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Preface

To the extent that many practical turbulent engineering flows are beyond our capacity
to predict, it is clear that the turbulence “problem” is not yet solved. The need to
predict turbulent fluid behavior, however, is not diminished even if finding a reliably
accurate solution technique is elusive. In essence, the subject of turbulence is driven
by its applications: answers to difficult turbulent flow problems are required, and
engineers or physicists must supply the best possible answer. Judgments must be
made between competing approaches whether experimental, numerical, or analytical.
Whatever decision is made, it is subject to debate and justification.

Whether the reader is an engineer faced with turbulent flow prediction or a scientist
or student intending to pursue research in the field, one needs to become familiar with
what might at first glance appear to be a vast literature of loosely connected theories,
numerical predictions, and experimental measurements of turbulence. A principal
goal of this book is to help readers see the subject as a relatively coherent whole, so
that they will be able to make informed decisions as to how best to study and predict
turbulent flows of interest.

The book aims at a relatively wide coverage, but without being exhaustive. Our
interest is to include those areas that are essential to making sense of currently
available options for measuring or predicting turbulent flows. We believe that to be
most useful, the book needs to familiarize the reader with current techniques used to
measure, simulate, analyze, and predict turbulence, so we have attempted to provide
meaningful discussions of many such techniques. If successful, the book will put the
reader in a good position to understand more advanced and specialized books in the
field. As a general rule, we have striven to keep the discussion focused on those results
and theories that are relatively well established. More speculative ideas are often part
of the research frontier and appropriate for independent study.

After giving some essential preliminary notation and concepts in Chapter 1, in Chap-
ter 2 we provide a natural entry to the subject of turbulence through consideration

ix



X PREFACE

of the averaged equations of motion and the basic physical processes that they en-
compass. Note that this volume will be concerned exclusively with incompressible
turbulent flow. The focus of Chapter 2 is to provide an overview of the principal
concepts and issues in understanding turbulence, so that the basic language of the
subject is available to the reader when considering the major facets of turbulence in
the subsequent chapters.

In Chapter 3 we survey the main techniques used in performing physical exper-
iments, with a view toward making clear what is feasible and what is not. Included
here is a discussion of how turbulent flow can be simulated on a computer. Such al-
gorithms, considered to be “numerical wind tunnels,” have become a very large part
of turbulent flow “measurement.” A number of the experimental and numerical tech-
niques mentioned in Chapter 3 have been used for many years to gain fundamental
knowledge of turbulence. A review of some of the major aspects of the knowledge
acquired this way is presented in Chapter 4, covering bounded flows, and in Chapter
5, covering free shear flows. The hope here is to give the reader a feeling of what tur-
bulent flow is and something of what is presently known about it. This is an important
background to have when considering the predictive methodologies developed in later
chapters.

In Chapters 6 and 7 we go into greater depth in exploring the essential physics of
turbulence. In view of its position as a distinguishing characteristic of turbulence, the
issue of turbulent transport is considered from a number of perspectives in Chapter
6. Following this, in Chapter 7, the properties of idealized turbulent flows are consid-
ered. This permits a relatively unobstructed view of such fundamental processes as
energy dissipation. Many aspects of the theoretical analysis of such flows are useful
to the development of predictive theories.

The stage is then set in Chapter 8 to begin a discussion of turbulence closures,
which are the predominant means by which turbulent flows are predicted in engi-
neering work. The relationship that closure models have to our understanding of the
physics of turbulent flow will become evident. Once we have discussed many features
of closure schemes, in Chapter 9 we give some examples of how they perform in the
practical solution of turbulent flow problems.

In Chapter 10 we consider prediction methods known as large eddy simulations
(LES), which are situated between closure schemes on the one hand and direct com-
putation of the flow on the other. First discussed are traditional grid-based LES tech-
niques, which have long been used by meteorologists and are now finding some
application in engineering work. This is followed by consideration of the applica-
tion of grid-free vortex methods to LES, which is just now beginning to become a
significant new methodology for predicting turbulence.

A key part of many engineering flows is the occurrence of heat or mass transfer,
and in Chapter 11 we give some basic background knowledge of this subject. Finally,
in Chapter 12 we introduce several of the principal trends in the theoretical analysis
of turbulence. To varying degrees, these theories, which tend to be mathematically
difficult, have been developed with a view toward understanding turbulence at its
most fundamental level. There remains considerable controversy in this area, and our
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purpose here is only to hint at some of the major developments in what is a very large
field in and of itself.

This book represents material that has been successfully taught by the authors in
two complementary graduate-level courses on turbulent flow given at the University
of Maryland over the last 20 years. One of these covers the analysis of the physics of
turbulent flow through its measurement and simulation, and the other concentrates on
the prediction and theoretical analysis of turbulence. As suggested by the title of this
volume, we bring together here material that would be sufficient for one or both of
these courses. Depending on the inclination of the instructor, more focused readings
of particular research articles related to topics in the book can be included to help
extend the book into current research activities. In fact, our goal for this book will be
met if students are brought by it to the point where they can read classical and current
research articles with comprehension and an informed critical eye.

PETER S. BERNARD
JAMES M. WALLACE
College Park, Maryland
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Preliminaries

1.1 TURBULENCE

Every airplane passenger knows firsthand that the atmosphere contains something
called trurbulence. When airplanes enter into it, they shake and vibrate unpredictably,
until, to every passenger’s relief, the turbulent zone is passed and the flight returns to a
reassuring calm. It is evident that turbulence must consist of a collection of disordered
wind gusts, which in this case are capable of pushing an airplane around.

It is also possible that the reader has experienced turbulence on a hand or back
placed over the jet of fluid entering a swimming pool or jacuzzi. Far from a constant
flow, one has the sensation of an ever-changing eddying motion which is particularly
pronounced at the edges of the jet. Although on a very much smaller scale than in the
airplane flow and in a different fluid medium, the apparent random pulsations of the
turbulent flow appear to be a common characteristic.

Countless other experiences of turbulent flow accompany us in our daily lives.
Examples abound of turbulent flow in technological, environmental, and biological
applications. The flow around an automobile, between buildings in a downtown street,
and through a diseased artery are but three commonplace occurrences.

It is natural to wonder where turbulence comes from, why it occurs, and why it so
prevalent. Furthermore, it is not hard to see that there are probably many situations
where one wishes to be able to predict, a priori, either the occurrence of turbulence or
its behavior. Our starting point for shedding light on these questions is to be precise
about exactly what is meant by turbulence.

The apparent randomness of the buffeting of an airplane as it flies through tur-
bulence appears to be a defining characteristic of such flows. However, since it is
believed that fluid flows evolve deterministically according to the Navier—Stokes
equation, evidently, a useful definition of turbulence must be more precise than the
statement that the flow displays random characteristics. To be explicit about the role
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2  PRELIMINARIES

of determinism and randomness in turbulent flow, consider the flow in a controlled
setting such as a laboratory wind tunnel. Imagine that the following experiment is
repeatable at will: Starting from quiescent conditions, the wind tunnel is turned on to
a particular speed setting. A fixed time after it is started, the fluid velocity is recorded
at arbitrary points within the test section of the tunnel. Depending on the speed of
the flow, one of two possible outcomes is possible: either the measured velocities
are identical, within measurement accuracy, each time the experiment is repeated, or
they vary. The former case is referred to as laminar flow, and the second, in which
the velocity field is not repeatable in either the whole or in part of the flow domain,
is what will formally be referred to as turbulent flow, or turbulence. By this defini-
tion, transitional flows in which the motion is undergoing a change from laminar to
turbulent conditions qualify as turbulent.

The differences in velocity from realization to realization of a turbulent flow are
explained by the sensitivity of the evolving flow to small uncontrollable perturbations
in the initial and boundary conditions. These originate from slight thermal currents,
from changing surface roughness at a small scale, from small variations in the input
power of the tunnel, perhaps even from microscopic sources such as the subcon-
tinuum molecular motions that cause Brownian motion [4]. In no way is the deter-
minism of the evolving flow in doubt. Rather, it is the ability of the flow to amplify
slight, unpredictable changes in boundary and initial conditions to measurable scale
which is the defining characteristic of turbulence. The result is a randomly appearing
flow structure over a sizable physical extent, such as is encountered by airplanes in
the atmosphere. This contrasts with laminar flows in that the same small perturba-
tions experienced in turbulent flow are present, but in this case they are damped out
successfully as soon as they appear, and the flow velocity, if measured, is always
the same.

Under normal circumstances, the ability of flows to remain laminar depends on the
degree to which viscous damping, deriving from the molecular diffusion of momen-
tum, can erase the influences of individual perturbations. Since the Reynolds number,
R, = UL/v, where v is the kinematic viscosity, U is a typical velocity of the flow,
and L atypical length scale, characterizes the relative strength of viscous and inertial
forces, it is the key parameter used in deciding whether or not a flow is likely to be
turbulent. For low values of R, viscous forces are dominant and the flow tends to
be laminar. For larger values, a point is reached where a transition occurs in which
disturbances are no longer damped out but rather, are amplified. Beyond this point a
fully turbulent state results. Figure 1.1 illustrates the transition process in a turbulent
jet. The flow is seen to undergo a dramatic change from a laminar state, through one
containing organized oscillatory motions, finally, to fully turbulent conditions. In a
bounded flow such as in a pipe for which R, = U,,d/v, where U,, is the average
mass flow velocity and d is the diameter, transition begins as low as R, =~ 200 in
the form of decaying turbulent slugs passing through the pipe [3], and generally a
fully turbulent state occurs for R, > 2300. It is not possible to be completely precise
about these critical values since they are affected by upstream flow conditions and the
smoothness of the boundary. With sufficiently small input disturbances and smooth
walls, laminar flow in a pipe can be maintained to at least R, = 10° [2].
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[Image not available in this electronic edition.]

Fig. 1.1 Transition to turbulence in a jet. (Courtesy of J.-L. Balint and L. Ong.)

It is a fact of our experience that the Reynolds number encountered in many prac-
tical problems of concern to engineers and physicists is large, in fact well beyond the
transitional range. For example, in the case of a 100 m-long submarine in seawater
(v = 1.044 x 107° m?/s), traveling at 15 knots, at the stern R, ~ 7.4 x 108, while at
the rear of a 6 m-long car in air (v = 1.525 x 107% m?/s) at 60 mph, R, &~ 1.1 x 108,
The inevitable turbulence occurring in these and other flows must be accommodated
in the design process. In the case of a submarine, turbulent forces and acoustic fields
are of significant concern as well as the exact position of turbulent separated flow
regions, which might lead to undesirable flow patterns affecting the propeller. Tur-
bulent drag and side forces affect the economy and stability of road vehicles, and
turbulent buffeting of the driver side window by vortices shed off the rear view mirror
generates noise (see Fig. 1.2). Turbulent flow in the engine compartment affects cool-
ing, and turbulence in the engine cylinder is necessary for effective combustion and
reduced pollutant emissions. Atmospheric turbulence formed from thermal currents
and gravity waves shed off topological features in stratified flow lead to the turbulence
encountered by airplanes flying at low altitudes. Countless more examples exist: it is
the ubiquity of turbulence in high-Reynolds-number flow that creates the need for the
study of turbulence and its prediction.

A common characteristic of the flows depicted in Figs. 1.1 and 1.2 is the presence
of rotational motion in the form of vortices. Large-scale vortical structures are visible
in the outer edge of the jet. In the wake of the automobile the scales of the vortices and
other turbulent motions are so small that the smoke marker in this region appears as
a diffused blur. The dynamics of the energetic large-scale vortices have a significant
influence on the physics of turbulent flow. Moreover, the importance and presence
of vortices extend through all scales of turbulent motion, including the smallest
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[Image not available in this electronic edition.]

Fig. 1.2 Visualization using smoke helps engineers see the flow patterns around vehicles, including the
turbulence in their wakes. (Used with permission of the Volvo Car Corp., Aerodynamics Div.)

scales. For example, the three-dimensional plot of vorticity vectors in a numerical
simulation of turbulence shown in Fig. 1.3 suggests that embedded tubelike vortices
form the essential fabric of turbulence at its smallest scale. It will often be seen in
this book that the dynamics of the vorticity field represents the most convenient and
succinct means for describing and understanding the behavior of turbulent fluid flow.
Thus subsequent questions about the nature of turbulent transport phenomena and the
physics of the energy field will find explanation in terms of vorticity dynamics.

The turbulent flow examples that have been mentioned thus far suggest that the
data needed in analyzing turbulent fields can involve both mean statistics, as in the
average forces on automobiles and submarines, or instantaneous quantities, such as
the peak pressures responsible for sound generation on solid surfaces and the position
of separated flow structures. In all cases, if the velocity and pressure fields in a
turbulent flow can be obtained by one means or another, then besides knowing the
instantaneous flow properties, it would be possible to compute average properties
as well. As will be seen, however, it is usually a very difficult matter to predict
turbulent fields, so much so that it is often the case that only mean statistics can be
computed, and usually these are approximations produced by a partial analysis of the
flow physics. It will thus become clear in the course of this book that knowledge of
turbulence and how to predict it is incomplete. The boundary between the known and
the unknown changes steadily, and the future can only bring improved insights and
better predictive schemes.

Characterization of flows by their Reynolds number (e.g., between high and low
Reynolds numbers) is an important factor to take into account when deriving solution
strategies. There are a number of other fundamental categories into which flows may
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[Image not available in this electronic edition.]

Fig. 1.3 Vorticity vectors in a computer simulation of turbulent flow in a periodic cubic box. (From [5].
Reprinted with the permission of Cambridge University Press.)

be divided in order to better suggest schemes for their measurement or prediction.
One demarcation is between interior and exterior flows, as in the case of a pipe
or engine cylinder versus the flow past an airplane. In the former, all parts of the
flow generally are strongly affected by the presence of solid boundaries. For exterior
flows, turbulence is often created at the boundary but then evolves downstream,
free of its direct influence, while spreading into increasingly greater portions of
the flow domain. Near boundaries, turbulent flow is often accompanied by high
shear (i.e., large values of the mean velocity gradients). Such regions are a focal
point of the physical processes governing the overall production and distribution
of turbulence, and thus are worthy of extra attention in the discussions that follow.
The opposite extreme from high-shear regions is homogeneous turbulence, where
mean properties of the turbulence including mean velocity do not vary with position
(i.e., are independent of translations of the coordinate axes). Little production of
new turbulence takes place in these circumstances, and the flow is dominated by
dissipation. In some instances, homogeneous turbulence is also isotropic, wherein,
in addition to the independence of the mean turbulence properties to position, the
turbulence displays no intrinsic directional preference.

The concept of isotropy implies that the turbulent flow must be homogeneous,
since inhomogeneous flows have directional preferences, thus contradicting the as-
sumption of isotropy. On the other hand, the condition of homogeneity does not imply
that the flow must be strictly isotropic. In fact, another possibility is the case of homo-
geneous shear flow, in which there is a uniform mean velocity gradient everywhere,
so that even though there is a directional preference, it is the same everywhere. In
such flows, the statistical properties of the turbulence do not vary with position, with
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the sole exception of the mean velocity field. Homogeneous shear flows play a useful
role in developing turbulence prediction schemes, since they allow attention to be fo-
cused on just specific parts of the governing equations. In addition to imposed shear,
homogeneous flows with uniform rotations, plane strains, and combinations of these
effects are also studied.

Finally, it should be noted that engineering flows are often complex, or nonequi-
librium, in the sense that they contain unusual geometrical features or unsteadiness
which causes the turbulent motion not to be explained easily in terms of relatively
simple balances of physical effects, as would be the case, for example, in an attached
boundary layer on a smooth wall. The latter type of flow is one of several that are
often called canonical, since they are relatively simple and fairly well understood
experimentally and numerically. Aspects of all these types of flows are discussed in
subsequent chapters.

1.2 AVERAGING AND TURBULENT FIELDS

The average of a random field, such as the velocity in turbulent flow, is most naturally
defined as an ensemble average over independent realizations of the flow field. Each
realization may be viewed as one occurrence of an experiment, and an average over
N of them is given by

N
Ux, 1) = %ZUj(X, 1), (1.1
j=1

where, for example, U = (U,, U,, Us) is the velocity field and U/ is the velocity mea-
sured in the jth experiment. X = (x1, X, x3) denotes position in three-dimensional
space and ¢ is the time. Throughout this book, vectors are denoted either in bold-
face, as in the case of x and U in (1.1), or equivalently, using index notation, as in
U;, i = 1,2,3. As the occasion arises, the notation (x, y, z) will also be used to
represent (x1, x, x3) and (U, V, W) to denote (U, U,, Us).

Ensemble averaging conveniently commutes with time and space derivatives:

Wan=TYan Bun=un (12)
ar 7 ar ax; 0 ax ’

which is of great benefit in theoretical analyses. In some instances, as in flow in an
internal combustion engine cylinder, each four-stroke cycle of the engine may be
considered to be one realization of the flow, in which case the average in (1.1) can
readily be evaluated by experimental techniques.

It is more often the case, at least in experimental investigations, that (1.1) is
impractical to implement because it would involve the laborious task of repeating
the experiment many times. It thus is useful to consider alternatives. A particularly
useful average is one over time, as in
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. (+T/2
U(x, 1) = 7/ U(x, 5) ds, (1.3)
—T/2

where T is a sufficiently long time interval and U(x, s) is obtained from a continuous
sampling of the flow velocity at x over the interval (t —7'/2, t 4+ T /2). Equation (1.3)
is conveniently evaluated in many standard experiments, and is most useful when
the random field is stationary (i.e., the time average is independent of the interval T
over which it is taken). In this case, the integral in (1.3) is independent of ¢. Time
averaging loses legitimacy in nonstationary flows where the underlying mean signal
changes over time. The engine flow is a good example of this. In such circumstances,
(1.3) is a strong function of  and 7" and the first of the formulas in (1.2) is not formally
valid since the time derivative does not commute with the integral in (1.3).
Another possibility is spatial averaging:

Uk, 1) = % /V U, 1) dx/, (1.4)

where V is generally the volume of a region V surrounding the point x, although
in some cases, particularly flows with geometrical symmetries, V may be taken to
be particular lines or surfaces in the flow field. Often, (1.4) is used in the analysis
of numerical simulations such as of a channel flow, where symmetries allow for
averaging over planes. This reduces the number of time steps or realizations of
the flow needed to get converged statistics. Similar to the case of time averaging,
depending on the particular volume "V and the spatial variability of the mean field,
commutation with spatial derivatives in the second relation in (1.2) will sometimes
be legitimate and sometimes not.

Finally, note that it is plausible that ensemble, time, and spatial averages are equiv-
alent when circumstances permit, although this conclusion lacks formal mathematical
proof. Throughout the book each of these methods of averaging will be employed
depending on the circumstances, and which type is in effect will be made clear. For
most theoretical discussions it will be assumed that ensemble averaging is employed.
In some contexts it will also be seen that it is useful to define partial averages, such
as conditional averaging in which averages are taken only over flow events or phases
of processes satisfying some predetermined criteria. In a similar vein, the large eddy
simulation method discussed in Chapter 10 requires specialized averaging in the form
of a filtering process.

For either ensemble, time, or space averaging, a turbulent velocity field may be
decomposed according to

U=U+nu, (1.5)
where u = U — U is referred to as the velocity fluctuation vector. Note that where

no confusion can result, such as in this instance, we refrain from indicating the
dependence of U and the other fields on x and ¢. The average of the fluctuation is
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always zero (i.e., U = 0), although this may not be exactly true in the case of spatial
or time averaging unless the flow is appropriately homogeneous or steady. In laminar
flow, by definition, U = ﬁ, so that u = 0.

Besides the mean, higher-order moments of the fluctuating velocity field may also
be of interest: for example, u?, u3, u3, which are the variances of the components of

u. The sum of these yields the turbulent kinetic energy per unit volume, K = pE/ 2,
where p is the density, and here and henceforth it is understood that repeated indices
are summed from 1 to 3. More generally, the tensor

R,'j = Uil (16)

is the covariance of the random vector field U. The components of u;u; have a clear
physical interpretation as momentum fluxes, as shown in Section 2.1.

In many circumstances where averages are computed directly from the random
field, our knowledge of the turbulent physics can be deepened by examining the
associated probability density function (pdf). For example, a velocity component
such as U; will occur over a range of values, with each one having a different
likelihood of occurring. The cumulative effect is the average, U, but the pdf tells
how often values of U] in a particular range are likely to occur. Thus, if p(U;) is the
pdf of Uy, then by definition, p(U,) dUj is the probability that U, takes on a value
U such that U; < U < U; 4 dU,. Clearly,

/p(U) dUu =1, 1.7

since U; must take on some value for each experiment. It also follows that
U, = / Up(U) dU, (1.8)
i = [w-Tyw)av. (1.9)

and so on, for higher moments.

Probability density functions can also be written for multiple variables, in which
case they are referred to as joint probability density functions. For example, for
velocity components U, and U,, p(U;, U) dU; dU, is the probability that both
U <U Uy +dUyand U, <V < U, + dU, are satisfied by a realization
(U, V) of the velocity field. A notable use of the joint pdf is in analyzing correlations
such as

m:/ (U—-U\)(V —=U,)pU,V)dU dV, (1.10)

which are important to the analysis of turbulent momentum transport near boundaries.
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An important example of a probability density function is

1 772 2
_ —(U-U)"/20
plU) = Gro?)® : (1.11)

where o is the standard deviation, which characterizes Gaussian random variables.
Such variables make an appearance at several junctures in turbulent flow analyses; for
example, it is often a good approximation to the fluctuating velocity field at a single
point in turbulent flow, the main difference being that large fluctuation amplitudes are
less likely to occur than in a true Gaussian. Equation (1.11) generalizes to accommo-
date processes that are jointly Gaussian and to Gaussian random fields (see Section
12.2) where the joint probability density function for variables at multiple locations
in the flow field obeys a Gaussian form. It is one of the more profound attributes
of turbulent flow fields that even though the velocity field may be approximately
Gaussian at individual points in the flow, it does not constitute a Gaussian random
field.

Besides second-order moments, other higher-order statistics of importance in tur-
bulent flow analysis are the skewness and flatness, defined, respectively, via

u?
S=—s (1.12)
MZ
and
4
F=2 (1.13)
M2

These quantities are particularly useful in helping to judge how far from Gaussianity
a particular random variable might be, since for strict Gaussianity they satisfy S = 0
and F = 3.

In some circumstances it is useful to extend the averaging process to include the
product of velocities at separate points, as in the two-point double and triple velocity
correlation tensors, respectively, defined by

R,‘J‘(X, y. I)EM[(X, t)uj(y, l) (114)

and

SijX,y, 1) = ui (X, Duj (X, Hug(y, t). (1.15)

Such correlations provide an opportunity to capture structural features of the tur-
bulence which would be lost in one-point statistics. When x =y, R;;(X,X,t) =
u;(x, Huj(x,t) = R;j(x,t) [i.e., the single-point velocity covariance defined in

(1.6)].
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Letting r = y — x denote the position vector connecting x with y, then as r varies,
R;j(x,x+r, 1) gives an indication of how the velocity field around x at a particular
time ¢ is “correlated.” For small r the velocity field at x and x + r will be quite
similar and hence highly correlated, while for large r, R;;(x, X + r, t) should be at
or close to zero since there would not generally be a mechanism to create correlation
over large distances. For x fixed it is convenient to simplify notation by defining
Rij(r, t) = R;j(x,x+r, t). In homogeneous turbulence, correlations cannot depend
on position, and in this case there is truly no x dependence in R;;(r, t).

Rij(r, t) is generally a bounded function of compact support, so its three-dimen-
sional Fourier transform exists:

Eijk, 1) = (2n)—3/

n

N

3 "R R (x, 1) dr, (1.16)

where: = +/—1, kis the wavenumber vector, and E;; (k, t) is referred to as the energy
spectrum tensor. Corresponding to (1.16) is the inverse transform

Rij(r, 1) = /z e_"'kE,-j(k, 1) dk, 1.17)
0’

where dk = dk, dk, dk; is a differential volume in wavenumber space. Equations
(1.16) and (1.17) represent one way to enter into a spectral analysis of turbulence in
which the local fluid motion is decomposed according to the different scales which
are acting, as represented by Fourier components /™.

Setting i = j in (1.17), summing over indices i = 1, 2, 3, dividing by 2, and setting
r = 0 gives the spectral decomposition of the turbulent kinetic energy

1
K(1) = 5/ Eji(k, 1) dk, (1.18)
"’

where E;; (K, t) is the density of energy in wavenumber space, and it is understood that
all quantities here have an implied dependence on x. It is useful to collect the energy,
which is typically scattered throughout k space, onto shells of fixed distance k = |K|
from the origin. This is done by first rewriting (1.18) using spherical coordinates in
wavenumber space:

K(t):/oodk [l/ A9 E; (k. t):|, (1.19)
0 2 Jik=k

where d2 is an element of solid angle in k space and dk = d<2 dk. Next, the term in
brackets is defined as the energy density function or energy spectrum:

Ek,t) = %/ E.k,t)dQ, (1.20)
k|=k

yielding
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K(t) = /oo E(k, 1) dk. (1.21)
0

In this formula, E(k, t) shows how the kinetic energy is distributed among the dif-
ferent scales of the flow. The nature of E(k, ¢) in turbulent flows has long played a
major role in the theoretical analysis of turbulence and will be considered at length
in later chapters.

Two useful quantities that can be formed from R;;(r, t) are the longitudinal and
transverse velocity correlation functions defined by

W f(r) = Ri(rey, 1) (1.22)
and
u3g(r) = Rp(rey, 1), (1.23)

respectively (see Fig. 1.4). Here e; represents a unit vector in the x; direction for

i =1, 2, 3. For simplicity of notation we refrain from indicating the time dependence

of f and g. Note that our use of the x; and x; directions is meant as an example;

similar functions can be defined for any direction.

From their definitions it is clear that f(0) = g(0) = 1. Moreover, they must decay

to zero as r — oo. Locally, near r = 0 they can be expanded in a Taylor series as in
df rrd’f

fr)y=1+r —(0)+5ﬁ( )+ (1.24)

The first three terms on the right-hand side form a parabolic approximation to f

whose intersection with the r axis, as shown in Fig. 1.5, is used to define a length
scale, A, termed the microscale. Thus, by definition,

(@)

Fig. 1.4 (a) Longitudinal and (b) transverse velocity correlations used in definitions of f (r) and g(r),
respectively.
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Fig. 1.5 Microscale definition.

df \drf
0=14+12—0)+ ——=1(0), 1.25
+A5(0) + 5, =5 0) (1.25)
from which A can be computed. The microscale is a measure of the scales of motion
at which turbulent energy dissipation takes place, as shown in Section 7.3.1.
While A is representative of the smaller scales in turbulent flow, a measure of the
largest scales is given by the integral scale, defined by

A= /Oo f(r) dr. (1.26)
0

The integral in (1.26) exists because f (r) has bounded support. A is a measure of the
size of the largest turbulent “eddies,” meaning regions of the flow whose motion is
in some sense interconnected. Ordinarily, events at the scale of A are very energetic
since they are likely to be the direct result of the stirring mechanism that is responsible
for turbulence generation.

In many circumstances it is most likely that time sequences of turbulent velocities
at a given spatial point are known (e.g., from direct measurement using a fixed probe)
rather than ensemble or volume information. In this case, it is not feasible to evaluate
the energy density function per se. However, the data are sufficient to determine what
is referred to as the one-dimensional energy spectrum, E1;(w), where the angular
frequency, w, has units of hertz (i.e., cycles per second). E;;(w) is defined via the
Fourier transform of the time autocorrelation coefficient

Rp(r) = "D (1.27)
u*(t)

where u(t) is a measured time sequence of velocities at a fixed point.
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In practice, the right-hand side of (1.27) would be evaluated using a time average,
although the following discussion is simplified somewhat if it is viewed as an ensem-
ble average. Rg () is related to its Fourier transform, ?{E (0), where @ = 2w is
the frequency, via the transform pair

o0
Re(w) = / e Re(v) dt (1.28)
—00
and
1 * ‘D ’ ’
Re(t) = — &'’ Re(o) do'. (1.29)
27 J_ o

Evaluating (1.29) at t = 0 and defining
Ei(0) = 22 Ry 2 w) (1.30)

gives, after a change of variables,

1 [
u2=§/ Ei(w) dw. (1.31)

If R () is symmetric [i.e., Rg(—71) = Rg(7)], as it would be if the random process
is stationary so that (1.27) is independent of ¢, then (1.28) implies that

o0
Re(@) = 2[ cos T Re (1) dt (1.32)
0
and then that
Re(—w) = Re(o), (1.33)
so that (1.29) gives
1 [ ~
Re(r) = —/ cos 10 Re (@) dow'. (1.34)
T Jo

Thus Rg(t) and ?{E (o) form a Fourier cosine transform pair. It also follows from
(1.30), (1.31), and (1.33) that

u? = /Oo Ei () do. (1.35)
0

The fact that Ry (7) is easily evaluated from data from a single probe means that
it is a relatively simple matter to determine the one-dimensional spectrum Ejj(w).
In contrast, it is nearly impossible to directly measure E(k, t). In Section 3.2.3.3
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it is shown that in at least some circumstances it is possible to link the temporal
and spatial variations in u. In this case, as shown in Section 7.6.3, a relationship
between f(r,t) and Rg(7) can be established and from this a means of estimating
E(k,t) from E;;(w). Thus the one-dimensional spectrum E;;(w) is a particularly
useful quantity in characterizing turbulent flow.

1.3 TURBULENT FLOW ANALYSES

Traditionally, direct physical measurement of turbulence by experimental techniques
has provided a large part of our current knowledge of turbulent flows. Physical ex-
periments provide both descriptions of specific flow fields as well as data needed in
verifying theoretical ideas. In some cases, careful scrutiny of measured data suggests
the existence of general laws requiring theoretical justification. It will become clear
below that it is more than a simple matter to perform fully satisfying measurements in
turbulent flow. The flow sensors available for measuring properties of turbulence are
beset with intrinsic difficulties of resolution, reliability, precision, and cost. Moreover,
the flow variables that can be measured are often limited, and the kinds of flows that
pose relatively few problems for experimental study are often not the ones that are en-
countered in engineering investigations or are sought to verify theoretical predictions.

Despite these obstacles, experimentalists over the last 100 years have accumulated
a large body of knowledge about the nature of many individual turbulent flows and
facets of the general physical laws governing them. Limited only by the characteris-
tics of the sensors, physical experiments can achieve extremes of Reynolds number,
geometrical complexity, and unsteadiness which so far have not been attainable by
other methods. Moreover, advances across a wide technical front in electronics, mi-
crofabrication, optics, and computer control have led to significant new advances in
devising experimental techniques. The extensive use of powerful laboratory worksta-
tions for data acquisition and analysis has made possible simultaneous multisensor
measurements at several flow locations. Impressive recent advances augur well for
very important new accomplishments in the future. Some indication of these is given
in Chapter 3.

It is only in the modern era beginning in the 1980s that advances in computational
science permitted numerical solutions to the Navier—Stokes equation to be obtained
for turbulent conditions. These, referred to as direct numerical simulations (DNS),
have become an important and growing source of new information and insights
about turbulence [1]. Within their range of applicability, which depends on having
sufficient computer storage and speed to accommodate the full range of length and
time scales active in a turbulent flow, they are generally unsurpassed for accuracy and
wealth of information obtainable. They allow for complete and satisfying analyses
of the relative importance of the terms in the averaged equations of motion. They
permit examination of the time evolution of the three-dimensional pressure field or
the life history of turbulent eddies or the calculation of multipoint correlations. As
DNS continue to evolve, they are applied to an ever-widening range of important
flows, such as jets, wakes, and mixing and boundary layers, as well as flows with



