition of measurement in classical
physics, at least three new problems arose that
generated what in the literature is termed the
problem of measurement in quantum mechan-
ics. The first difficulty arises in measuring mi-
croscopic objects, that is, objects as small as
atoms or electrons or other particles of a
similar nature. The very attempt to measure a

property of these particles creates a distur-
bance in the state of the particle, a disturbance
that is not small relative to the particle itself.
Classical physics assumed that, in principle,
such minor disturbances of a measured ob-
ject as did occur could either be eliminated or
taken into account in a relatively simple way.

The second aspect is the precise limitation
on such measurement, which was formulated
by Heisenberg’s uncertainty principle. For ex-
ample, it is not possible to measure both posi-
tion and momentum exactly. Indeed, it is not
possible, in general, to have a joint probability
distribution of the measurements of the two.
This applies not just to position and momen-
tum, but also to other pairs of properties of a
particle. The best that can be hoped for is the
Heisenberg uncertainty relation. It expresses
an inequality that bounds away from zero the
product of the variances of the two proper-
ties measured, for example, the product of the
variance of the measurement of position and
the variance of the measurement of velocity
or momentum. This inequality appeared really
for the first time in quantum mechanics and is
one of the principles that separates quantum
mechanics drastically from classical physics.
An accessible and clear exposition of these
ideas is Heisenberg (1930), a work that few
others have excelled for the quality of its
exposition.

The third aspect of measurement in quan-
tum mechanics is the disparity between the
object being measured and the relatively large,
macroscopic object used for the measure-
ment. Here, a long and elaborate story can be
told, as it is, for example, in von Neumann’s
classical book on the foundations of quan-
tum mechanics, which includes a detailed
treatment of the measurement problem
(von Neumann, 1932/1955). The critical as-
pect of this problem is deciding when a mea-
surement has taken place. Von Neumann was
inclined to the view that a measurement had
taken place only when a relevant event had
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occurred in the consciousness of some ob-
server. More moderate subsequent views are
satisfied with the position that an observation
takes place when a suitable recording has been
made by a calibrated instrument.

Although we shall not discuss further the
problem of measurement in quantum mechan-
ics, nor even the application of the ideas to
measurement in psychology, it is apparent that
there is some resonance between the difficul-
ties mentioned and the difficulties of measur-
ing many psychological properties.

19th- and Early 20th-Century Psychology

Fechner’s Psychophysics

Psychology was not a separate discipline until
the late 19th century. Its roots were largely in
philosophy with significant additions by med-
ical and physical scientists. The latter brought
a background of successful physical measure-
ment, which they sought to re-create in sen-
sory psychology at the least. The most promi-
nent of these were H. Helmholtz, whose work
among other things set the stage for extensive
measurement, and G. T. Fechner, whose
Elemente der Psychophysik (Elements of
Psychophysics; 1860/1966) set the stage for
subsequent developments in psychological
measurement. We outline the problem faced
in trying to transplant physical measurement
and the nature of the proposed solution.

Recall that the main measurement device
used in 19th-century physics was concatena-
tion: Given two entities that exhibit the at-
tribute to be measured, it was essential to find
a method of concatenating them to form a third
entity also exhibiting the attribute. Then one
showed empirically that the structure satisfies
the axioms of extensive measurement, as dis-
cussed earlier. When no empirical concatena-
tion operation can be found, as for example
with density, one could not do fundamental
measurement. Rather, one sought an invari-
ant property stated in terms of fundamentally

measured quantities called derived measure-
ment. Density is an example.

When dealing with sensory intensity, phys-
ical concatenation is available but just recov-
ers the physical measure, which does not at
all well correspond with subjective judgments
such as the half loudness of a tone. A new
approach was required. Fechner continued to
accept the idea of building up a measure-
ment scale by adding small increments, as
in the standard sequences of extensive mea-
surement, and then counting the number of
such increments needed to fill a sensory in-
terval. The question was: What are the small
equal increments to be added? His idea was
that they correspond to “just noticeable dif-
ferences” (JND); when one first encounters
the idea of a JND it seems to suggest a fixed
threshold, but it gradually was interpreted to
be defined statistically. To be specific, sup-
pose x0 and x1 = x0 + ξ(x0, λ) are stimulus
intensities such that the probability of identi-
fying x1 as larger than x0 is a constant λ, that
is, Pr(x0, x1) = λ. His idea was to fix λ and to
measure the distance from x to y, x < y, in
terms of the number of successive JNDs be-
tween them. Defining x0 = x and assuming
that xi has been defined, then define xi+1 as

xi+1 = xi + ξ(xi , λ).

The sequence ends with xn ≤ y < xn+1.
Fechner postulated the number of JNDs from
x to y as his definition of distance without,
however, establishing any empirical proper-
ties of justify that definition. Put another way,
he treated without proof that a sequence of
JNDs forms a standard sequence.

His next step was to draw on an empirical
result of E. H. Weber to the effect that

ξ(x, λ) = δ(λ)x, δ(λ) > 0,

which is called Weber’s law. This is some-
times approximately true (e.g., for loudness
of white noise well above absolute threshold),
but more often it is not (e.g., for pure tones).
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His final step was to introduce, much as
in extensive measurement, a limiting process
as λ approaches 1

2 and δ approaches 0. He
called this an auxiliary mathematical prin-
ciple, which amounts to supposing without
proof that a limit below exists. If we denote
by ψ the counting function, then his assump-
tion that, for fixed λ, the JNDs are equally dis-
tant can be interpreted to mean that for some
function η of λ

η(λ) = ψ[x + ξ(x, λ)] − ψ(x)

= ψ([δ(λ) + 1]x) − ψ(x).

Therefore, dividing by δ(λ)x

ψ([δ(λ) + 1]x) − ψ(x)

δ(λ)x
= η(λ)

δ(λ)x
= α(λ)

x
,

where α(λ) = η(λ)

δ(λ)
.

Assuming that the limit of α(λ) exists, one
has the simple ordinary differential equation

dψ(x)

dx
= k

x
, k = lim

λ→ 1
2

α(λ),

whose solution is well known to be

ψ(x) = r ln x + s, r > 0.

This conclusion, known as Fechner’s law,
was soon questioned by J. A. F. Plateau
(1872), among others, although the emprical
evidence was not conclusive. Later, Wiener
(1915, 1921) was highly critical, and much
later Luce and Edwards (1958) pointed out
that, in fact, Fechner’s mathematical auxil-
iary principle, although leading to the correct
solution of the functional equation η(λ) =
ψ[x + ξ(x, λ)] − ψ(x) when Weber’s law
holds, fails to discover the correct solution
in any other case—which empirically really
is the norm. The mathematics is simply more
subtle than he assumed.

In any event, note that Fechner’s approach
is not an example of representational mea-
surement, because no empirical justification
was provided for the definition of standard
sequence used.

Reinterpreting Fechner Geometrically

Because Fechner’s JND approach using in-
finitesimals seemed to be flawed, little was
done for nearly half a century to construct
psychophysical functions based on JNDs—
that is, until Dzhafarov and Colonius (1999,
2001) reexamined what Fechner might have
meant. They did this from a viewpoint of
distances in a possible representation called
a Finsler geometry, of which ordinary Rie-
mannian geometry is a special case. Thus,
their theory concerns stimuli of any finite di-
mension, not just one. The stimuli are vec-
tors, for which we use bold-faced notation.
The key idea, in our notation, is that for each
person there is a universal function � such
that, for λ sufficiently close to 1

2 , �(ψ[x +
ξ(x, λ)] − ψ(x)) is comeasurable3 with x.
This assumption means that this transformed
differential can be integrated along any suffi-
ciently smooth path between any two points.
The minimum path length is defined to be
the Fechnerian distance between them. This
theory, which is mathematically quite elab-
orate, is testable in principle. But doing so
certainly will not be easy because its assump-
tions, which are about the behavior of in-
finitesimals, are inherently difficult to check
with fallible data. It remains to be seen how
far this can be taken.

Ability and Achievement Testing

The vast majority of what is commonly called
“psychological measurement” consists of var-
ious elaborations of ability and achievement
testing that are usually grouped under the la-
bel “psychometrics.” We do not cover any of
this material because it definitely is neither
a branch of nor a precursor to the representa-
tional measurement of an attribute. To be sure,
a form of counting is employed, namely, the

3For the precise definition, see the reference.
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items on a test that are correctly answered, and
this number is statistically normed over a par-
ticular age or other feature so that the count is
transformed into a normal distribution. Again,
no axioms were or are provided. Of the psy-
chometric approaches, we speak only of a por-
tion of Thurstone’s work that is closely related
to sensory measurement. Recently, Doignon
and Falmagne (1999) have developed an ap-
proach to ability measurement, called knowl-
edge spaces, that is influenced by representa-
tional measurement considerations.

Thurstone’s Discriminal Dispersions

In a series of three 1927 papers, L. L.
Thurstone began a reinterpretation of
Fechner’s approach in terms of the then newly
developed statistical concept of a random vari-
able (see also Thurstone, 1959). In particu-
lar, he assumed that there was an underlying
psychological continuum on which signal pre-
sentations are represented, but with variabil-
ity. Thus, he interpreted the representation of
stimulus x as a random variable 	(x) with
some distribution that he cautiously assumed
(see Thurstone, 1927b, p. 373) to be normal
with mean ψx and standard deviation (which
he called a “discriminal dispersion”) σx and
possibly covariances with other stimulus rep-
resentations. Later work gave reasons to con-
sider extreme value distributions rather than
the normal. His basic model for the probabil-
ity of stimulus y being judged larger than x
was

P(x, y) = Pr[	(y) − 	(x) > 0], x ≤ y.

(3)

The relation to Fechner’s ideas is really quite
close in that the mean subjective differences
are equal for fixed λ = P(x, y).

Given that the representations are assumed
to be normal, the difference is also normal
with mean ψy – ψx and standard deviation

σx,y = (
σ 2

x + σ 2
y − 2ρx,yσxσy

)1/2

so if zx,y is the normal deviate correspond-
ing to P(x, y), Equation (3) can be expressed
as

ψy − ψx = zx,yσx,y .

Thurstone dubbed this “a law of comparative
judgment.” Many papers before circa 1975
considered various modifications of the as-
sumptions or focused on solving this equation
for various special cases. We do not go into
this here in part because the power of mod-
ern computers reduces the need for specia-
lization.

Thurstone’s approach had a natural one-
dimensional generalization to the absolute
identification of one of n > 2 possible stimuli.
The theory assumes that each stimulus has a
distribution on the sensory continuum and that
the subject establishes n − 1 cut points to de-
fine the intervals of the range of the random
variable that are identified with the stimuli.
The basic data are conditional probabilities
P(x j |xi , n) of responding x j when xi , i, j =
1, 2, . . . , n, is presented. Perhaps the most
striking feature of such data is the follow-
ing: Suppose a series of signals are selected
such that adjacent pairs are equally detectable.
Using a sequence of n adjacent ones, abso-
lute identification data are processed through
a Thurstone model in which ψx,n and σx,n are
both estimated. Accepting that ψx,n are in-
dependent of n, then the σx,n definitely are
not independent of n. In fact, once n reaches
about 7, the value is independent of size, but
σx,7 ≈ 3σx,2. This is a challenging finding and
certainly casts doubt on any simple invari-
ant meaning of the random variable 	(x)—
apparently its distribution depends not only
on x but on what might have been presented
as well. Various authors have proposed alter-
native solutions (for a summary, see Iverson
& Luce, 1998).

A sophisticated treatment of Fechner,
Thurstone, and the subsequent literature is
provided by Falmagne (1985).
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Theory of Signal Detectability

Perhaps the most important generalization of
Thurstone’s idea is that of the theory of sig-
nal detectability, in which the basic change is
to assume that the experimental subject can
establish a response criterion β, in general
different from 0, so that

P(x, y) = Pr[	(y) − 	(x) > β], x ≤ y.

Engineers first developed this model. It was
adoped and elaborated in various psycho-
logical sources, including Green and Swets
(1974) and Macmillan and Creelman (1991),
and it has been widely applied throughout
psychology.

Mid-20th-Century Psychological
Measurement

Campbell’s Objection
to Psychological Measurement

N. R. Campbell, a physicist turned philoso-
pher of physics who was especially concerned
with physical measurement, took the very
strong position that psychologists, in partic-
ular, and social scientists, in general, had not
come up with anything deserving the name of
measurement and probably never could. He
was supported by a number of other British
physicists. His argument, though somewhat
elaborate, actually boiled down to asserting
the truth of three simple propositions:

(i) A prerequisite of measurement is some
form of empirical quantification that can
be accepted or rejected experimentally.

(ii) The only known form of such quantifi-
cation arises from binary operations of
concatenation that can be shown empir-
ically to satisfy the axioms of extensive
measurement.

(iii) And psychology has no such extensive
operations of its own.

Some appropriate references are Campbell
(1920/1957, 1928) and Ferguson et al. (1940).

Stevens’s Response

In a prolonged debate conducted before a
subcommittee of the British Association for
the Advancement of Sciences, the physicists
agreed on these propositions and the psychol-
ogists did not, at least not fully. They accepted
(iii) but in some measure denied (i) and (ii),
although, of course, they admitted that both
held for physics. The psychophysicist S. S.
Stevens became the primary spokesperson for
the psychological community. He first formu-
lated his views in 1946, but his 1951 chapter
in the first version of the Handbook of Exper-
imental Psychology, of which he was editor,
made his views widely known to the psycho-
logical community. They were complex, and
at the moment we focus only on the part rele-
vant to the issue of whether measurement can
be justified outside physics.

Stevens’ contention was that Proposition
(i) is too narrow a concept of measurement,
so (ii) and therefore (iii) are irrelevant. Rather,
he argued for the claim that “Measurement is
the assignment of numbers to objects or events
according to rule. . . . The rule of assignment
can be any consistent rule” (Stevens, 1975,
pp. 46–47). The issue was whether the rule
was sufficient to lead to one of several scale
types that he dubbed nominal, ordinal, inter-
val, ratio, and absolute. These are sufficiently
well known to psychologists that we need not
describe them in much detail. They concern
the uniqueness of numerical representations.
In the nominal case, of which the assignment
of numbers to football players was his exam-
ple, any permutation is permitted. This is not
generally treated as measurement because no
ordering by an attribute is involved. An or-
dinal scale is an assignment that can be sub-
jected to any strictly increasing transforma-
tion, which of course preserves the order and
nothing else. It is a representation with infinite
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degrees of freedom. An interval scale is one in
which there is an arbitrary zero and unit; but
once picked, no degrees of freedom are left.
Therefore, the admissible transformation is
ψ �−→ rψ +s, (r > 0). As stated, such a rep-
resentation has to be on all of the real numbers.
If, as is often the case, especially in physics,
one wants to place the representation on the
positive real numbers, then the transforma-
tion becomes ψ+ �−→ s ′ψr

+, (r > 0, s ′ > 0).
Stevens (1959, pp. 31–34) called a represen-
tation unique up to power transformations a
log-interval scale but did not seem to recog-
nize that it is merely a different way of writ-
ing an interval scale representation ψ in which
ψ = ln ψ+ and s = ln s ′. Whichever one uses,
it has two degrees of freedom. The ratio case
is the interval one with r = 1. Again, this
has two forms depending on the range of ψ .
For the case of a representation on the
reals, the admissible transformations are the
translations ψ �−→ ψ + s. There is a differ-
ent version of ratio measurement that is inher-
ently on the reals in the sense that it cannot
be placed on the positive reals. In this case,
0 is a true zero that divides the representa-
tion into inherently positive and negative por-
tions, and the admissible transformations are
ψ �−→ rψ, r > 0.

Stevens took the stance that what was im-
portant in measurement was its uniqueness
properties and that they could come about
in ways different from that of physics. The
remaining part of his career, which is sum-
marized in Stevens (1975), entailed the de-
velopment of new methods of measurement
that can all be encompassed as a form of sen-
sory matching. The basic instruction to sub-
jects was to require the match of a stimu-
lus in one modality to that in another so that
the subjective ratio between a pair of stim-
uli in the one dimension is maintained in the
subjective ratio of the matched signals. This
is called cross-modal matching. When one
of the modalities is the real numbers, it is

one of two forms of magnitude matching—
magnitude estimation when numbers are to be
matched to a sensory stimuli and magnitude
production when numbers are the stimuli to be
matched by some physical stimuli. Using geo-
metric means over subjects, he found the data
to be quite orderly—power functions of the
usual physical measures of intensity. Much of
this work is covered in Stevens (1975).

His argument that this constituted a form
of ratio scale measurement can be viewed in
two distinct ways. The least charitable is that
of Michell (1999), who treats it as little more
than a play on the word “ratio” in the scale
type and in the instructions to the subjects. He
feels that Stevens failed to understand the need
for empirical conditions to justify numerical
representations. Narens (1996) took the view
that Stevens’ idea is worth trying to formal-
ize and in the process making it empirically
testable. Work along these lines continues, as
discussed later.

REPRESENTATIONAL APPROACH
AFTER 1950

Aside from extensive measurement, the repre-
sentational theory of measurement is largely
a creation by behavioral scientists and math-
ematicians during the second half of the
20th century. The basic thrust of this school
of thought can be summarized as accept-
ing Campbell’s conditions (i), quantification
based on empirical properties, and (iii), the
social sciences do not have concatenation op-
erations (although even that was never strictly
correct, as is shown later, because of probabil-
ity based on a partial operation), and rejecting
the claim (ii) that the only form of quantifica-
tion is an empirical concatenation operation.
This school disagreed with Stevens’ broaden-
ing of (i) to any rule, holding with the physi-
cists that the rules had to be established on
firm empirical grounds.
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To do this, one had to establish the exis-
tence of schemes of empirically based mea-
surement that were different from extensive
measurement. Examples are provided here.
For greater detail, see FM I, II, III, Narens
(1985), or for an earlier perspective Pfanzagl
(1968).

Several Alternatives
to Extensive Measurement

Utility Theory

The first evidence of something different from
extensive measurement was the construction
by von Neumann and Morgenstern (1947) of
an axiomatization of expected utility theory.
Here, the stimuli were gambles of the form
(x, p; y) where consequence x occurs with
probability p and y with probability 1 – p. The
basic primitive of the system was a weak pref-
erence order �∼ over the binary gambles. They
stated properties that seemed to be at least
rational, if not necessarily descriptive; from
them one was able to show the existence of a
numerical utility function U over the conse-
quences and gambles such that for two binary
gambles g, h

g �∼ h ⇔ U (g) ≥ U (h),

U (g, p; h) = U (g)p + U (h)(1 − p).

Note that this is an averaging representation,
called expected utility, which is quite distinct
from the adding of extensive measurement
(see the subsection on averaging).

Actually, their theory has to be viewed as a
form of derived measurement in Campbell’s
sense because the construction of the U func-
tion was in terms of the numerical probabil-
ities built into the stimuli themselves. That
limitation was overcome by Savage (1954),
who modeled decision making under uncer-
tainty as acts that are treated as an assignment

of consequences to chance states of nature.4

Savage assumed that each act had a finite num-
ber of consequences, but subsequent gener-
alizations permitted infinitely many. Without
building any numbers into the domain and us-
ing assumptions defended by arguments of
rationality, he showed that one can construct
both a utility function U and a subjective prob-
ability function S such that acts are evaluated
by calculating the expectation of U with re-
spect to the measure S. This representation
is called subjective expected utility (SEU).
It is a case of fundamental measurement in
Campbell’s sense. Indirectly, it involved a
partial concatenation operation of disjoint
unions, which was used to construct a sub-
jective probability function.

These developments led to a very ac-
tive research program involving psycholo-
gists, economists, and statisticians. The basic
thrust has been of psychologists devising
experiments that cast doubt on either a repre-
sentation or some of its axioms, and of
theorists of all stripes modifying the theory
of accommodate the data. Among the key
summary references are Edwards (1992),
Fishburn (1970, 1988), Luce (2000), Quiggin
(1993), and Wakker (1989).

Difference Measurement

The simplest example of difference measure-
ment is location along a line. Here, some point
is arbitrarily set to be 0, and other points are
defined in terms of distance (length) from it,
with those on one side defined to be positive
and those on the other side negative. It is clear
in this case that location measurement forms
an example of interval scale measurement

4Some aspects of Savage’s approach were anticipated by
Ramsey (1931), but that paper was not widely known
to psychologists and economists. Almost simultane-
ously with the appearance of Savage’s work, Davidson,
McKinsey, and Suppes (1955) drew on Ramsey’s ap-
proach, and Davidson, Suppes, and Segal (1957) tested it
experimentally.
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that is readily reduced to length measurement.
Indeed, all forms of difference measurement
are very closely related to extensive measure-
ment, but with the stimuli being pairs of ele-
ments (x, y) that define “intervals.” Axioms
can be given for this form of measurement
where the stimuli are pairs (x, y) with both
x, y in the same set X. The goal is a numerical
representation ϕ of the form

(x, y) �∼ (u, v)

⇔ ϕ(x) − ϕ(y) ≥ ϕ(u) − ϕ(v).

One key axiom that makes clear how a con-
catenation operation arises is that if (x, y) �∼
(x ′, y′) and (y, z) �∼ (y′, z′), then (x, z) �∼
(x ′, z′).

An important modification is called abso-
lute difference measurement, in which the goal
is changed to

(x, y) �∼ (u, v)

⇔ |ϕ(x) − ϕ(y)| ≥ |ϕ(u) − ϕ(v)|.
This form of measurement is a precursor
to various ideas of similarity measurement
important in multidimensional scaling. Here
the behavioral axioms become considerably
more complex. Both systems can be found in
FM I, Chap. 4.

An important generalization of absolute
difference measurement is to stimuli with n
factors; it underlies developments of geomet-
ric measurement based on stimulus proximity.
This can be found in FM II, Chap. 14.

Additive Conjoint Measurement

Perhaps the single development that most
persuaded psychologists that fundamental
measurement really could be different from
extensive measurement consisted of two ver-
sions of what is called additive conjoint mea-
surement. The first, by Debreu (1960), was
aimed at showing economists how indiffer-
ence curves could be used to construct car-
dinal (interval scale) utility functions. It was,

therefore, naturally cast in topological terms.
The second (and independent) one by Luce
and Tukey (1964) was cast in algebraic terms,
which seems more natural to psychologists
and has been shown to include the topologi-
cal approach as a special case. Again, it was
an explanation of the conditions under which
equal-attribute curves can give rise to mea-
surement. Michell (1990) provides a careful
treatment aimed at psychologists.

The basic idea is this: Suppose that an at-
tribute is affected by two independent stim-
ulus variables. For example, preference for a
reward is affected by its size and the delay
in receiving it; mass of an object is affected
by both its volume and the (homogeneous)
material of which it is composed; loudness
of pure tones is affected by intensity and fre-
quency; and so on. Formally, one can think
of the two factors as distinct sets A and X,
so an entity is of the form (a, x) where
a ∈ A and x ∈ X. The ordering attribute is
�∼ over such entities, that is, over the Cartesian
product A × X. Thus, (a, x) �∼ (b, y) means
that (a, x) exhibits more of the attribute in
question than does (b, y). Again, the order-
ing is assumed to be a weak order: transitive
and connected. Monotonicity (called indepen-
dence in this literature) is also assumed: For
a, b ∈ A, x, y ∈ X

(a, x) �∼ (b, x) ⇔ (a, y) �∼ (b, y).

(a, x) �∼ (a, y) ⇔ (b, x) �∼ (b, y).
(4)

This familiar property is often examined in
psychological research in which a dependent
variable is plotted against, say, a measure of
the first component with the second compo-
nent shown as a parameter of the curves. The
property holds if and only if the curves do not
cross.

It is easy to show that this condition is
not sufficient to get an additive representa-
tion of the two factors. If it were, then any set
of nonintersecting curves in the plane could
be rendered parallel straight lines by suitable
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nonlinear transformations of the axes. More
is required, namely, the Thomsen condition,
which arose in a mathematically closely
related area called the theory of webs. Let-
ting ∼ denote the indifference relation of �∼,

the Thomsen condition states

(a, z) ∼ (c, y)

(c, x) ∼ (b, z)

}
⇒ (a, x) ∼ (b, y).

Note that it is a form of cancellation—of c in
the first factor and z in the second.

These, together with an Archimedean
property establishing commensurability and
some form of density of the factors, are
enough to establish the following additive
representation: There exist numerical func-
tions ψA on A and ψX on X such that

(a, x) �∼ (b, y)

⇔ ψA(a) + ψX (x) ≥ ψA(b) + ψX (y).

This representation is on all of the real num-
bers. A multiplicative version on the positive
real numbers exists by setting ξi = exp ψi .
The additive representation forms an inter-
val scale in the sense that ψ ′

A, ψ ′
X forms

another equally good representation if and
only if there are constants r > 0, sA, sX such
that

ψ ′
A = rψA + sA,

ψ ′
X = rψX + sX ⇔ ξ ′

A = s ′
Aξ r

A, ξ ′
X = s ′

Xξ r
X ,

s ′
i = exp si > 0.

Additive conjoint measurement can be
generalized to finitely many factors, and it is
simpler in the sense that if monotonicity is
generalized suitably and if there are at least
three factors, then the Thomsen condition can
be derived rather than assumed.

Although no concatenation operation is in
sight, a family of them can be defined in terms
of ∼, and they can be shown to satisfy the
axioms of extensive measurement. This is the
nature of the mathematical proof of the repre-
sentation usually given.

Averaging

Some structures with a concatenation opera-
tion do not have an additive representation, but
rather a weighted averaging representation of
the form

ϕ(x ◦ y) = ϕ(x)w + ϕ(y)(1 − w), (5)

where the weight w is fixed. We have already
encountered this form in the utility system if
we think of the gamble (x, p; y) as defining
operations ◦p with x◦p y ≡ (x, p; y), in which
case w = w(p). A general theory of such op-
erations was first given by Pfanzagl (1959). It
is much like extensive measurement but with
associativity replaced by bisymmetry: For all
stimuli x, y, u, v,

(x ◦ y) ◦ (u ◦ v) ∼ (x ◦ u) ◦ (y ◦ v). (6)

It is easy to verify that the weighted-average
representation of Equation (5) implies bisym-
metry, Equation (6), and x ◦ x ∼ x . The eas-
iest way to show the converse is to show that
defining �∼′ over X × X by

(a, x)�∼′ (b, y) ⇔ a ◦ x �∼ b ◦ y

yields an additive conjoint structure, from
which the result follows rather easily.

Nonadditive Representations

A natural question is: When does a concatena-
tion operation have a numerical representation
that is inherently nonadditive? By this, one
means a representation for which no strictly
increasing transformation renders it additive.
Before exploring that, we cite an example of
nonadditive representations that can in fact be
transformed into additive ones. This is helpful
in understanding the subtlety of the question.

One example that has arisen in utility the-
ory is the representation

U (x ⊕ y) = U (x) + U (y)− δU (x)U (y), (7)

where δ is a real constant and U is the SEU
or rank-dependent utility generalization (see


