

Common Warehouse Metamodel Developer's Guide

John Poole, Dan Chang, Douglas Tolbert, and David Mellor

Dear Valued Customer,

We realize you're a busy professional with deadlines to hit. Whether your goal is to learn a new technology or solve a critical problem, we want to be there to lend you a hand. Our primary objective is to provide you with the insight and knowledge you need to stay atop the highly competitive and everchanging technology industry.

Wiley Publishing, Inc., offers books on a wide variety of technical categories, including security, data warehousing, software development tools, and networking — everything you need to reach your peak. Regardless of your level of expertise, the Wiley family of books has you covered.

- For Dummies[®] The *fun* and *easy* way[®] to learn
- The Weekend Crash Course[®] The *fastest* way to learn a new tool or technology
- VisualTM For those who prefer to learn a new topic *visually*
- The Bible The 100% comprehensive tutorial and reference
- The Wiley Professional list Practical and reliable resources for IT professionals

The book you now hold, *Common Warehouse Metamodel Developer's Guide*, is your complete and authoritative guide to developing datawarehousing and business intelligence applications via the Common Warehouse Metamodel (CWM) framework. Written by several of the core developers of the CWM standard, the book will show you all the steps you'll need for planning and implementing a CWM-enabled datawarehousing environment. The authors provide you with detailed guidelines and in-depth code examples that will allow you to put the Common Warehouse Metamodel to work in your business.

Our commitment to you does not end at the last page of this book. We'd want to open a dialog with you to see what other solutions we can provide. Please be sure to visit us at www.wiley.com/compbooks to review our complete title list and explore the other resources we offer. If you have a comment, suggestion, or any other inquiry, please locate the "contact us" link at www.wiley.com.

Finally, we encourage you to review the following page for a list of Wiley titles on related topics. Thank you for your support and we look forward to hearing from you and serving your needs again in the future.

Sincerely,

Richard K Susdley

Richard K. Swadley / Vice President & Executive Group Publisher Wiley Technology Publishing

Wiley, For Dummies, Weekend Crash Course, Visual and related trademarks, logos and trade dress are trademarks of Wiley Publishing, Inc. All other trademarks are property of their respective owners.

> more information on related titles

Also from OMG Press

Available from Wiley Publishing

0471384291 Create more powerful, flexible applications using a new XML-based standard

0471386804 Use UML to dramatically improve J3EE applications

An Introduction to the Standard for Data Warehouse Integration

> John Poole, Dan Chang, Douglas Tolbert, and David Mellor

0471200522

An introduction to the standard for data warehouse integration

Model Driven Architecture™

Applying MDA™ to Enterprise Computing David S. Frankel 0471319201 Insights on realworld application MDA from the lead architect of the specification

0471202436 Provides in-depth examples showing how to build CWM applications

Available at your favorite bookseller or visit www.wiley.com/compbooks

Common Warehouse Metamodel Developer's Guide

Common Warehouse Metamodel Developer's Guide

John Poole, Dan Chang, Douglas Tolbert, and David Mellor

Publisher: Joe Wikert Executive Editor: Robert M. Elliott Assistant Developmental Editor: Emilie Herman Managing Editor: Pamela Hanley New Media Editor: Brian Snapp Text Design & Composition: Wiley Composition Services

Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where Wiley Publishing, Inc., is aware of a claim, the product names appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration.

This book is printed on acid-free paper.⊗

Copyright © 2003 by John Poole, Dan Chang, Douglas Tolbert, and David Mellor. All rights reserved.

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-mail: permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

ISBN 0-471-20243-6

Trademarks: Wiley, the Wiley Publishing logo and related trade dress are trademarks or registered trademarks of Wiley Publishing, Inc., in the United States and other countries, and may not be used without written permission. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Advance Praise for *Common Warehouse Metamodel Developer's Guide*

"CWM Developer's Guide breaks new ground by providing an in-depth overview of Model Driven Integration for the data warehouse and Business Intelligence tool chain using innovative meta data design patterns. The use of UML and MOF to define platform-independent models while simultaneously targeting both XML and Java-based meta data management using XMI and JMI is supported with numerous examples. Software architects, CTOs, systems integrators, and vendors grappling with the complexity of tool, data, and application integration can learn firsthand the power of OMG Model Driven Architecture from this pioneering book."

Sridhar Iyengar IBM Distinguished Engineer, OMG Architecture Board

"The first CWM book, *Common Warehouse Metamodel: An Introduction*, has become a great complement to the CWM specifications. This follow-on book delves even deeper into the implementation world, which is critical to the success of any standard. This developer's guide establishes a key transition from 'paper standards' to actual adopted standards for tool integration.

Common Warehouse Metamodel Developer's Guide is not only well written, but also well focused on applications related to the standards. I highly recommend this second book to anyone who wants to transform standards into reality in their product strategy."

Christian H. Bremeau President and CEO, Meta Integration Technology, Inc. (MITI) "Common Warehouse Metamodel Developer's Guide is a highly practical guide to a powerful new way of integrating systems in the data warehousing and business analysis domains. By leveraging this new standard for modeling and exchanging application, tool, and instance meta data, the authors show how representing common business and domain concepts as higherlevel abstractions can solve complex, real-world integration problems.

Model-based development has the potential to vastly simplify the increasingly complex issues faced by developers in building integrated solutions in today's distributed, heterogeneous environments, and CWM is the leading example of the success of this approach."

Chuck Mosher Staff Engineer, Market Development Engineering, Sun Microsystems

"This book illustrates how CWM is used not only to describe complex data warehousing systems, but also to facilitate interoperability and integration. It is an excellent guide for anyone interested in developing platformindependent domain models and leveraging domain models for integration and information exchange."

Ravi Dirckze JMI 1.0 Specification Lead and Senior Software Engineer, Unisys Corporation

OMG Advisory Board

David Frankel Chief Consulting Architect IONA

Sridhar Iyengar Distinguished Engineer IBM Corporation

Cris Kobryn Chief Technologist Telelogic

Nilo Mitra, Ph.D. Principal System Engineer Ericsson **Jishnu Mukerji** Senior Systems Architect Hewlett-Packard Company

Jon Siegel, Ph.D. Vice President, Technology Transfer Object Management Group, Inc.

Richard Mark Soley, Ph.D. Chairman and Chief Executive Officer Object Management Group, Inc.

About the OMG

The Object Management Group (OMG) is an open membership, not-for-profit consortium that produces and maintains computer industry specifications for interoperable applications. To achieve this goal, the OMG specifies open standards for every aspect of distributed computing from analysis and design, through infrastructure, to application objects and components defined on virtually every enterprise middleware platform. OMG's membership roster includes virtually every large company in the computer industry, and hundreds of smaller ones. Most of the companies that shape enterprise and Internet computing today are represented on OMG's Board of Directors.

OMG's flagship specification, and the basis for future OMG specifications, is the multi-platform Model Driven Architecture (MDA). Unifying the modeling and middleware spaces, the MDA supports applications over their entire lifecycle from Analysis and Design, through implementation and deployment, to maintenance and evolution. Based on normative, platform-independent Unified Modeling Language (UML) models, MDA-based applications and standards may be expressed and implemented, equivalently, on multiple middleware platforms; implementations are produced automatically, for the most part, by MDA-enabled tools, which also generate cross-platform invocations making for a truly interoperable environment. Because the UML models remain stable as the technological landscape changes around them over time, MDA-based development maximizes software ROI as it integrates applications across the enterprise, and one enterprise with another. Adopted by members as the basis for OMG specifications in September 2001, the MDA is truly a unique advance in distributed computing. To learn more about the MDA, see www.omg.org/mda.

OMG's modeling specifications form the foundation for the MDA. These include the UML, the MetaObject Facility (MOF), XML Metadata Interchange

(XMI), and the Common Warehouse Metamodel (CWM). The industry's standard for representation of analysis and design, the UML defines Use Case and Activity diagrams for requirements gathering, Class and Object diagrams for design, Package and Subsystem diagrams for deployment, and six other diagram types. The MOF defines a standard metamodel for applications, allowing UML models to be interchanged among tools and repositories; and XMI standardizes the format for these interchanges. Finally, CWM establishes metamodels in the field of data warehousing, completing OMG's standardization in the modeling space.

The Common Object Request Broker Architecture (CORBA) is OMG's vendor-neutral, system-independent middleware standard. Based on the OMG/ISO Interface Definition language (OMG IDL) and the Internet Inter-ORB Protocol (IIOP), CORBA is a mature technology represented on the market by more than 70 ORBs (Object Request Brokers) plus hundreds of other products. Scalable to Internet and Enterprise levels, CORBA more than meets business computing requirements through its robust services providing directory, distributed event handling, transactionality, fault tolerance, and security. Specialized versions of CORBA form the basis for distributed Realtime computing, and distributed embedded systems.

Building on this foundation, OMG Domain Facilities standardize common objects throughout the supply and service chains in industries such as Telecommunications, Healthcare, Manufacturing, Transportation, Finance/Insurance, Biotechnology, Utilities, Space, and Military and Civil Defense Logistics. OMG members are now extending these Domain Facilities, originally written in OMG IDL and restricted to CORBA, into the MDA by constructing UML models corresponding to their underlying architecture; standard MDA procedures will then produce standards and implementations on such platforms as Web Services, XML/SOAP, Enterprise JavaBeans, and others. OMG's first MDA-based specification, the Gene Expression Facility, was adopted less than six months after the organization embraced the MDA; based on a detailed UML model, this specification is implemented entirely in the popular language XML.

In summary, the OMG provides the computing industry with an open, vendor-neutral, proven process for establishing and promoting standards. OMG makes all of its specifications available without charge from its Web site, www.omg.org. Delegates from the hundreds of OMG member companies convene at week-long meetings held five times each year at varying sites around the world, to advance OMG technologies. The OMG welcomes guests to their meetings; for an invitation, send your email request to info@omg.org or see www.omg.org/news/meetings/tc/guest.htm.

Membership in OMG is open to any company, educational institution, or government agency. For more information on the OMG, contact OMG headquarters by telephone at +1-781-444-0404, by fax at +1-781-444-0320, by email to info@omg.org, or on the Web at www.omg.org. John: To Robert J. Flynn, teacher and friend.

Dan: To Don Haderle and Jo Chang, without whose vision and support CWM would not exist.

Doug: For my parents, Ken & Jeanetta, who started all this for me.

David: To my wife Michelle, my daughter Marie, my mother Annette, and my sister and brother, Debbie and Roger.

Contents

Acknowled	gments	xxiii
Introductio	n	XXV
About the A	Authors	xxxiii
Part 1	Introduction	
Chapter 1	Introducing CWM: Model-Based Integration of the Supply Chain Integrating the Information Supply Chain Components of the Information Supply Chain The Economics of Integrating the ISC CWM: Model-Based Meta Data Integration The Model-Based Approach to Meta Data An Overview of CWM Summary	3 4 4 6 10 10 10 16 22
Chapter 2	An Architectural Survey of CWM The CWM Metamodel Packages The Object Model Layer The Core Package Behavioral Package Relationships Package Instance Package Foundation Layer Business Information Package DataTypes Package Expressions Package Keys and Indexes Package	25 26 27 27 31 31 33 34 34 36 39 41

	Software Deployment Package	43
	TypeMapping Package	44
	Resource Layer	46
	Object Package	46
	Relational Package	47
	Record Package	49
	Multidimensional Package	50
	XML Package	51
	Analysis Layer	53
	Transformation Package	54
	OLAP Package	57
	Data Mining Package	59
	Information Visualization Package	60
	Business Nomenclature Package	62
	Management Layer	64
	Warehouse Process Package	64
	Warehouse Operation Package	64
	Key Architectural Concepts: Extending CWM	66
	Meta Data Reuse and Extension Based on Inheritance	67
	Lightweight Extension Mechanisms: Stereotypes and	
	TaggedValues	71
	Summary	73
Chapter 3	Modeling Meta Data Using CWM	75
	UML	77
	Building Blocks and Well-Formedness Rules	77
	Static Structure Modeling	80
	Model Management	82
	Meta Object Facility	83
	The MOF Model	84
	The CWM Metamodel	87
	How CWM Uses Inheritance to Achieve Reuse	89
	How Meta Data Links to Physical Data Resources	91
	How Resource Packages Support Instance Objects	93
	Using CWM to Model Meta Data	94
	Modeling Relational Meta Data	97 101
	Modeling Record-Based Meta Data	
	Modeling Physical Data Resources Modeling Transformation Meta Data	106 108
	Modeling OLAP Meta Data	108
	Summary	112
.		
Chapter 4	Meta Data Interchange Patterns	125
	Introducing Meta Data Interchange Patterns	126
	The Need to Establish a Common Context	107
	for Meta Data Interchange	127
	The Need to Place Boundaries on Solution Extents	134

	The Pattern-Based Approach to Meta Data Interchange	138
	Formal Definitions of Meta Data Interchange Pattern Concepts	145
	Developing Meta Data Interchange Patterns for CWM	152
	Steps for Developing Interchange Patterns	152
	Step 1: Identify the interchange problem to be solved	152
	Step 2: Propose a pattern that solves the problem	152
	Step 3: Identify several scenarios in which	
	the proposed pattern would be used	153
	Step 4: Determine how the proposed pattern reuses,	
	or otherwise relates to, known patterns	153
	Step 5: Identify the structural classification	
	of the proposed pattern	153
	Step 6: Identify the usage category of the proposed pattern	154
	Step 7: Identify the metamodel projection	155
	Step 8: Determine any restrictions on instances	
	of the projection	156
	Step 9: Determine the parameters	
	for binding pattern realizations	156
	Step 10: Validate the pattern	157
	Developing and Publishing a Pattern Specification	158
	Developing a Fundamental Pattern: Unit of Interchange	162
	Identify the interchange problem to be solved	162
	Propose a pattern that solves the problem	162
	Identify several scenarios in which the proposed	
	pattern would be used	163
	Determine how the proposed pattern reuses,	
	or otherwise relates to, known patterns	163
	Identify the structural classification of the proposed pattern	163
	Identify the usage category of the proposed pattern	163
	Identify the metamodel projection	164
	Determine any restrictions on instances of the projection	164
	Determine the parameters for binding pattern realizations	165
	Validate the pattern	166
	Summary	167
Part 2	Introducing the Vertical Models	169
Chapter 5	Data Warehouse Management Model	171
simple J	The Operational Data Store Scenario	172
	The Exemplar Operational Data Store	172
	The Relational Meta Data	174
	Database Meta Data	178
	ResultSet Meta Data	189
	The CWM Relational Package	189
	CWM Relational Dependent Classes and JMI Mappings	190
	contractional Dependent Chastes and Join Muppings	1/0

	Exporting Relational Meta Data Using CWM	190
	Simple Type	193
	Catalog and Schema	193
	Table and Column	195
	Primary and Foreign Keys	196
	Index	199
	Types of Meta Data Not Exported	201
	The CWM XMI File	201
	Exporting Relational Data Using CWM	205
	QueryColumnSet	205
	RowSet, Row, and ColumnValue	207
	The CWM XMI File	208
	The ETL Scenario	216
	The Exemplar Data Warehouse	217
	The ETL Process Meta Data	223
	The CWM Transformation Package	223
	The CWM WarehouseProcess Package	225
	Exporting ETL Meta Data Using CWM	227
	The CWM XMI File	227
	Summary	232
Chapter 6	Dimensional Model	235
	The Logical Model	237
	Dimensions, Attributes, Levels, and Hierarchies	237
	The CWM Model	238
	Defining the Dimensions and Attributes	240
	Defining Levels and Level Attributes	244
	Defining Hierarchies and Hierarchical Attributes	251
	Add the Dimensions to the Schema	263
	Defining Cubes and Measures	264
	Add the Cubes to the Schema	267
	Defining Keys	268
	Adding Keys to the Dimensions	269
	Adding Keys to the Levels	270
	Adding Keys to the Hierarchies	271
	Adding Keys to the Cubes	277
	The Physical Model	279
	A Relational Star-Schema	280
	Defining the Physical Objects	280
	Defining the Tables and Columns	280
	Adding Primary Keys and Foreign Keys	288
	Physical Deployment Models	294
	Creating the DeploymentGroup	295
	The CWM Mapping Model	296
	Mapping the Logical Model	297
	Mapping the Physical Model	312

	Creating a Second Deployment	336
	The Multidimensional Metamodel	336
	The Express Model	336
	Creating the Express Objects	338
	Adding the Second Deployment	339
	Summary	347
Chapter 7	Web-Enabled Data Warehouse Model	349
-	Introducing the Web-Enabled Data Warehouse	350
	Merging the Web and the Data Warehouse	351
	Web-Enabled Dimensional Model	354
	The Logical Clickstream Dimensions	354
	CWM Packages and Interfaces	356
	Building the Time Dimension	357
	Building the Customer Dimension	364
	Building the Product Dimension	369
	Building the Page Dimension	373
	Building the Event Dimension	377
	Building the Session Dimension	381
	Building the Referral Dimension	385
	Building the Causal Dimension	390
	Building the Entity Dimension	394
	The Logical Clickstream Analysis Cubes	400
	Session Analysis Cube	401
	Page Analysis Cube	405
	Aggregation Cube	407
	New Meta Data Patterns Developed and Cataloged	411
	Local Stereotype, Version 1.0	411
	URL	411
	Contributor	411
	Structural Classification	411
	Usage Category	411
	Intent	412
	Also Known As	412
	Motivation	412
	Applicability	412
	Projection	412
	Restriction	413
	Usage	413
	Parameters	414
	Commentary	414
	Consequences	414
	Known Uses	414
	Related Patterns	414
	Sample Solution	414

Local Type System, Version 1.0	415
URL	415
Contributor	415
Structural Classification	415
Usage Category	415
Intent	416
Also Known As	416
Motivation	416
Applicability	416
Projection	416
Restriction	418
Usage	418
Parameters	419
Commentary	419
Consequences	419
Known Uses	419
Related Patterns	419
Sample Solution	419
Surrogate Key, Version 1.0	420
URL	420
Contributor	420
Structural Classification	420
Usage Category	421
Intent	421
Also Known As	421
Motivation	421
Applicability	421
Projection	423
Restriction	423
Usage	423
Parameters	423
Commentary	423
Consequences	423
Known Uses	423
Related Patterns	424
Sample Solution	424
Star-Join, Version 1.0	424
URL	425
Contributor	425
Structural Classification	425
Usage Category	425
Intent	425
Also Known As	425
Motivation	426
Applicability	426
Projection	426

	Restriction	427
	Usage	427
	Parameters	428
	Commentary	428
	Consequences	428
	Known Uses	428
	Related Patterns	428
	Sample Solution	428
	Summary	429
Chapter 8	CWM Metastore	431
	Building a CWM Metastore	434
	Object-to-Relational Mapping Patterns	436
	A Field Guide to Object-to-Relational Mapping Patterns	438
	UML Notation Overview	438
	Relational Table Notation	439
	Manipulating Data in Metastore Tables	442
	Preserving CWM's Object Structure	444
	Data Type Mapping Patterns	447
	Simple Data Type Pattern	448
	Enumerated Data Type Pattern	448
	Class-based Data Type Pattern	452
	Class Mapping Patterns	453
	Attribute Mapping Patterns	456
	Inheritance Pattern	468
	Association Mapping Patterns	487
	One-to-One Association Pattern	491
	One-to-Many Association Pattern	495
	Many-to-Many Association Pattern	500
	Using Association Patterns	504
	Enforcing Association Multiplicities	531
	Reference Mapping Patterns	532
	MetaStore Services	538
	Transaction Management Services	539
	ClassMap Service	540
	AllOfType Services	541
	Error-Handling Services	543
	Using the Metastore in Applications	544
	Summary	554
Part 3	Implementation and Deployment	555
Chapter 9	Integration Architecture	557
	Developing a Meta Data Integration Architecture	558
	Survey of Architectural Patterns	558
	Meta Data Interconnection Architecture	559
	Meta Data Life-Cycle Architecture	567

	CWM-Based Meta Data Integration Architecture Crafting Your Own CWM Architectural Solutions	577 583
	Summary	583
Chapter 10	Interface Rendering	585
	CWM Core Classes and JMI Mappings	586
	ModelElement, Namespace, and Package	586
	Classifier, Class, Datatype, and Attribute	589
	Method and Parameter	592
	Instances	595
	Keys and Indexes	598
	CWM Relational Classes and JMI Mappings	602
	Catalog and Schema	602
	Table, View, QueryColumnSet, and Column	604
	UniqueConstraint, PrimaryKey, and ForeignKey	610
	SQLIndex and SQLIndexColumn	612
	SQL Data Types	614
	Stored Procedure	618
	Trigger	620
	Relational Instances	622
	Relational Package Proxy	623
	CWM Transformation Classes and JMI Mappings	624
	Transformation	625
	TransformationTask, TransformationStep, and	(2)
	TransformationActivity	628
	TransformationMap and Its Components	633
	CWM WarehouseProcess Classes and JMI Mappings	638
	Summary	642
Chapter 11	Implementation Development	643
	CWM Implementation	643
	Extending CWM	645
	Simple Extensions to CWM	645
	Tagged Values	646
	Stereotypes	646
	Modeled Extensions	648
	Interoperability using CWM	648
	Adapter Construction	652
	Interoperability Frameworks for CWM	654
	Transform Direct	654
	Transform Indirect	654
	Extending to Web Services	657
	CWM and W3C Standards	657
	CWM Meta Data Interchange Patterns RFP	660
	CWM Web Services RFP	660

	Developing Automated Meta Data Driven Environments	661
	The Vision	661
	The Importance of Shared Meta Data	661
	Common Services and Programming Models	663
	Platform Specification	664
	Overview of the Long-Term Vision	664
	Knowledge-Based Orientation	664
	Dynamic Architecture	665
	Adaptive Systems	665
	Summary	666
Chapter 12	Conclusions	669
Chapter 12	Conclusions CWM and MDA	669 670
Chapter 12		
Chapter 12	CWM and MDA	670
Chapter 12	CWM and MDA CWM and Other Standards	670 674
Chapter 12	CWM and MDA CWM and Other Standards OMG Standards	670 674 675
Chapter 12	CWM and MDA CWM and Other Standards OMG Standards Java Standards	670 674 675 676
Chapter 12 Bibliograph	CWM and MDA CWM and Other Standards OMG Standards Java Standards The Future of CWM Summary	670 674 675 676 677

Acknowledgments

The authors wish to acknowledge Sridhar Iyengar for his vision, foresight, and ongoing championing of the CWM effort, ever since the time of its earliest inception. The authors also wish to acknowledge the significant contributions made by both Jean-Jacques Daudenarde and David Last in the development of the CWM model.

Of course, no effort of the magnitude of CWM would ever have been possible without the hard work and contributions of many individuals, and the authors also wish to acknowledge and thank their many colleagues, both within and outside of the Object Management Group, who participated in, contributed materially to, reviewed, and strongly supported, the CWM effort.

And finally, the authors wish to express their gratitude to the fine editorial staff at Wiley Publishing Inc., who recognized the importance of this book from early on, and made its publication possible.

Introduction

Meta data is widely recognized as the single most important factor in achieving seamless integration and interoperability between dissimilar software products and applications. For software components to interoperate effectively, they must be capable of easily sharing data. And sharing data requires a common definition of how the data is structured (its organization and data types), as well as its meaning (or semantics). Since data is generally defined by meta data, having a common definition of meta data is a necessary prerequisite for achieving integration at the data level. What is required is a common language for describing or expressing meta data and an agreed-upon format or interface for exchanging meta data between components. If both a descriptive language and interchange mechanism for meta data can be standardized and agreed upon by software vendors, then the first and most fundamental roadblock to having truly interoperable systems will have been removed.

The Common Warehouse Metamodel (CWM) is an interoperability standard of the Object Management Group (OMG) that defines a common language and interchange mechanism for meta data in the data warehousing and business analysis domains. CWM provides the long-sought-after common metamodel for describing data warehousing and business analysis meta data, along with an XML-based interchange facility. It has long been acknowledged by leaders and analysts in this particular industry segment that the long-term Return on Investment (ROI) of any complex data warehousing or supply chain effort would be greatly enhanced by the standardization of just such a common metamodel and eXtensible Markup Language (XML) interchange format. CWM enables vendors to build truly interoperable databases, tools, and applications. Customers benefit by being able to select from best-of-breed product offerings and avoiding single-vendor lock-in, while remaining confident that their investments will not be diluted by the inability of diverse tools to interoperate. CWM has established itself as the meta data interchange standard of choice in the data warehousing and business analysis communities, and has been incorporated into many vendors' product suites.

From a technical standpoint, CWM extends the OMG's established metamodeling architecture to include data warehousing and business analysis domain concepts. CWM supports a model-driven approach to meta data interchange, in which formal models representing shared meta data are constructed according to the specifications of the CWM metamodel (essentially an object technology approach to achieving data warehouse integration). These models are stored and interchanged in the form of XML documents. Meta data can be defined independently of any product-specific considerations or formats. It can be stored externally to products as an information commodity within its own right, and is readily used by products as generic definitions of information structures.

Data warehousing and business analysis tools that agree on the fundamental domain concepts and relationships defined by CWM can understand a wide range of models representing particular meta data instances. Tools, products, and applications can integrate at the meta data level, because they have a common language with which to externalize their meta data and do not require knowledge of each other's proprietary information structures and interfaces. And, although CWM is focused primarily on data warehousing and business analysis, its basic components and methodologies are easily extended to include subject areas of other domains, as well.

Mission of This Book

The mission of this book is to provide a comprehensive and highly practical guide for software practitioners who need to implement CWM solutions within their software product offerings, or use CWM-enabled tools in the construction or evolution of their own corporate data warehouses, information factories, and supply chains.

As a developer's guide to developing CWM-enabled technologies and meta data integration solutions, this book is a particularly novel approach to this subject. In the spirit of Ralph Kimball's seminal work, *The Data Warehouse Toolkit* (Kimball, 1996), this book approaches the general problem of how to implement CWM by providing four highly representative