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preface

The valuation of fixed-income securities and interest rate derivatives,
from the most simple structures to the complex structures found in the
structured finance and interest rate derivatives markets, depends on the
interest rate model and term structure model used by the investor. Interest
Rate, Term Structure, and Valuation Modeling provides a comprehensive
practitioner-oriented treatment of the various interest rate models, term
structure models, and valuation models. 

The book is divided into three sections. Section One covers interest
rate and term structure modeling. In Chapter 1, Oren Cheyette provides
an overview of the principles of valuation algorithms and the characteris-
tics that distinguish the various interest rate models. He then describes the
empirical evidence on interest rate dynamics, comparing a family of inter-
est rate models that closely match those in common use. The coverage
emphasizes those issues that are of principal interest to practitioners in
applying interest rate models. As Cheyette states: “There is little point in
having the theoretically ideal model if it can't actually be implemented as
part of a valuation algorithm.”

In Chapter 2, Peter Fitton and James McNatt clarify some of the
commonly misunderstood issues associated with interest rate models.
Specifically, they focus on (1) the choice between an arbitrage-free and an
equilibrium model and (2) the choice between risk neutral and realistic
parameterizations of a model. Based on these choices, they classify inter-
est rate models into four categories and then explain the proper use of
each category of interest rate model.

Stochastic differential equations (SDE) are typically used to model
interest rates. In a one-factor model, an SDE is used to represent the
short rate; in two-factor models an SDE is used for both the short rate
and the long rate. In Chapter 3 Gerald Buetow, James Sochacki, and I
review no-arbitrage interest rate models highlighting some significant
differences across models. The most significant differences are those due
to the underlying distribution and, as we stress in the chapter, indicates
the need to calibrate models to the market prior to their use. The mod-
els covered are the Ho-Lee model, the Hull-White model, the Kalotay-
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x Preface

Williams-Fabozzi model, and the Black-Derman-Toy model. The bino-
mial and trinomial formulations of these models are presented.

Moorad Choudhry presents in Chapter 4 an accessible account of the
various term structure theories that have been advanced to explain the
shape of the yield curve at any time. While no one theory explains the
term structure at all times, a combination of two of these serve to explain
the yield curve for most applications.

In Chapter 5, David Audley, Richard Chin, and Shrikant Ramamur-
thy review the approaches to term structure modeling and then present an
eclectic mixture of ideas for term structure modeling. After describing
some fundamental concepts of the term structure of interest rates and
developing a useful set of static term structure models, they describe the
approaches to extending these into dynamic models. They begin with the
discrete-time modeling approach and then build on the discussion by
introducing the continuous-time analogies to the concepts developed for
discrete-time modeling. Finally, Audley, Chin, and Ramamurthy describe
the dynamic term structure model.

The swap term structure is a key benchmark for pricing and hedging
purposes. In Chapter 6, Uri Ron details all the issues associated with the
swap term structure derivation procedure. The approach presented by
Ron leaves the user with enough flexibility to adjust the constructed term
structure to the specific micro requirements and constraints of each pri-
mary swap market.

There have been several techniques proposed for fitting the term
structure with the technique selected being determined by the require-
ments specified by the user. In general, curve fitting techniques can be
classified into two types. The first type models the yield curve using a
parametric function and is therefore referred to as a parametric tech-
nique. The second type uses a spline technique, a technique for approxi-
mating the market discount function. In Chapter 7, Rod Pienaar and
Moorad Choudhry discuss the spline technique, focussing on cubic
splines and how to implement the technique in practice.

Critical to an interest rate model is the assumed yield volatility or
term structure of yield volatility. Volatility is measured in terms of the
standard deviation or variance. In Chapter 8, Wai Lee and I look at how
to measure and forecast yield volatility and the implementation issues
related to estimating yield volatility using observed daily percentage
changes in yield. We then turn to models for forecasting volatility, review-
ing the latest statistical techniques that can be employed.

The three chapters in Section Two explain how to quantify fixed-
income risk. Factor models are used for this purpose. Empirical evidence
indicates that the change in the level and shape of the yield curve are the
major source of risk for a fixed-income portfolio. The risk associated with
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changes in the level and shape of the yield curve are referred to as term
structure risk. In Chapter 9, Robert Kuberek reviews some of the leading
approaches to term structure factor modeling (arbitrage models, principal
component models, and spot rate and functional models), provides the
examples of each type of term structure factor model, and explains the
advantages and disadvantages of each. 

While the major source of risk for a fixed-income portfolio is term
structure risk, there are other sources of risk that must be accounted for
in order to assess a portfolio’s risk profile relative to a benchmark index.
These non-term structure risks include sector risk, optionality risk, pre-
payment risk, quality risk, and volatility risk. Moreover, the risk of a
portfolio relative to a benchmark index is measured in terms of tracking
risk. In Chapter 10, Lev Dynkin and Jay Hyman present a multi-factor
risk model that includes all of these risks and demonstrates how the
model can be used to construct a portfolio, rebalance a portfolio, and
control a portfolio’s risk profile relative to a benchmark. 

A common procedure used by portfolio and risk managers to assess
the risk of a portfolio is to shift or “shock” the yield curve. The outcome
of this analysis is an assessment of a portfolio’s exposure to term struc-
ture risk. However, there is a wide range of potential yield curve shocks
that a manager can analyze. In Chapter 11, Bennet Golub and Leo Tilman
provide a framework for defining and measuring the historical plausibil-
ity of a given yield curve shock. 

Section Three covers the approaches to valuation and the measure-
ment of option-adjusted spread (OAS). Valuation models are often
referred to as OAS models. In the first chapter of Section III, Chapter 12,
Philip Obazee explains the basic building blocks for a valuation model. 

In Chapter 13, Andrew Kalotay, Michael Dorigan, and I demonstrate
how an arbitrage-free interest rate lattice is constructed and how the lat-
tice can be used to value an option-free bond. In Chapter 14, we apply the
lattice-based valuation approach to the valuation of bonds with embed-
ded options (callable bonds and putable bonds), floaters, options, and
caps/floors. In Chapter 15, Gerald Buetow and I apply the lattice-based
valuation approach to value forward start swaps and swaptions. A meth-
odology for applying the lattice-based valuation approach to value path-
dependent securities is provided by Douglas Howard in Chapter 16.

The Monte Carlo simulation approach to valuing residential mortgage-
backed securities—agency products (passthroughs, collateralized mortgage
obligations, and mortgage strips), nonagency products, and real-estate backed
asset-backed securities (home equity loan and manufactured housing loan-
backed deals) is demonstrated by Scott Richard, David Horowitz, and me
in Chapter 17. An alternative to the Monte Carlo simulation approach for
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valuing mortgage products is presented in Chapter 18 by Alexander Levin.
The approach he suggests uses low-dimensional grids.

In the last chapter, Chapter 19, the effect of mean reversion on the
value of a security and the option-adjusted spread is discussed by David
Audley and Richard Chin. 

I believe this book will be a valuable reference source for practitioners who
need to understand the critical elements in the valuation of fixed-income
securities and interest rate derivatives and the measurement of interest
rate risk.

I wish to thank the authors of the chapters for their contributions. A
book of this type by its very nature requires the input of specialists in a
wide range of technical topics and I believe that I have assembled some of
the finest in the industry.

                                                                          Frank J. Fabozzi
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CHAPTER 1

3

Interest Rate Models
Oren Cheyette, Ph.D.

Vice President
Fixed Income Research

BARRA, Inc.

n interest rate model is a probabilistic description of the future evolu-
tion of interest rates. Based on today’s information, future interest rates

are uncertain: An interest rate model is a characterization of that uncer-
tainty. Quantitative analysis of securities with rate dependent cash flows
requires application of such a model in order to find the present value of
the uncertainty. Since virtually all financial instruments other than default-
and option-free bonds have interest rate sensitive cash flows, this matters to
most fixed-income portfolio managers and actuaries, as well as to traders
and users of interest rate derivatives.

For financial instrument valuation and risk estimation one wants to
use only models that are arbitrage free and matched to the currently
observed term structure of interest rates. “Arbitrage free” means just that
if one values the same cash flows in two different ways, one should get the
same result. For example, a 10-year bond putable at par by the holder in
5 years can also be viewed as a 5-year bond with an option of the holder
to extend the maturity for another 5 years. An arbitrage-free model will
produce the same value for the structure viewed either way. This is also
known as the law of one price. The term structure matching condition
means that when a default-free straight bond is valued according to the
model, the result should be the same as if the bond’s cash flows are simply
discounted according to the current default-free term structure. A model
that fails to satisfy either of these conditions cannot be trusted for general
problems, though it may be usable in some limited context.

A
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4 INTEREST RATE AND TERM STRUCTURE MODELING

For equity derivatives, lognormality of prices (leading to the Black-
Scholes formula for calls and puts) is the standard starting point for
option calculations. In the fixed-income market, unfortunately, there is
no equally natural and simple assumption. Wall Street dealers routinely
use a multiplicity of models based on widely varying assumptions in dif-
ferent markets. For example, an options desk most likely uses a version
of the Black formula to value interest rate caps and floors, implying an
approximately lognormal distribution of interest rates. A few feet away,
the mortgage desk may use a normal interest rate model to evaluate
their passthrough and CMO durations. And on the next floor, actuaries
may use variants of both types of models to analyze their annuities and
insurance policies.

It may seem that one’s major concern in choosing an interest rate
model should be the accuracy with which it represents the empirical vol-
atility of the term structure of rates, and its ability to fit market prices of
vanilla derivatives such as at-the-money caps and swaptions. These are
clearly important criteria, but they are not decisive. The first criterion is
hard to pin down, depending strongly on what historical period one
chooses to examine. The second criterion is easy to satisfy for most
commonly used models, by the simple (though unappealing) expedient
of permitting predicted future volatility to be time dependent. So, while
important, this concern doesn’t really do much to narrow the choices. 

A critical issue in selecting an interest rate model is, instead, ease of
application. For some models it is difficult or impossible to provide effi-
cient valuation algorithms for all financial instruments of interest to a
typical investor. Given that one would like to analyze all financial
instruments using the same underlying assumptions, this is a significant
problem. At the same time, one would prefer not to stray too far from
economic reasonableness—such as by using the Black-Scholes formula
to value callable bonds. These considerations lead to a fairly narrow
menu of choices among the known interest rate models.

The organization of this chapter is as follows. In the next section I
provide a (brief) discussion of the principles of valuation algorithms.
This will give a context for many of the points made in the third section,
which provides an overview of the various characteristics that differen-
tiate interest rate models. Finally, in the fourth section I describe the
empirical evidence on interest rate dynamics and provide a quantitative
comparison of a family of models that closely match those in common
use. I have tried to emphasize those issues that are primarily of interest
for application of the models in practical settings. There is little point in
having the theoretically ideal model if it can’t actually be implemented
as part of a valuation algorithm.
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Interest Rate Models 5

VALUATION

Valuation algorithms for rate dependent contingent claims are usually
based on a risk neutral formula, which states that the present value of
an uncertain cash flow at time T is given by the average over all interest
rate scenarios of the scenario cash flow divided by the scenario value at
time T of a money market investment of $1 today.1 More formally, the
value of a security is given by the expectation (average) over interest
rate scenarios

(1)

where Ci is the security’s cash flows and Mi is the money market account
value at time ti in each scenario, calculated by assuming continual rein-
vestment at the prevailing short rate.

The probability weights used in the average are chosen so that the
expected rate of return on any security over the next instant is the same,
namely the short rate. These are the so-called “risk neutral” probability
weights: They would be the true weights if investors were indifferent to
bearing interest rate risk. In that case, investors would demand no
excess return relative to a (riskless) money market account in order to
hold risky positions—hence equation (1).

It is important to emphasize that the valuation formula is not
dependent on any assumption of risk neutrality. Financial instruments
are valued by equation (1) as if the market were indifferent to interest
rate risk and the correct discount factor for a future cash flow were the
inverse of the money market return. Both statements are false for the
real world, but the errors are offsetting: A valuation formula based on
probabilities implying a nonzero market price of interest rate risk and
the corresponding scenario discount factors would give the same value.

There are two approaches to computing the average in equation (1):
by direct brute force evaluation, or indirectly by solving a related differ-
ential equation. The brute force method is usually called the Monte
Carlo method. It consists of generating a large number of possible inter-
est rate scenarios based on the interest rate model, computing the cash
flows and money market values in each one, and averaging. Properly
speaking, only path generation based on random numbers is a Monte
Carlo method. There are other scenario methods—e.g., complete sam-
pling of a tree—that do not depend on the use of random numbers.

1 The money market account is the numeraire.

P E
Ci

Mi
-------

i
∑=
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6 INTEREST RATE AND TERM STRUCTURE MODELING

Given sufficient computer resources, the scenario method can tackle
essentially any type of financial instrument.2

A variety of schemes are known for choosing scenario sample paths
efficiently, but none of them are even remotely as fast and accurate as the
second technique. In certain cases (discussed in more detail in the next sec-
tion) the average in equation (1) obeys a partial differential equation—like
the one derived by Black and Scholes for equity options—for which there
exist fast and accurate numerical solution methods, or in special cases even
analytical solutions. This happens only for interest rate models of a particu-
lar type, and then only for certain security types, such as caps, floors, swap-
tions, and options on bonds. For securities such as mortgage passthroughs,
CMOs, index amortizing swaps, and for some insurance policies and annu-
ities, simulation methods are the only alternative.

MODEL TAXONOMY

The last two decades have seen the development of a tremendous profu-
sion of models for valuation of interest rate sensitive financial instruments.
In order to better understand these models, it is helpful to recognize a
number of features that characterize and distinguish them. These are fea-
tures of particular relevance to practitioners wishing to implement valua-
tion algorithms, as they render some models completely unsuitable for
certain types of financial instruments.3 The following subsections enumer-
ate some of the major dimensions of variation among the different models. 

One- versus Multi-Factor
In many cases, the value of an interest rate contingent claim depends, effec-
tively, on the prices of many underlying assets. For example, while the pay-
off of a caplet depends only on the reset date value of a zero coupon bond
maturing at the payment date (valued based on, say, 3-month LIBOR), the
payoff to an option on a coupon bond depends on the exercise date values
of all of the bond’s remaining interest and principal payments. Valuation of
such an option is in principle an inherently multidimensional problem.

Fortunately, in practice these values are highly correlated. The degree
of correlation can be quantified by examining the covariance matrix of

2 This is true even for American options. For a review see P. Boyle, M. Broadie, and
P. Glasserman, “Monte Carlo Methods for Security Pricing,” Journal of Economic
Dynamics and Control (1997), pp. 1267–1322.
3 There is, unfortunately, a version of Murphy’s law applicable to interest rate mod-
els, which states that the computational tractability of a model is inversely propor-
tional to its economic realism.
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Interest Rate Models 7

changes in spot rates of different maturities. A principal component
analysis of the covariance matrix decomposes the motion of the spot
curve into independent (uncorrelated) components. The largest principal
component describes a common shift of all interest rates in the same
direction. The next leading components are a twist, with short rates
moving one way and long rates the other, and a “butterfly” motion, with
short and long rates moving one way, and intermediate rates the other.
Based on analysis of weekly data from the Federal Reserve H15 series of
benchmark Treasury yields from 1983 through 1995, the shift compo-
nent accounts for 84% of the total variance of spot rates, while twist and
butterfly account for 11% and 4%, leaving about 1% for all remaining
principal components.

The shift factor alone explains a large fraction of the overall move-
ment of spot rates. As a result, valuation can be reduced to a one factor
problem in many instances with little loss of accuracy. Only securities
whose payoffs are primarily sensitive to the shape of the spot curve
rather than its overall level (such as dual index floaters, which depend
on the difference between a long and a short rate) will not be modeled
well with this approach. 

In principle it is straightforward to move from a one-factor model
to a multi-factor one. In practice, though, implementations of multi-factor
valuation models can be complicated and slow, and require estimation
of many more volatility and correlation parameters than are needed for
one-factor models, so there may be some benefit to using a one-factor
model when possible. The remainder of this chapter will focus on one-
factor models.4

Exogenous versus Endogenous Term Structure
The first interest rate models were not constructed so as to fit an arbi-
trary initial term structure. Instead, with a view towards analytical sim-
plicity, the Vasicek5 and Cox-Ingersoll-Ross6 (CIR) models contain a few
constant parameters that define an endogenously specified term struc-
ture. That is, the initial spot curve is given by an analytical formula in
terms of the model parameters. These are sometimes also called “equilib-
rium” models, as they posit yield curves derived from an assumption of

4 For an exposition of two-factor models, see D.F. Babbel and C.B. Merrill, Valua-
tion of Interest Sensitive Financial Instruments (New Hope, PA: Frank J. Fabozzi As-
sociates and Society of Actuaries, 1996).
5 O. Vasicek, “An Equilibrium Characterization of the Term Structure,” Journal of
Financial Economics (November 1977).
6 J.C. Cox, J.E. Ingersoll Jr., and S.A. Ross, “A Theory of the Term Structure of In-
terest Rates,” Econometrica (March 1985).
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8 INTEREST RATE AND TERM STRUCTURE MODELING

economic equilibrium based on a given market price of risk and other
parameters governing collective expectations.

For dynamically reasonable choices of the parameters—values that
give plausible long-run interest rate distributions and option prices—the
term structures achievable in these models have far too little curvature to
accurately represent typical empirical spot rate curves. This is because the
mean reversion parameter, governing the rate at which the short rate
reverts towards the long-run mean, also governs the volatility of long-
term rates relative to the volatility of the short rate—the “term structure
of volatility.” To achieve the observed level of long-rate volatility (or to
price options on long-term securities well) requires that there be relatively
little mean reversion, but this implies low curvature yield curves. This
problem can be partially solved by moving to a multi-factor framework—
but at a significant cost as discussed earlier. These models are therefore
not particularly useful as the basis for valuation algorithms—they simply
have too few degrees of freedom to faithfully represent real markets.

To be used for valuation, a model must be calibrated to the initial
spot rate curve. That is, the model structure must accommodate an
exogenously determined spot rate curve, typically given by fitting to
bond prices, or sometimes to futures prices and swap rates. All models
in common use are of this type.

There is a “trick” invented by Dybvig that converts an endogenous
model to a calibrated exogenous one.7 The trick can be viewed as split-
ting the nominal interest rate into two parts: the stochastic part mod-
eled endogenously, and a non-stochastic drift term, which compensates
for the mismatch of the endogenous term structure and the observed
one. (BARRA has used this technique to calibrate the CIR model in its
older fixed-income analytics.) The price of this method is that the vola-
tility function is no longer a simple function of the nominal interest rate.

Short Rate versus Yield Curve
The risk neutral valuation formula requires that one know the sequence
of short rates for each scenario, so an interest rate model must provide
this information. For this reason, many interest rate models are simply
models of the stochastic evolution of the short rate. A second reason for
the desirability of such models is that they have the Markov property,
meaning that the evolution of the short rate at each instant depends only
on its current value—not on how it got there. The practical significance
of this is that, as alluded to in the previous section, the valuation prob-

7 P. Dybvig, “Bond and Bond Option Pricing Based on the Current Term Structure,”
in M. A. H. Dempster and S. Pliska (eds.), Mathematics of Derivative Securities
(Cambridge, U.K.: Cambridge University Press, 1997).

1-Cheyette  Page 8  Thursday, August 29, 2002  9:58 AM



Interest Rate Models 9

lem for many types of financial instruments can be reduced to solving a
partial differential equation, for which there exist efficient analytical and
numerical techniques. To be amenable to this calculation technique, a
financial instrument’s cash flow at time t must depend only on the state
of affairs at that time, not on how the evolution occurred prior to t, or it
must be equivalent to a portfolio of such securities (for example, a call-
able bond is a position long a straight bond and short a call option). 

Short-rate models have two parts. One specifies the average rate of
change (“drift”) of the short rate at each instant; the other specifies the
instantaneous volatility of the short rate. The conventional notation for
this is

(2)

The left-hand side of this equation is the change in the short rate over the
next instant. The first term on the right is the drift multiplied by the size
of the time step. The second is the volatility multiplied by a normally dis-
tributed random increment. For most models, the drift component must
be determined through a numerical technique to match the initial spot
rate curve, while for a small number of models there exists an analytical
relationship. In general, there exists a no-arbitrage relationship linking
the initial forward rate curve, the volatility 

 

σ(r,t), the market price of
interest rate risk, and the drift term 

 

µ(r,t). However, since typically one
must solve for the drift numerically, this relationship plays no role in
model construction. Differences between models arise from different
dependences of the drift and volatility terms on the short rate. 

For financial instruments whose cash flows don’t depend on the
interest rate history, the expectation formula (1) for present value obeys
the Feynman-Kac equation

(3)

where, for example, Pr denotes the partial derivative of P with respect to r,
c is the payment rate of the financial instrument, and 

 

λ, which can be time
and rate dependent, is the market price of interest rate risk. 

The terms in this equation can be understood as follows. In the absence
of uncertainty (

 

σ = 0), the equation involves four terms. The last three
assert that the value of the security increases at the risk-free rate (rP), and
decreases by the amount of any payments (c). The term (

 

µ − λ)Pr accounts
for change in value due to the change in the term structure with time, as
rates move up the forward curve. In the absence of uncertainty it is easy to

dr t( ) µ r t,( )dt σ r t,( )dz t( )+=

1
2
---σ2Prr µ λ–( )Pr Pt rP– c+ + + 0=
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10 INTEREST RATE AND TERM STRUCTURE MODELING

express (

 

µ − λ) in terms of the initial forward rates. In the presence of
uncertainty this term depends on the volatility as well, and we also have the
first term, which is the main source of the complexity of valuation models. 

The Vasicek and CIR models are models of the short rate. Both have
the same form for the drift term, namely a tendency for the short rate to
rise when it is below the long-term mean, and fall when it is above. That
is, the short-rate drift has the form 

 

µ = κ(θ − r), where r is the short rate
and

 

κ and 

 

θ are the mean reversion and long-term rate constants. The
two models differ in the rate dependence of the volatility: it is constant
(when expressed as points per year) in the Vasicek model, and propor-
tional to the square root of the short rate in the CIR model. 

The Dybvig-adjusted Vasicek model is the mean reverting generali-
zation of the Ho-Lee model,8 also known as the mean reverting Gauss-
ian (MRG) model or the Hull-White model.9 The MRG model has
particularly simple analytical expressions for values of many assets—in
particular, bonds and European options on bonds. Like the original
Vasicek model, it permits the occurrence of negative interest rates with
positive probability. However, for typical initial spot curves and volatil-
ity parameters, the probability of negative rates is quite small.

Other popular models of this type are the Black-Derman-Toy
(BDT)10 and Black-Karasinski11 (BK) models, in which the volatility is
proportional to the short rate, so that the ratio of volatility to rate level
is constant. For these models, unlike the MRG and Dybvig-adjusted
CIR models, the drift term is not simple. These models require numeri-
cal fitting to the initial interest rate and volatility term structures. The
drift term is therefore not known analytically. In the BDT model, the
short-rate volatility is also linked to the mean reversion strength (which
is also generally time dependent) in such a way that—in the usual situa-
tion where long rates are less volatile than the short rate—the short-rate
volatility decreases in the future. This feature is undesirable: One
doesn’t want to link the observation that the long end of the curve has
relatively low volatility to a forecast that in the future the short rate will

8 T.S.Y. Ho and S.B. Lee, “Term Structure Movements and Pricing Interest Rate
Contingent Claims,” Journal of Finance (December 1986); and, J. Hull and A.
White, “Pricing Interest Rate Derivative Securities,” The Review of Financial Stud-
ies, 3:4 (1990).
9 This model was also derived in F. Jamshidian, “The One-Factor Gaussian Interest
Rate Model: Theory and Implementation,” Merrill Lynch working paper, 1988.
10 F. Black, E. Derman and W. Toy, “A One Factor Model of Interest Rates and its
Application to Treasury Bond Options,” Financial Analysts Journal (January/Febru-
ary 1990).
11 F. Black and P. Karasinski, “Bond and Option Prices when Short Rates are Log-
normal,” Financial Analysts Journal (July/August 1992).
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Interest Rate Models 11

become less volatile. This problem motivated the development of the BK
model in which mean reversion and volatility are delinked.

All of these models are explicit models of the short rate alone. It
happens that in the Vasicek and CIR models (with or without the Dyb-
vig adjustment) it is possible to express the entire forward curve as a
function of the current short rate through fairly simple analytical for-
mulas. This is not possible in the BDT and BK models, or generally in
other models of short-rate dynamics, other than by highly inefficient
numerical techniques. Indeed, it is possible to show that the only short-
rate models consistent with an arbitrary initial term structure for which
one can find the whole forward curve analytically are in a class that
includes the MRG and Dybvig-adjusted CIR models as special cases,
namely where the short-rate volatility has the form12

.

While valuation of certain assets (e.g., callable bonds) does not require
knowledge of longer rates, there are broad asset classes that do. For
example, mortgage prepayment models are typically driven off a long-
term Treasury par yield, such as the 10-year rate. Therefore a generic
short-rate model such as BDT or BK is unsuitable if one seeks to analyze
a variety of assets in a common interest rate framework.

An alternative approach to interest rate modeling is to specify the
dynamics of the entire term structure. The volatility of the term structure is
then given by some specified function, which most generally could be a
function of time, maturity, and spot rates. A special case of this approach
(in a discrete time framework) is the Ho-Lee model mentioned earlier, for
which the term structure of volatility is a parallel shift of the spot rate
curve, whose magnitude is independent of time and the level of rates. A
completely general continuous time, multi-factor framework for construct-
ing such models was given by Heath, Jarrow, and Morton (HJM).13

It is sometimes said that all interest rate models are HJM models. This
is technically true: In principle, every arbitrage-free model of the term struc-
ture can be described in their framework. In practice, however, it is impossi-
ble to do this analytically for most short-rate Markov models. The only
ones for which it is possible are those in the MRG-CIR family described

12 A. Jeffrey, “Single Factor Heath-Jarrow-Morton Term Structure Models Based on
Markov Spot Interest Rate Dynamics,” Journal of Financial and Quantitative Anal-
ysis, 30:4 (December 1995). 
13 D. Heath, R. Jarrow, and A. Morton, “Bond Pricing and the Term Structure of
Interest Rates: A New Methodology for Contingent Claims Valuation,” Economet-
rica, 60:1 (January 1992).

σ r t,( ) σ1 t( ) σ2 t( )r+=
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12 INTEREST RATE AND TERM STRUCTURE MODELING

earlier. The BDT and BK models, for instance, cannot be translated to the
HJM framework other than by impracticable numerical means. To put a
model in HJM form, one must know the term structure of volatility at all
times, and this is generally not possible for short-rate Markov models.

If feasible, the HJM approach is clearly very attractive, since one
knows now not just the short rate but also all longer rates as well. In addi-
tion, HJM models are very “natural,” in the sense that the basic inputs to
the model are the initial term structure of interest rates and a term structure
of interest rate volatility for each independent motion of the yield curve. 

The reason for the qualification in the last paragraph is that a
generic HJM model requires keeping track of a potentially enormous
amount of information. The HJM framework imposes no structure other
than the requirement of no-arbitrage on the dynamics of the term struc-
ture. Each forward rate of fixed maturity evolves separately, so that one
must keep track of each one separately. Since there are an infinite num-
ber of distinct forward rates, this can be difficult. This difficulty occurs
even in a one factor HJM model, for which there is only one source of
random movement of the term structure. A general HJM model does not
have the Markov property that leads to valuation formulas expressed as
solutions to partial differential equations. This makes it impossible to
accurately value interest rate options without using huge amounts of
computer time, since one is forced to use simulation methods.

In practice, a simulation algorithm breaks the evolution of the term
structure up into discrete time steps, so one need keep track of and simulate
only forward rates for the finite set of simulation times. Still, this can be a
large number (e.g., 360 or more for a mortgage passthrough), and this com-
putational burden, combined with the inefficiency of simulation methods,
has prevented general HJM models from coming into more widespread use.

Some applications require simulation methods because the assets’
structures (e.g., mortgage-backed securities) are not compatible with
differential equation methods. For applications where one is solely
interested in modeling such assets, there exists a class of HJM models
that significantly simplify the forward rate calculations.14 The simplest
version of such models, the “two state Markov model,” permits an arbi-
trary dependence of short-rate volatility on both time and the level of
interest rates, while the ratio of forward-rate volatility to short-rate vol-
atility is solely a function of term. That is, the volatility of ƒ(t,T), the
term T forward rate at time t takes the form

14 O. Cheyette, “Term Structure Dynamics and Mortgage Valuation,” Journal of
Fixed Income (March 1992). The two state Markov model was also described in P.
Ritchken and L. Sankarasubramanian, “Volatility Structure of Forward Rates and
the Dynamics of the Term Structure,” Mathematical Finance, 5(1) (1995), pp. 55–72.
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(4)

where σ(r,t) = σf(r,t,t) is the short-rate volatility and k(t) determines the
mean reversion rate or equivalently, the rate of decrease of forward rate
volatility with term. The evolution of all forward rates in this model can
be described in terms of two state variables: the short rate (or any other
forward or spot rate), and the slope of the forward curve at the origin.
The second variable can be expressed in terms of the total variance
experienced by a forward rate of fixed maturity by the time it has
become the short rate. The stochastic evolution equations for the two
state variables can be written as

(5)

where  is the deviation of the short rate from the ini-
tial forward rate curve. The state variable V(t) has initial value V(0)=0;
its evolution equation is non-stochastic and can be integrated to give

(6)

In terms of these state variables, the forward curve is given by

(7)

where

is a deterministic function.
Instead of having to keep track of hundreds of forward rates, one

need only model the evolution of the two state variables. Path indepen-
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14 INTEREST RATE AND TERM STRUCTURE MODELING

dent asset prices also obey a partial differential equation in this model,
so it appears possible, at least in principle, to use more efficient numeri-
cal methods. The equation, analogous to equation (3), is

. (8)

Unlike equation (3), for which one must use the equation itself
applied to bonds to solve for the coefficient µ−λ, here the coefficient
functions are all known in terms of the initial data: the short-rate vola-
tility and the initial forward curve. This simplification has come at the
price of adding a dimension, as we now have to contend also with a
term involving the first derivative with respect to V, and so the equation
is much more difficult to solve efficiently by standard techniques. 

In the special case where σ(r,t) is independent of r, this model is the
MRG model mentioned earlier. In this case, V is a deterministic function of
t, so the PV term disappears from equation (8), leaving a two-dimensional
equation that has analytical solutions for European options on bonds,
and straightforward numerical techniques for valuing American bond
options. Since bond prices are lognormally distributed in this model, it
should be no surprise that the formula for options on pure discount
bounds (PDB’s) looks much like the Black-Scholes formula. The value of
a call with strike price K, exercise date t on a PDB maturing at time T is
given by

, (9)

where

,

,

N(x) is the Gaussian distribution, and P(t) and P(T) are prices of PDB’s
maturing at t and T. (The put value can be obtained by put-call parity.)
Options on coupon bonds can be valued by adding up a portfolio of
options on PDBs, one for each coupon or principal payment after the
exercise date, with strike prices such that they are all at-the-money at
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