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Preface for Paperback Edition

In 1968, Part I of Detection, Estimation, and Modulation Theory [VT68] was pub-
lished. It turned out to be a reasonably successful book that has been widely used by
several generations of engineers. There were thirty printings, but the last printing
was in 1996. Volumes II and III ([VT71a], [VT71b]) were published in 1971 and fo-
cused on specific application areas such as analog modulation, Gaussian signals
and noise, and the radar-sonar problem. Volume II had a short life span due to the
shift from analog modulation to digital modulation. Volume III is still widely used
as a reference and as a supplementary text. In a moment of youthful optimism, I in-
dicated in the the Preface to Volume III and in Chapter III-14 that a short mono-
graph on optimum array processing would be published in 1971. The bibliography
lists it as a reference, Optimum Array Processing, Wiley, 1971, which has been sub-
sequently cited by several authors. After a 30-year delay, Optimum Array Process-
ing, Part IV of Detection, Estimation, and Modulation Theory will be published this
year.

A few comments on my career may help explain the long delay. In 1972, MIT
loaned me to the Defense Communication Agency in Washington, D.C. where I
spent three years as the Chief Scientist and the Associate Director of Technology. At
the end of the tour, I decided, for personal reasons, to stay in the Washington, D.C.
area. I spent three years as an Assistant Vice-President at COMSAT where my
group did the advanced planning for the INTELSAT satellites. In 1978, I became
the Chief Scientist of the United States Air Force. In 1979, Dr. Gerald Dinneen, the
former Director of Lincoln Laboratories, was serving as Assistant Secretary of De-
fense for C31. He asked me to become his Principal Deputy and I spent two years in
that position. In 1981,1 joined M/A-COM Linkabit. Linkabit is the company that Ir-
win Jacobs and Andrew Viterbi had started in 1969 and sold to M/A-COM in 1979.
I started an Eastern operation which grew to about 200 people in three years. After
Irwin and Andy left M/A-COM and started Qualcomm, I was responsible for the
government operations in San Diego as well as Washington, D.C. In 1988, M/A-
COM sold the division. At that point I decided to return to the academic world.

I joined George Mason University in September of 1988. One of my priorities
was to finish the book on optimum array processing. However, I found that I needed
to build up a research center in order to attract young research-oriented faculty and
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viii Preface for Paperback Edition

doctoral students. The process took about six years. The Center for Excellence in
Command, Control, Communications, and Intelligence has been very successful
and has generated over $300 million in research funding during its existence. Dur-
ing this growth period, I spent some time on array processing but a concentrated ef-
fort was not possible. In 1995,1 started a serious effort to write the Array Process-
ing book.

Throughout the Optimum Array Processing text there are references to Parts I
and III of Detection, Estimation, and Modulation Theory. The referenced material is
available in several other books, but I am most familiar with my own work. Wiley
agreed to publish Part I and III in paperback so the material will be readily avail-
able. In addition to providing background for Part IV, Part I is still useful as a text
for a graduate course in Detection and Estimation Theory. Part III is suitable for a
second level graduate course dealing with more specialized topics.

In the 30-year period, there has been a dramatic change in the signal processing
area. Advances in computational capability have allowed the implementation of
complex algorithms that were only of theoretical interest in the past. In many appli-
cations, algorithms can be implemented that reach the theoretical bounds.

The advances in computational capability have also changed how the material is
taught. In Parts I and III, there is an emphasis on compact analytical solutions to
problems. In Part IV, there is a much greater emphasis on efficient iterative solu-
tions and simulations. All of the material in parts I and III is still relevant. The books
use continuous time processes but the transition to discrete time processes is
straightforward. Integrals that were difficult to do analytically can be done easily in
Matlab®. The various detection and estimation algorithms can be simulated and
their performance compared to the theoretical bounds. We still use most of the prob-
lems in the text but supplement them with problems that require Matlab® solutions.

We hope that a new generation of students and readers find these reprinted edi-
tions to be useful.

HARRY L. VAN TREES
Fairfax, Virginia
June 2001



Preface

The area of detection and estimation theory that we shall study in this book
represents a combination of the classical techniques of statistical inference
and the random process characterization of communication, radar, sonar,
and other modern data processing systems. The two major areas of statis-
tical inference are decision theory and estimation theory. In the first case
we observe an output that has a random character and decide which of two
possible causes produced it. This type of problem was studied in the middle
of the eighteenth century by Thomas Bayes [1]. In the estimation theory
case the output is related to the value of some parameter of interest, and
we try to estimate the value of this parameter. Work in this area was
published by Legendre [2] and Gauss [3] in the early nineteenth century.
Significant contributions to the classical theory that we use as background
were developed by Fisher [4] and Neyman and Pearson [5] more than
30 years ago. In 1941 and 1942 Kolmogoroff [6] and Wiener [7] applied
statistical techniques to the solution of the optimum linear filtering
problem. Since that time the application of statistical techniques to the
synthesis and analysis of all types of systems has grown rapidly. The
application of these techniques and the resulting implications are the
subject of this book.

This book and the subsequent volume, Detection, Estimation, and
Modulation Theory, Part II, are based on notes prepared for a course
entitled "Detection, Estimation, and Modulation Theory," which is taught
as a second-level graduate course at M.I.T. My original interest in the
material grew out of my research activities in the area of analog modulation
theory. A preliminary version of the material that deals with modulation
theory was used as a text for a summer course presented at M.I.T. in 1964.
It turned out that our viewpoint on modulation theory could best be
understood by an audience with a clear understanding of modern detection
and estimation theory. At that time there was no suitable text available to
cover the material of interest and emphasize the points that I felt were
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important, so I started writing notes. It was clear that in order to present
the material to graduate students in a reasonable amount of time it would
be necessary to develop a unified presentation of the three topics: detection,
estimation, and modulation theory, and exploit the fundamental ideas that
connected them. As the development proceeded, it grew in size until the
material that was originally intended to be background for modulation
theory occupies the entire contents of this book. The original material on
modulation theory starts at the beginning of the second book. Collectively,
the two books provide a unified coverage of the three topics and their
application to many important physical problems.

For the last three years I have presented successively revised versions of
the material in my course. The audience consists typically of 40 to 50
students who have completed a graduate course in random processes which
covered most of the material in Davenport and Root [8]. In general, they
have a good understanding of random process theory and a fair amount of
practice with the routine manipulation required to solve problems. In
addition, many of them are interested in doing research in this general area
or closely related areas. This interest provides a great deal of motivation
which I exploit by requiring them to develop many of the important ideas
as problems. It is for this audience that the book is primarily intended. The
appendix contains a detailed outline of the course.

On the other hand, many practicing engineers deal with systems that
have been or should have been designed and analyzed with the techniques
developed in this book. I have attempted to make the book useful to them.
An earlier version was used successfully as a text for an in-plant course for
graduate engineers.

From the standpoint of specific background little advanced material is
required. A knowledge of elementary probability theory and second
moment characterization of random processes is assumed. Some familiarity
with matrix theory and linear algebra is helpful but certainly not necessary.
The level of mathematical rigor is low, although in most sections the results
could be rigorously proved by simply being more careful in our derivations.
We have adopted this approach in order not to obscure the important
ideas with a lot of detail and to make the material readable for the kind of
engineering audience that will find it useful. Fortunately, in almost all
cases we can verify that our answers are intuitively logical. It is worthwhile
to observe that this ability to check our answers intuitively would be
necessary even if our derivations were rigorous, because our ultimate
objective is to obtain an answer that corresponds to some physical system
of interest. It is easy to find physical problems in which a plausible mathe-
matical model and correct mathematics lead to an unrealistic answer for the
original problem.
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We have several idiosyncrasies that it might be appropriate to mention.
In general, we look at a problem in a fair amount of detail. Many times we
look at the same problem in several different ways in order to gain a better
understanding of the meaning of the result. Teaching students a number of
ways of doing things helps them to be more flexible in their approach to
new problems. A second feature is the necessity for the reader to solve
problems to understand the material fully. Throughout the course and the
book we emphasize the development of an ability to work problems. At the
end of each chapter are problems that range from routine manipulations to
significant extensions of the material in the text. In many cases they are
equivalent to journal articles currently being published. Only by working a
fair number of them is it possible to appreciate the significance and
generality of the results. Solutions for an individual problem will be
supplied on request, and a book containing solutions to about one third
of the problems is available to faculty members teaching the course. We
are continually generating new problems in conjunction with the course
and will send them to anyone who is using the book as a course text. A
third issue is the abundance of block diagrams, outlines, and pictures. The
diagrams are included because most engineers (including myself) are more
at home with these items than with the corresponding equations.

One problem always encountered is the amount of notation needed to
cover the large range of subjects. We have tried to choose the notation in a
logical manner and to make it mnemonic. All the notation is summarized
in the glossary at the end of the book. We have tried to make our list of
references as complete as possible and to acknowledge any ideas due to
other people.

A number of people have contributed in many ways and it is a pleasure
to acknowledge them. Professors W. B. Davenport and W. M. Siebert have
provided continual encouragement and technical comments on the various
chapters. Professors Estil Hoversten and Donald Snyder of the M.I.T.
faculty and Lewis Collins, Arthur Baggeroer, and Michael Austin, three
of my doctoral students, have carefully read and criticized the various
chapters. Their suggestions have improved the manuscript appreciably. In
addition, Baggeroer and Collins contributed a number of the problems in
the various chapters and Baggeroer did the programming necessary for many
of the graphical results. Lt. David Wright read and criticized Chapter 2.
L. A. Frasco and H. D. Goldfein, two of my teaching assistants, worked
all of the problems in the book. Dr. Howard Yudkin of Lincoln Laboratory
read the entire manuscript and offered a number of important criticisms.
In addition, various graduate students taking the course have made
suggestions which have been incorporated. Most of the final draft was
typed by Miss Aina Sils. Her patience with the innumerable changes is
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sincerely appreciated. Several other secretaries, including Mrs. Jarmila
Hrbek, Mrs. Joan Bauer, and Miss Camille Tortorici, typed sections of the
various drafts.

As pointed out earlier, the books are an outgrowth of my research
interests. This research is a continuing effort, and I shall be glad to send our
current work to people working in this area on a regular reciprocal basis.
My early work in modulation theory was supported by Lincoln Laboratory
as a summer employee and consultant in groups directed by Dr. Herbert
Sherman and Dr. Barney Reiffen. My research at M.I.T. was partly
supported by the Joint Services and the National Aeronautics and Space
Administration under the auspices of the Research Laboratory of Elec-
tronics. This support is gratefully acknowledged.

Harry L. Van Trees
Cambridge, Massachusetts
October, 1967.
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1
Introduction

In these two books, we shall study three areas of statistical theory, which
we have labeled detection theory, estimation theory, and modulation
theory. The goal is to develop these theories in a common mathematical
framework and to demonstrate how they can be used to solve a wealth of
practical problems in many diverse physical situations.

In this chapter we present three outlines of the material. The first is a
topical outline in which we develop a qualitative understanding of the three
areas by examining some typical problems of interest. The second is a
logical outline in which we explore the various methods of attacking the
problems. The third is a chronological outline in which we explain the
structure of the books.

1.1 TOPICAL OUTLINE

An easy way to explain what is meant by detection theory is to examine
several physical situations that lead to detection theory problems.

A simple digital communication system is shown in Fig. 1.1. The source
puts out a binary digit every T seconds. Our object is to transmit this
sequence of digits to some other location. The channel available for trans-
mitting the sequence depends on the particular situation. Typically, it
could be a telephone line, a radio link, or an acoustical channel. For

Fig. 1.1 Digital communication system.

1



2 1.1 Topical Outline

purposes of illustration, we shall consider a radio link. In order to transmit
the information, we must put it into a form suitable for propagating over
the channel. A straightforward method would be to build a device that
generates a sine wave,

for T seconds if the source generated a "one" in the preceding interval,
and a sine wave of a different frequency,

for T seconds if the source generated a "zero" in the preceding interval.
The frequencies are chosen so that the signals J0(0 and s-^t) will propagate
over the particular radio link of concern. The output of the device is fed
into an antenna and transmitted over the channel. Typical source and
transmitted signal sequences are shown in Fig. 1.2. In the simplest kind of
channel the signal sequence arrives at the receiving antenna attenuated but
essentially undistorted. To process the received signal we pass it through
the antenna and some stages of rf-amplification, in the course of which a
thermal noise n(t) is added to the message sequence. Thus in any J-second
interval we have available a waveform r(t) in which

if Si(t) was transmitted, and

if s0(t) was transmitted. We are now faced with the problem of deciding
which of the two possible signals was transmitted. We label the device that
does this a decision device. It is simply a processor that observes r(t) and
guesses whether S]_(t) or s0(t) was sent according to some set of rules. This
is equivalent to guessing what the source output was in the preceding
interval. We refer to designing and evaluating the processor as a detection

Fig. 1.2 Typical sequences.
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Fig. 1.3 Sequence with phase shifts.

theory problem. In this particular case the only possible source of error in
making a decision is the additive noise. If it were not present, the input
would be completely known and we could make decisions without errors.
We denote this type of problem as the known signal in noise problem. It
corresponds to the lowest level (i.e., simplest) of the detection problems of
interest.

An example of the next level of detection problem is shown in Fig. 1.3.
The oscillators used to generate Si(t) and J0(0 in the preceding example
have a phase drift. Therefore in a particular T-second interval the received
signal corresponding to a "one" is

and the received signal corresponding to a "zero" is

where 00 and dl are unknown constant phase angles. Thus even in the
absence of noise the input waveform is not completely known. In a practical
system the receiver may include auxiliary equipment to measure the oscilla-
tor phase. If the phase varies slowly enough, we shall see that essentially
perfect measurement is possible. If this is true, the problem is the same as
above. However, if the measurement is not perfect, we must incorporate
the signal uncertainty in our model.

A corresponding problem arises in the radar and sonar areas. A con-
ventional radar transmits a pulse at some frequency o>c with a rectangular
envelope:

If a target is present, the pulse is reflected. Even the simplest target will
introduce an attenuation and phase shift in the transmitted signal. Thus
the signal available for processing in the interval of interest is



4 1.1 Topical Outline

if a target is present and

if a target is absent. We see that in the absence of noise the signal still
contains three unknown quantities: Vr, the amplitude, 6r, the phase, and
T, the round-trip travel time to the target.

These two examples represent the second level of detection problems.
We classify them as signal with unknown parameters in noise problems.

Detection problems of a third level appear in several areas. In a passive
sonar detection system the receiver listens for noise generated by enemy
vessels. The engines, propellers, and other elements in the vessel generate
acoustical signals that travel through the ocean to the hydrophones in the
detection system. This composite signal can best be characterized as a
sample function from a random process. In addition, the hydrophone
generates self-noise and picks up sea noise. Thus a suitable model for the
detection problem might be

if the target is present and

if it is not. In the absence of noise the signal is a sample function from a
random process (indicated by the subscript Q).

In the communications field a large number of systems employ channels
in which randomness is inherent. Typical systems are tropospheric scatter
links, orbiting dipole links, and chaff systems. A common technique is to
transmit one of two signals separated in frequency. (We denote these
frequencies as o^ and o>0.) The resulting received signal is

if Si(t) was transmitted and

if s0(t) was transmitted. Here sni(t) is a sample function from a random
process centered at o^, and sno(t) is a sample function from a random
process centered at a>0. These examples are characterized by the lack of any
deterministic signal component. Any decision procedure that we design
will have to be based on the difference in the statistical properties of the
two random processes from which sno(t) and sni(t) are obtained. This is
the third level of detection problem and is referred to as a random signal
in noise problem.
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In our examination of representative examples we have seen that detec-
tion theory problems are characterized by the fact that we must decide
which of several alternatives is true. There were only two alternatives in
the examples cited; therefore we refer to them as binary detection prob-
lems. Later we will encounter problems in which there are M alternatives
available (the M-ary detection problem). Our hierarchy of detection
problems is presented graphically in Fig. 1.4.

There is a parallel set of problems in the estimation theory area. A
simple example is given in Fig. 1.5, in which the source puts out an
analog message a(t) (Fig. l.5a). To transmit the message we first sample it
every T seconds. Then, every T seconds we transmit a signal that contains

Level 1. Known signals in
noise

Level 2. Signals with unknown
parameters in noise

Level 3. Random signals in
noise

Detection theory

1. Synchronous digital communication

2. Pattern recognition problems

1. Conventional pulsed radar or sonar,
target detection

2. Target classification (orientation of
target unknown)

3. Digital communication systems without
phase reference

4. Digital communication over slowly-
fading channels

1. Digital communication over scatter
link, orbiting dipole channel, or
chaff link

2. Passive sonar

3. Seismic detection system

4. Radio astronomy (detection of noise
sources )

Fig. 1.4 Detection theory hierarchy.
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Fig. 1.5 (a) Sampling an analog source; (b) pulse-amplitude modulation; (c) pulse-
frequency modulation; (</) waveform reconstruction.

a parameter which is uniquely related to the last sample value. In Fig. 1.56
the signal is a sinusoid whose amplitude depends on the last sample. Thus,
if the sample at time nT is An, the signal in the interval [nT, (n + l)T] is

A system of this type is called a pulse amplitude modulation (PAM)
system. In Fig. 1.5c the signal is a sinusoid whose frequency in the interval
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differs from the reference frequency a>c by an amount proportional to the
preceding sample value,

A system of this type is called a pulse frequency modulation (PFM) system.
Once again there is additive noise. The received waveform, given that An

was the sample value, is

During each interval the receiver tries to estimate An. We denote these
estimates as An. Over a period of time we obtain a sequence of estimates,
as shown in Fig. \.5d, which is passed into a device whose output is an
estimate of the original message a(t). If a(t) is a band-limited signal, the
device is just an ideal low-pass filter. For other cases it is more involved.

If, however, the parameters in this example were known and the noise
were absent, the received signal would be completely known. We refer
to problems in this category as known signal in noise problems. If we
assume that the mapping from An to s(t, An) in the transmitter has an
inverse, we see that if the noise were not present we could determine An

unambiguously. (Clearly, if we were allowed to design the transmitter, we
should always choose a mapping with an inverse.) The known signal in
noise problem is the first level of the estimation problem hierarchy.

Returning to the area of radar, we consider a somewhat different
problem. We assume that we know a target is present but do not know
its range or velocity. Then the received signal is

where a>d denotes a Doppler shift caused by the target's motion. We want
to estimate r and <od. Now, even if the noise were absent and r and o>d

were known, the signal would still contain the unknown parameters Vr

and 6r. This is a typical second-level estimation problem. As in detection
theory, we refer to problems in this category as signal with unknown
parameters in noise problems.

At the third level the signal component is a random process whose
statistical characteristics contain parameters we want to estimate. The
received signal is of the form

where sn(t, A) is a sample function from a random process. In a simple
case it might be a stationary process with the narrow-band spectrum shown
in Fig. 1.6. The shape of the spectrum is known but the center frequency



Fig. 1.6 Spectrum of random signal.

Level 1. Known signals in noise

Level 2. Signals with unknown
parameters in noise

Level 3. Random signals in noise

Estimation Theory

1. RAM, PFM, and PPM communication systems
with phase synchronization

2. Inaccuracies in inertial systems
(e.g., drift angle measurement)

1. Range, velocity, or angle measurement in
radar/sonar problems

2. Discrete time, continuous amplitude communication
system (with unknown amplitude or phase in
channel)

1. Power spectrum parameter estimation

2. Range or Doppler spread target parameters
in radar/sonar problem

3. Velocity measurement in radio astronomy

4. Target parameter estimation: passive sonar

5. Ground mapping radars

Fig. 1.7 Estimation theory hierarchy.

8
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is not. The receiver must observe r(t) and, using the statistical properties
of sn(t, A) and n(t), estimate the value of A. This particular example could
arise in either radio astronomy or passive sonar. The general class of
problem in which the signal containing the parameters is a sample function
from a random process is referred to as the random signal in noise problem.
The hierarchy of estimation theory problems is shown in Fig. 1.7.

We note that there appears to be considerable parallelism in the detection
and estimation theory problems. We shall frequently exploit these parallels
to reduce the work, but there is a basic difference that should be em-
phasized. In binary detection the receiver is either "right" or "wrong."
In the estimation of a continuous parameter the receiver will seldom be
exactly right, but it can try to be close most of the time. This difference
will be reflected in the manner in which we judge system performance.

The third area of interest is frequently referred to as modulation theory.
We shall see shortly that this term is too narrow for the actual problems.
Once again a simple example is useful. In Fig. 1.8 we show an analog
message source whose output might typically be music or speech. To
convey the message over the channel, we transform it by using a modula-
tion scheme to get it into a form suitable for propagation. The transmitted
signal is a continuous waveform that depends on a(t) in some deterministic
manner. In Fig. 1.8 it is an amplitude modulated waveform:

(This is conventional double-sideband AM with modulation index m.) In
Fig. 1.8c the transmitted signal is a frequency modulated (FM) waveform:

When noise is added the received signal is

Now the receiver must observe r(t) and put out a continuous estimate of
the message a(t), as shown in Fig. 1.8. This particular example is a first-
level modulation problem, for if n(t) were absent and a(t) were known the
received signal would be completely known. Once again we describe it as
a known signal in noise problem.

Another type of physical situation in which we want to estimate a
continuous function is shown in Fig. 1.9. The channel is a time-invariant
linear system whose impulse response h(r) is unknown. To estimate the
impulse response we transmit a known signal x(t). The received signal is



Fig. 1.8 A modulation theory example: (a) analog transmission system; (b) amplitude
modulated signal; (c) frequency modulated signal; (</) demodulator.

Fig. 1.9 Channel measurement.
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The receiver observes r(t) and tries to estimate /J(T). This particular example
could best be described as a continuous estimation problem. Many other
problems of interest in which we shall try to estimate a continuous wave-
form will be encountered. For convenience, we shall use the term modula-
tion theory for this category, even though the term continuous waveform
estimation might be more descriptive.

The other levels of the modulation theory problem follow by direct
analogy. In the amplitude modulation system shown in Fig. \.%b the
receiver frequently does not know the phase angle of the carrier. In this
case a suitable model is

1. Known signals in noise

2. Signals with unknown
parameters in noise

3. Random signals in noise

Modulation Theory (Continuous waveform estimation)

1. Conventional communication systems
such as AM (DSB-AM, SSB), FM.and
PM with phase synchronization

2. Optimum filter theory

3. Optimum feedback systems

4. Channel measurement

5. Orbital estimation for satellites

6. Signal estimation in seismic and
sonar classification systems

7. Synchronization in digital systems

1. Conventional communication systems
without phase synchronization

2. Estimation of channel characteristics when
phase of input signal is unknown

1. Analog communication over
randomly varying channels

2. Estimation of statistics of
time-varying processes

3. Estimation of plant characteristics

Fig. 1.10 Modulation theory hierarchy.
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where 6 is an unknown parameter. This is an example of a signal with
unknown parameter problem in the modulation theory area.

A simple example of a third-level problem (random signal in noise} is one
in which we transmit a frequency-modulated signal over a radio link whose
gain and phase characteristics are time-varying. We shall find that if we
transmit the signal in (20) over this channel the received waveform will be

where V(t) and 0(t) are sample functions from random processes. Thus,
even if a(u) were known and the noise n(t} were absent, the received signal
would still be a random process. An over-all outline of the problems of
interest to us appears in Fig. 1.10. Additional examples included in the
table to indicate the breadth of the problems that fit into the outline are
discussed in more detail in the text.

Now that we have outlined the areas of interest it is appropriate to
determine how to go about solving them.

1.2 POSSIBLE APPROACHES

From the examples we have discussed it is obvious that an inherent
feature of all the problems is randomness of source, channel, or noise
(often all three). Thus our approach must be statistical in nature. Even
assuming that we are using a statistical model, there are many different
ways to approach the problem. We can divide the possible approaches into
two categories, which we denote as "structured" and "nonstructured."
Some simple examples will illustrate what we mean by a structured
approach.

Example 1. The input to a linear time-invariant system is r(t):

The impulse response of the system is h(r). The signal s(t) is a known function with
energy Es,

and w(t) is a sample function from a zero-mean random process with a covariance
function:

We are concerned with the output of the system at time T. The output due to the
signal is a deterministic quantity:
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The output due to the noise is a random variable:

We can define the output signal-to-noise ratio at time T as

where £"(•) denotes expectation.
Substituting (28) and (29) into (30), we obtain

By bringing the expectation inside the integral, using (27), and performing the
integration with respect to u, we have

The problem of interest is to choose h(r) to maximize the signal-to-noise ratio.
The solution follows easily, but it is not important for our present discussion. (See
Problem 3.3.1.)

This example illustrates the three essential features of the structured
approach to a statistical optimization problem:

Structure. The processor was required to be a linear time-invariant
filter. We wanted to choose the best system in this class. Systems that were
not in this class (e.g., nonlinear or time-varying) were not allowed.

Criterion. In this case we wanted to maximize a quantity that we called
the signal-to-noise ratio.

Information. To write the expression for S/N we had to know the signal
shape and the covariance function of the noise process.

If we knew more about the process (e.g., its first-order probability
density), we could not use it, and if we knew less, we could not solve the
problem. Clearly, if we changed the criterion, the information required
might be different. For example, to maximize x

the covariance function of the noise process would not be adequate. Alter-
natively, if we changed the structure, the information required might


