Coplanar Waveguide Circuits, Components, and Systems

RAINEE N. SIMONS
NASA Glenn Research Center
Cleveland, Ohio

WILEY-INTERSCIENCE
A JOHN WILEY & SONS, INC., PUBLICATION
NEW YORK · CHICHESTER · WEINHEIM · BRISBANE · SINGAPORE · TORONTO
Coplanar Waveguide
Circuits,
Components, and
Systems
Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration.

Copyright © 2001 by John Wiley & Sons. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic or mechanical, including uploading, downloading, printing, decompiling, recording or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ@WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold with the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional person should be sought.

This title is also available in print as ISBN 0-471-16121-7.

For more information about Wiley products, visit our web site at www.Wiley.com.
ADVANCES IN MICROSTRIP AND PRINTED ANTENNAS • Kai-Fong Lee and Wei Chen (eds.)
OPTICAL FILTER DESIGN AND ANALYSIS: A SIGNAL PROCESSING APPROACH •
Christi K. Madsen and Jian H. Zhao
THEORY AND PRACTICE OF INFRARED TECHNOLOGY FOR NONDESTRUCTIVE TESTING •
Xavier P. V. Malague
OPTOELECTRONIC PACKAGING • A. R. Mickelson, N. R. Basavanahally, and Y. C. Lee (eds.)
OPTICAL CHARACTER RECOGNITION • Shunji Morii, Hirobumi Nishida, and Hiromitsu Yamada
ANTENNAS FOR RADAR AND COMMUNICATIONS: A POLARIMETRIC APPROACH •
Harold Mott
INTEGRATED ACTIVE ANTENNAS AND SPATIAL POWER COMBINING • Julio A. Navarro and
Kai Chang
ANALYSIS METHODS FOR RF, MICROWAVE, AND MILLIMETER-WAVE PLANAR
TRANSMISSION LINE STRUCTURES • Cam Nguyen
FREQUENCY CONTROL OF SEMICONDUCTOR LASERS • Motoichi Ohtsu (ed.)
SOLAR CELLS AND THEIR APPLICATIONS • Larry D. Partain (ed.)
ANALYSIS OF MULTICONDUCTOR TRANSMISSION LINES • Clayton R. Paul
INTRODUCTION TO ELECTROMAGNETIC COMPATIBILITY • Clayton R. Paul
ELECTROMAGNETIC OPTIMIZATION BY GENETIC ALGORITHMS • Yahya Rahmat-Samii and
Eric Michielssen (eds.)
INTRODUCTION TO HIGH-SPEED ELECTRONICS AND OPTOELECTRONICS •
Leonard M. Riaziat
NEW FRONTIERS IN MEDICAL DEVICE TECHNOLOGY • Arve Rosen and Harel Rosen (eds.)
ELECTROMAGNETIC PROPAGATION IN MULTI-MODE RANDOM MEDIA • Harrison E. Rowe
ELECTROMAGNETIC PROPAGATION IN ONE-DIMENSIONAL RANDOM MEDIA •
Harrison E. Rowe
NONLINEAR OPTICS • E. G. Sauter
COPLANAR WAVEGUIDE CIRCUITS, COMPONENTS, AND SYSTEMS • Rainee N. Simons
ELECTROMAGNETIC FIELDS IN UNCONVENTIONAL MATERIALS AND STRUCTURES •
Onkar N. Singh and Akhlesh Lakhtakia (eds.)
FUNDAMENTALS OF GLOBAL POSITIONING SYSTEM RECEIVERS: A SOFTWARE
APPROACH • James Bao-yen Tsui
InP-BASED MATERIALS AND DEVICES: PHYSICS AND TECHNOLOGY • Osamu Wada
and Hideki Hasegawa (eds.)
DESIGN OF NONPLANAR MICROSTRIP ANTENNAS AND TRANSMISSION
LINES • Kin-Lu Wong
FREQUENCY SELECTIVE SURFACE AND GRID ARRAY • T. K. Wu (ed.)
ACTIVE AND QUASI-OPTICAL ARRAYS FOR SOLID-STATE POWER COMBINING •
Robert A. York and Zoya B. Popovic (eds.)
OPTICAL SIGNAL PROCESSING, COMPUTING AND NEURAL NETWORKS • Francis T. S. Yu
and Suganda Jutamulia
SiGe, GaAs, and InP HETEROJUNCTION BIPOLAR TRANSISTORS • Jiann Yuan
ELECTRODYNAMICS OF SOLIDS AND MICROWAVE SUPERCONDUCTIVITY • Shu-Ang Zhou
To
Joy,
Renita, and
Rona
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Advantages of Coplanar Waveguide Circuits</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 Design</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2 Manufacturing</td>
<td>1</td>
</tr>
<tr>
<td>1.1.3 Performance</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Types of Coplanar Waveguides</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Software Tools for Coplanar Waveguide Circuit Simulation</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Typical Applications of Coplanar Waveguides</td>
<td>4</td>
</tr>
<tr>
<td>1.4.1 Amplifiers, Active Combiners, Frequency Doublers, Mixers, and Switches</td>
<td>4</td>
</tr>
<tr>
<td>1.4.2 Microelectromechanical Systems (MEMS) Metal Membrane Capacitive Switches</td>
<td>4</td>
</tr>
<tr>
<td>1.4.3 Thin Film High-Temperature Superconducting/ Ferroelectric Tunable Circuits and Components</td>
<td>5</td>
</tr>
<tr>
<td>1.4.4 Photonic Bandgap Structures</td>
<td>5</td>
</tr>
<tr>
<td>1.4.5 Printed Antennas</td>
<td>5</td>
</tr>
<tr>
<td>1.5 Organization of This Book</td>
<td>6</td>
</tr>
<tr>
<td>References</td>
<td>7</td>
</tr>
</tbody>
</table>

2 Conventional Coplanar Waveguide	11
2.1 Introduction	11
2.2 Conventional Coplanar Waveguide on a Multilayer Dielectric Substrate	12
2.2.1 Analytical Expression Based on Quasi-static Conformal Mapping Techniques to Determine Effective Dielectric Constant and Characteristic Impedance 12
2.2.2 Conventional Coplanar Waveguide on an Infinitely Thick Dielectric Substrate 17
2.2.3 Conventional Coplanar Waveguide on a Dielectric Substrate of Finite Thickness 20
2.2.4 Conventional Coplanar Waveguide on a Finite Thickness Dielectric Substrate and with a Top Metal Cover 21
2.2.5 Conventional Coplanar Waveguide Sandwiched between Two Dielectric Substrates 24
2.2.6 Conventional Coplanar Waveguide on a Double-Layer Dielectric Substrate 25
2.2.7 Experimental Validation 29

2.3 Quasi-static TEM Iterative Techniques to Determine ε_{eff} and Z_0 32
2.3.1 Relaxation Method 32
2.3.2 Hybrid Method 33

2.4 Frequency-Dependent Techniques for Dispersion and Characteristic Impedance 33
2.4.1 Spectral Domain Method 33
2.4.2 Experimental Validation 44

2.5 Empirical Formula to Determine Dispersion Based on Spectral Domain Results 47
2.5.1 Comparison of Coplanar Waveguide Dispersion with Microstrip 48

2.6 Synthesis Formulas to Determine ε_{eff} and Z_0 Based on Quasi-static Equations 49

2.7 Coplanar Waveguide with Elevated or Buried Center Strip Conductor 52
2.7.1 CPW with Elevated Center Strip Conductor Supported on Dielectric Layers 54
2.7.2 CPW with Elevated Center Strip Conductor Supported on Posts 54

2.8 Coplanar Waveguide with Ground Plane or Center Strip Conductor Underpasses 56

2.9 Coplanar Waveguide Field Components 56
2.10 Coplanar Waveguide on a Cylindrical Surface 63
 2.10.1 Analytical Expressions Based on Quasi-static
 Conformal Mapping Technique 63
 2.10.2 Computed Effective Dielectric Constant and
 Characteristic Impedance 67
2.11 Effect of Metalization Thickness on Coplanar Waveguide
 Characteristics 67
Appendix 2A: Spectral Domain Dyadic Green’s Function
 Components 69
Appendix 2B: Time Average Power Flow in the Three Spatial
 Regions 77
References 83

3 Conductor-Backed Coplanar Waveguide 87
3.1 Introduction 87
3.2 Conductor-Backed Coplanar Waveguide on a Dielectric
 Substrate of Finite Thickness 88
 3.2.1 Analytical Expressions Based on Quasi-static
 TEM Conformal Mapping Technique to Determine
 Effective Dielectric Constant and Characteristic
 Impedance 88
 3.2.2 Experimental Validation 89
 3.2.3 Analytical Expressions for CBCPW ε_{eff} and Z_0
 in the Presence of a Top Metal Cover 93
 3.2.4 Dispersion and Characteristic Impedance from
 Full-Wave Analysis 96
3.3 Effect of Conducting Lateral Walls on the Dominant
 Mode Propagation Characteristics of CBCPW and
 Closed Form Equations for Z_0 98
 3.3.1 Experimental Validation 101
3.4 Effect of Lateral Walls on the Higher-Order Mode
 Propagation on CBCPW 102
 3.4.1 Perfect Conductors and Lossless Dielectric 102
 3.4.2 Conductors with Finite Thickness, Finite
 Conductivity, and Lossless or Lossy Dielectric 104
 3.4.3 Experimental Validation 107
3.5 Channelized Coplanar Waveguide 107
3.6 Realization of Lateral Walls in Practical Circuits 108
References 109
4 Coplanar Waveguide with Finite-Width Ground Planes 112

4.1 Introduction 112

4.2 Conventional Coplanar Waveguide with Finite-Width Ground Planes on a Dielectric Substrate of Finite Thickness 113

4.2.1 Analytical Expressions Based on Quasi-static TEM Conformal Mapping Techniques to Determine Effective Dielectric Constant and Characteristic Impedance 113

4.2.2 Dispersion and Characteristic Impedance from Full-Wave Analysis 117

4.3 Conductor-Backed Coplanar Waveguide with Finite-Width Ground Planes on a Dielectric Substrate of Finite Thickness and Finite Width 119

4.4 Simple Models to Estimate Finite Ground Plane Resonance in Conductor-Backed Coplanar Waveguide 123

4.4.1 Experimental Validation 124

References 125

5 Coplanar Waveguide Suspended inside a Conducting Enclosure 127

5.1 Introduction 127

5.2 Quasi-static TEM Iterative Technique to Determine ε_{eff} and Z_0 of Suspended CPW 128

5.2.1 Computed Quasi-static Characteristics and Experimental Validation 128

5.3 Frequency-Dependent Numerical Techniques for Dispersion and Characteristic Impedance of Suspended CPW 132

5.3.1 Effect of Shielding on the Dispersion and Characteristic Impedance 133

5.3.2 Experimental Validation of Dispersion 135

5.3.3 Effect of Conductor Thickness on the Dispersion and Characteristic Impedance 135

5.3.4 Modal Bandwidth of a Suspended CPW 136

5.3.5 Pulse Propagation on a Suspended CPW 140

5.3.6 Pulse Distortion—Experimental Validation 142

5.4 Dispersion and Higher-Order Modes of a Shielded Grounded CPW 142

5.5 Dispersion, Characteristic Impedance, and Higher-Order
Modes of a CPW Suspended inside a Nonsymmetrical Shielding Enclosure 143
5.5.1 Experimental Validation of the Dispersion Characteristics 146
5.6 Dispersion and Characteristic Impedance of Suspended CPW on Multilayer Dielectric Substrate 147
References 150

6 Coplanar Striplines 152
6.1 Introduction 152
6.2 Analytical Expressions Based on Quasi-Static TEM Conformal Mapping Techniques to Determine Effective Dielectric Constant and Characteristic Impedance 153
6.2.1 Coplanar Stripline on a Multilayer Dielectric Substrate 153
6.2.2 Coplanar Stripline on a Dielectric Substrate of Finite Thickness 155
6.2.3 Asymmetric Coplanar Stripline on a Dielectric Substrate of Finite Thickness 157
6.2.4 Coplanar Stripline with Infinitely Wide Ground Plane on a Dielectric Substrate of Finite Thickness 160
6.2.5 Coplanar Stripline with Isolating Ground Planes on a Dielectric Substrate of Finite Thickness 161
6.3 Coplanar Stripline Synthesis Formulas to Determine the Slot Width and the Strip Conductor Width 163
6.4 Novel Variants of the Coplanar Stripline 165
6.4.1 Micro-coplanar Stripline 165
6.4.2 Coplanar Stripline with a Groove 169
References 169

7 Microshield Lines and Coupled Coplanar Waveguide 171
7.1 Introduction 171
7.2 Microshield Lines 171
7.2.1 Rectangular Shaped Microshield Line 173
7.2.2 V-Shaped Microshield Line 176
7.2.3 Elliptic Shaped Microshield Line 180
7.2.4 Circular Shaped Microshield Line 180
7.3 Edge Coupled Coplanar Waveguide without a Lower Ground Plane 182
CONTENTS

7.3.1 Even Mode 182
7.3.2 Odd Mode 186
7.3.3 Computed Even- and Odd-Mode Characteristic Impedance and Coupling Coefficient 189

7.4 Conductor-Backed Edge Coupled Coplanar Waveguide 190
7.4.1 Even Mode 192
7.4.2 Odd Mode 192
7.4.3 Even- and Odd-Mode Characteristics with Elevated Strip Conductors 193

7.5 Broadside Coupled Coplanar Waveguide 193
7.5.1 Even Mode 194
7.5.2 Odd Mode 197
7.5.3 Computed Even- and Odd-Mode Effective Dielectric Constant, Characteristic Impedance, Coupling Coefficient, and Mode Velocity Ratio 198

8 Attenuation Characteristics of Conventional, Micromachined, and Superconducting Coplanar Waveguides 203

8.1 Introduction 203

8.2 Closed Form Equations for Conventional CPW Attenuation Constant 204
8.2.1 Conformal Mapping Method 205
8.2.2 Mode-Matching Method and Quasi-TEM Model 207
8.2.3 Matched Asymptotic Technique and Closed Form Expressions 207
8.2.4 Measurement-Based Design Equations 212
8.2.5 Accuracy of Closed Form Equations 215

8.3 Influence of Geometry on Coplanar Waveguide Attenuation 217
8.3.1 Attenuation Constant Independent of the Substrate Thickness and Dielectric Constant 217
8.3.2 Attenuation Constant Dependent on the Aspect Ratio 217
8.3.3 Attenuation Constant Varying with the Elevation of the Center Strip Conductor 218

8.4 Attenuation Characteristics of Coplanar Waveguide on Silicon Wafer 218
8.4.1 High-Resistivity Silicon Wafer 218
8.4.2 Low-Resistivity Silicon Wafer 221
8.5 Attenuation Characteristics of Coplanar Waveguide on Micromachined Silicon Wafer
 8.5.1 Microshield Line 221
 8.5.2 Coplanar Waveguide with V-Shaped Grooves 223
 8.5.3 Coplanar Waveguide Suspended by a Silicon Dioxide Membrane over a Micromachined Wafer 223

8.6 Attenuation Constant for Superconducting Coplanar Waveguides 225
 8.6.1 Stopping Distance 225
 8.6.2 Closed Form Equations 230
 8.6.3 Comparison with Numerical Calculations and Measured Results 233

References 233

9 Coplanar Waveguide Discontinuities and Circuit Elements 237

9.1 Introduction 237

9.2 Coplanar Waveguide Open Circuit 237
 9.2.1 Approximate Formula for Length Extension When the Gap Is Large 239
 9.2.2 Closed Form Equation for Open End Capacitance When the Gap Is Narrow 239
 9.2.3 Radiation Loss 240
 9.2.4 Effect of Conductor Thickness and Edge Profile Angle 241

9.3 Coplanar Waveguide Short Circuit 241
 9.3.1 Approximate Formula for Length Extension 241
 9.3.2 Closed Form Equations for Short-Circuit Inductance 242
 9.3.3 Effect of Conductor Thickness and Edge Profile Angle 243

9.4 Coplanar Waveguide MIM Short Circuit 243

9.5 Series Gap in the Center Strip Conductor of a Coplanar Waveguide 245

9.6 Step Change in the Width of Center Strip Conductor of a Coplanar Waveguide 245

9.7 Coplanar Waveguide Right Angle Bend 247

9.8 Air-Bridges in Coplanar Waveguide 249
 9.8.1 Type A Air-Bridge 250
 9.8.2 Type B Air-Bridge 250
 9.8.3 Air-Bridge Characteristics 250
9.8.4 Air-Bridge Discontinuity Characteristics 254

9.9 Coplanar Waveguide T-Junction 254
9.9.1 Conventional T-Junction 254
9.9.2 Air-Bridge T-Junction 259
9.9.3 Mode Conversion in CPW T-Junction 260
9.9.4 CPW T-Junction Characteristics 261

9.10 Coplanar Waveguide Spiral Inductor 262

9.11 Coplanar Waveguide Capacitors 265
9.11.1 Interdigital Capacitor 266
9.11.2 Series Metal-Insulator-Metal Capacitor 269
9.11.3 Parallel Metal-Insulator-Metal Capacitor 270
9.11.4 Comparison between Coplanar Waveguide Interdigital and Metal-Insulator-Metal Capacitors 271

9.12 Coplanar Waveguide Stubs 272
9.12.1 Open-End Coplanar Waveguide Series Stub 273
9.12.2 Short-End Coplanar Waveguide Series Stub 275
9.12.3 Combined Short- and Open End Coplanar Waveguide Series Stubs 278
9.12.4 Coplanar Waveguide Shunt Stubs 278
9.12.5 Coplanar Waveguide Radial Line Stub 278

9.13 Coplanar Waveguide Shunt Inductor 282

References 285

10 Coplanar Waveguide Transitions 288

10.1 Introduction 288

10.2 Coplanar Waveguide-to-Microstrip Transition 289
10.2.1 Coplanar Waveguide-to-Microstrip Transition Using Ribbon Bond 289
10.2.2 Coplanar Waveguide-to-Microstrip Surface-to-Surface Transition via Electromagnetic Coupling 290
10.2.3 Coplanar Waveguide-to-Microstrip Transition via a Phase-Shifting Network 292
10.2.4 Coplanar Waveguide-to-Microstrip Transition via a Metal Post 292
10.2.5 Coplanar Waveguide-to-Microstrip Transition Using a Via-Hole Interconnect 294
10.2.6 Coplanar Waveguide-to-Microstrip Orthogonal Transition via Direct Connection

10.3 Transitions for Coplanar Waveguide Wafer probes
10.3.1 Coplanar Waveguide Wafer Probe-to-Microstrip Transitions Using a Radial Stub
10.3.2 Coplanar Waveguide Wafer Probe-to-Microstrip Transition Using Metal Vias

10.4 Transitions between Coplanar Waveguides
10.4.1 Grounded Coplanar Waveguide-to-Microshield Coplanar Line
10.4.2 Vertical Fed-through Interconnect between Coplanar Waveguides with Finite-Width Ground Planes
10.4.3 Orthogonal Transition between Coplanar Waveguides
10.4.4 Electromagnetically Coupled Transition between Stacked Coplanar Waveguides
10.4.5 Electromagnetically Coupled Transition between Orthogonal Coplanar Waveguides

10.5 Coplanar Waveguide-to-Rectangular Waveguide Transition
10.5.1 Coplanar Waveguide-to-Ridge Waveguide In-line Transition
10.5.2 Coplanar Waveguide-to-Trough Waveguide Transition
10.5.3 Coplanar Waveguide-to-Rectangular Waveguide Transition with a Tapered Ridge
10.5.4 Coplanar Waveguide-to-Rectangular Waveguide End Launcher
10.5.5 Coplanar Waveguide-to-Rectangular Waveguide Launcher with a Post
10.5.6 Channelized Coplanar Waveguide-to-Rectangular Waveguide Launcher with an Aperture
10.5.7 Coplanar Waveguide-to-Rectangular Waveguide Transition with a Printed Probe

10.6 Coplanar Waveguide-to-Slotline Transition
10.6.1 Coplanar Waveguide-to-Slotline Compensated Marchand Balun or Transition
10.6.2 Coplanar Waveguide-to-Slotline Transition with Radial or Circular Stub Termination
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.6.3</td>
<td>Coplanar Waveguide-to-Slotline Double-Y Balun or Transition</td>
<td>323</td>
</tr>
<tr>
<td>10.6.4</td>
<td>Electromagnetically Coupled Finite-Width Coplanar Waveguide-to-Slotline Transition with Notches in the Ground Plane</td>
<td>327</td>
</tr>
<tr>
<td>10.6.5</td>
<td>Electromagnetically Coupled Finite-Width Coplanar Waveguide-to-Slotline Transition with Extended Center Strip Conductor</td>
<td>328</td>
</tr>
<tr>
<td>10.6.6</td>
<td>Air-Bridge Coupled Coplanar Waveguide-to-Slotline Transition</td>
<td>329</td>
</tr>
<tr>
<td>10.7</td>
<td>Coplanar Waveguide-to-Coplanar Stripline Transition</td>
<td>331</td>
</tr>
<tr>
<td>10.7.1</td>
<td>Coplanar Stripline-to-Coplanar Waveguide Balun</td>
<td>331</td>
</tr>
<tr>
<td>10.7.2</td>
<td>Coplanar Stripline-to-Coplanar Waveguide Balun with Slotline Radial Stub</td>
<td>332</td>
</tr>
<tr>
<td>10.7.3</td>
<td>Coplanar Stripline-to-Coplanar Waveguide Double-Y Balun</td>
<td>333</td>
</tr>
<tr>
<td>10.8</td>
<td>Coplanar Stripline-to-Microstrip Transition</td>
<td>334</td>
</tr>
<tr>
<td>10.8.1</td>
<td>Coplanar Stripline-to-Microstrip Transition with an Electromagnetically Coupled Radial Stub</td>
<td>334</td>
</tr>
<tr>
<td>10.8.2</td>
<td>Uniplanar Coplanar Stripline-to-Microstrip Transition</td>
<td>336</td>
</tr>
<tr>
<td>10.8.3</td>
<td>Coplanar Stripline-to-Microstrip Transition</td>
<td>337</td>
</tr>
<tr>
<td>10.8.4</td>
<td>Micro-coplanar Stripline-to-Microstrip Transition</td>
<td>338</td>
</tr>
<tr>
<td>10.9</td>
<td>Coplanar Stripline-to-Slotline Transition</td>
<td>339</td>
</tr>
<tr>
<td>10.10</td>
<td>Coplanar Waveguide-to-Balanced Stripline Transition</td>
<td>342</td>
</tr>
</tbody>
</table>

References 342

11 Directional Couplers, Hybrids, and Magic-Ts 346

11.1 Introduction 346

11.2 Coupled-Line Directional Couplers 346

11.2.1 Edge Coupled CPW Directional Couplers 349

11.2.2 Edge Coupled Grounded CPW Directional Couplers 350

11.2.3 Broadside Coupled CPW Directional Coupler 351

11.3 Quadrature (90°) Hybrid 352

11.3.1 Standard 3-dB Branch-Line Hybrid 354

11.3.2 Size Reduction Procedure for Branch-Line Hybrid 355

11.3.3 Reduced Size 3-dB Branch-Line Hybrid 356
11.3.4 Reduced Size Impedance Transforming Branch-Line Hybrid 358

11.4 180° Hybrid 361
 11.4.1 Standard 180° Ring Hybrid 363
 11.4.2 Size Reduction Procedure for 180° Ring Hybrid 364
 11.4.3 Reduced Size 180° Ring Hybrid 364
 11.4.4 Reverse-Phase 180° Ring Hybrid 368
 11.4.5 Reduced Size Reverse-Phase 180° Ring Hybrid 369

11.5 Standard 3-dB Magic-T 371
 11.5.1 Reduced Size 3-dB Magic-T 375

11.6 Active Magic-T 378

References 382

12 Coplanar Waveguide Applications 384

12.1 Introduction 384

12.2 MEMS Coplanar Waveguide Capacitive Metal Membrane Shunt Switch 384
 12.2.1 OFF and ON Capacitances 385
 12.2.2 Figure of Merit 386
 12.2.3 Pull Down Voltage 387
 12.2.4 Fabrication Process 389
 12.2.5 Switching Time and Switching Energy 391
 12.2.6 Insertion Loss and Isolation 391

12.3 MEMS Coplanar Waveguide Distributed Phase Shifter 393
 12.3.1 MEMS Air-Bridge Capacitance 395
 12.3.2 Fabrication and Measured Performance 397

12.4 High-Temperature Superconducting Coplanar Waveguide Circuits 398
 12.4.1 High-Frequency Electrical Properties of Normal Metal Films 398
 12.4.2 High-Frequency Electrical Properties of Epitaxial High-T_c Superconducting Films 399
 12.4.3 Kinetic and External Inductances of a Superconducting Coplanar Waveguide 401
 12.4.4 Resonant Frequency and Unloaded Quality Factor 402
 12.4.5 Surface Resistance of High-T_c Superconducting Coplanar Waveguide 407
CONTENTS

12.4.6 Attenuation Constant 409
12.5 Ferroelectric Coplanar Waveguide Circuits 410
 12.5.1 Characteristics of Barium Strontium Titanate Thin Films 410
 12.5.2 Characteristics of Strontium Titanate Thin Films 413
 12.5.3 Grounded Coplanar Waveguide Phase Shifter 414
12.6 Coplanar Photonic-Bandgap Structure 417
 12.6.1 Nonleaky Conductor-Backed Coplanar Waveguide 417
12.7 Coplanar Waveguide Patch Antennas 422
 12.7.1 Grounded Coplanar Waveguide Patch Antenna 422
 12.7.2 Patch Antenna with Electromagnetically Coupled Coplanar Waveguide Feed 424
 12.7.3 Coplanar Waveguide Aperture-Coupled Patch Antenna 425

References 430

Index 434
Preface

This book is intended to provide a comprehensive coverage of the analysis and applications of coplanar waveguides to microwave circuits and antennas for graduate students in electrical engineering and for practicing engineers.

Coplanar waveguides are a type of planar transmission line used in microwave integrated circuits (MICs) as well as in monolithic microwave integrated circuits (MMICs). The unique feature of this transmission line is that it is uniplanar in construction, which implies that all of the conductors are on the same side of the substrate. This attribute simplifies manufacturing and allows fast and inexpensive characterization using on-wafer techniques.

The first few chapters of the book are devoted to the determination of the propagation parameters of conventional coplanar waveguides and their variants. The remaining chapters are devoted to discontinuities and circuit elements, transitions to other transmission media, directional couplers, hybrids and magic-T, microelectromechanical systems (MEMS) based switches and phase shifters, high-T_c superconducting circuits, tunable devices using ferroelectric materials, photonic bandgap structures, and printed circuit antennas. The author includes several valuable details such as the derivation of the fundamental equations, physical explanations, and numerical examples.

The book is an outgrowth of 15 years of research conducted by the author as a member of the Communications Technology Division (CTD) at the National Aeronautics and Space Administration (NASA), Glenn Research Center (GRC) in Cleveland, Ohio. Over the past few years, interest among engineers in coplanar waveguides has increased tremendously, with some of the concepts being extensively pursued by NASA for future space programs and missions. Numerous articles exist, but there is no collective publication. Thus the decision to publish a book on coplanar waveguides appears to be appropriate.

In the course of writing this book, several persons have assisted the author and offered support. The author first expresses his appreciation to the management of CTD at GRC for providing the environment in which he worked on
the book; without their support this book could not have materialized. In particular, he is grateful to Wallace D. Williams, Regis F. Leonard and Charles A. Raquet. The author is further grateful to the engineers and scientists in CTD who shared their time, knowledge, and understanding of this subject. In particular, he would like to thank Samuel A. Alterovitz, Alan N. Downey, Fred Van Keuls, Felix A. Miranda, George E. Ponchak, Maximillian Scardelletti, Joseph D. Warner, Richard R. Kunath, Richard Q. Lee, Hung D. Nguyen, Robert R. Romanofsky, Kurt A. Shalkhauser, and Afroz J. Zaman. In addition the author is grateful to the staff of the clean room and the hybrid/printed circuit fabrication facilities. In particular, he is thankful to William M. Furfaro, Elizabeth A. Mcquaid, Nicholas C. Varaljay, Bruce J. Viergutz and George W. Readus.

The author is grateful to the staff of Publishing Services at GRC for their efficiency in the preparation of the text and illustrations. In particular, he is grateful to Caroline A. Rist, Catherine Gordish, Irene Gorze, and Patricia A. Webb of the co-ordination section, Denise A. Easter and Theresa Young of the manuscript section, and Richard J. Czentorycki, Mary M. Eitel, John L. Jindra, and Nancy C. Mieczkowski of the graphical illustration section. The author is also grateful to the Library at GRC for the help in the literature search.

The author gratefully acknowledges the support and the interactions he has had with Prof. L. P. B. Katehi, Prof. G. M. Rebeiz, Dr. J. R. East, and their students at the University of Michigan, Ann Arbor, for over a decade.

The author thanks Prof. Kai Chang of Texas A&M University, College Station, who suggested and encouraged the writing of this book, and the editorial staff of John Wiley & Sons for the processing of the manuscript.

Finally, the author thanks his wife, Joy, and daughters, Renita and Rona, for their patience during the writing of this book.

RAINEE N. SIMONS
NASA GRC
Cleveland, Ohio
CHAPTER 1

Introduction

A coplanar waveguide (CPW) fabricated on a dielectric substrate was first demonstrated by C. P. Wen [1] in 1969. Since that time, tremendous progress has been made in CPW based microwave integrated circuits (MICs) as well as monolithic microwave integrated circuits (MMICs) [2] to [5].

1.1 ADVANTAGES OF COPLANAR WAVEGUIDE CIRCUITS

1.1.1 Design

A conventional CPW on a dielectric substrate consists of a center strip conductor with semi-infinite ground planes on either side as shown in Figure 1.1. This structure supports a quasi-TEM mode of propagation. The CPW offers several advantages over conventional microstrip line: First, it simplifies fabrication; second, it facilitates easy shunt as well as series surface mounting of active and passive devices [6] to [10]; third, it eliminates the need for wraparound and via holes [6] and [11], and fourth, it reduces radiation loss [6]. Furthermore the characteristic impedance is determined by the ratio of a/b, so size reduction is possible without limit, the only penalty being higher losses [12]. In addition a ground plane exists between any two adjacent lines, hence cross talk effects between adjacent lines are very week [6]. As a result, CPW circuits can be made denser than conventional microstrip circuits. These, as well as several other advantages, make CPW ideally suited for MIC as well as MMIC applications.

1.1.2 Manufacturing

Major advantages gained in manufacturing are, first, CPW lends itself to the use of automatic pick-and-place and bond assembly equipments for surface-mount component placement and interconnection of components, respectively
Second, CPW allows the use of computer controlled on-wafer measurement techniques for device and circuit characterization up to several tens of GHz [13], [14]. These advantages make CPW based MICs and MMICs cost effective in large volume.

1.1.3 Performance

The quasi-TEM mode of propagation on a CPW has low dispersion and hence offers the potential to construct wide band circuits and components. In CPW amplifier circuits, by eliminating via holes and its associated parasitic source inductance, the gain can be enhanced [15].

1.2 TYPES OF COPLANAR WAVEGUIDES

Coplanar waveguides can be broadly classified as follows:

- Conventional CPW
- Conductor backed CPW
- Micromachined CPW

In a conventional CPW, the ground planes are of semi-infinite extent on either side. However, in a practical circuit the ground planes are made of finite extent. The conductor-backed CPW has an additional ground plane at the bottom surface of the substrate. This lower ground plane not only provides mechanical support to the substrate but also acts as a heat sink for circuits with active devices. A conductor backed CPW is shown in Figure 1.2. The micromachined CPWs are of two types, namely, the microshield line [16] and the CPW suspended by a silicon dioxide membrane above a micromachined groove [17].
These lines are illustrated in Figures 1.3 and 1.4, respectively. The advantages of the microshield line are its extremely wide bandwidth, minimal dispersion and zero dielectric loss. The advantage of the later CPW is that it is compatible with commercial CMOS foundry process and hence, is capable of monolithically integrating CMOS devices and circuits.

1.3 SOFTWARE TOOLS FOR COPLANAR WAVEGUIDE CIRCUIT SIMULATION

Recently accurate models for CPW discontinuities, such as open circuits and short circuits, lumped elements, such as inductors and capacitors, and three- and four-port junctions, such as, tee- and crossjunctions, have become com-

![Figure 1.2](image1.png)

FIGURE 1.2 Schematic of a conductor-backed coplanar waveguide (CBCPW).

![Figure 1.3](image2.png)

FIGURE 1.3 Cross section of a microshield line. (From Reference [16], © IEEE 1995.)
FIGURE 1.4 Cross section of a coplanar waveguide suspended by a silicon dioxide membrane over a micromachined substrate. (From Reference [17], © IEEE 1997.)

mercially available [5], [18] to [21]. In addition electromagnetic simulation software for 2-D and 3-D structures have also become commercially available [21] to [25].

1.4 TYPICAL APPLICATIONS OF COPLANAR WAVEGUIDES

1.4.1 Amplifiers, Active Combiners, Frequency Doublers, Mixers, and Switches

The CPW amplifier circuits include millimeter-wave amplifiers [26], [27], distributed amplifiers [28], [29], cryogenically cooled amplifiers [30], cascode amplifiers [31], transimpedance amplifiers [32], dual gate HEMT amplifiers [33], and low-noise amplifiers [34]. The CPW active combiners and frequency doublers are described in [35] and [36], respectively. The CPW mixer circuits include ultra-small drop in mixers [37], beam lead diode double-balanced mixers [38], harmonic mixers [39], MMIC double-balanced mixers [40], [41] and double-balanced image rejection, MESFET mixers [42]. The CPW PIN diode SPDT switches are described in [43] and [44].

1.4.2 Microelectromechanical Systems (MEMS) Metal Membrane Capacitive Switches

The rapid progress made in the area of semiconductor wafer processing has led to the successful development of MEMS based microwave circuits. In a CPW
the conductors are located on the top surface of a substrate which makes it ideally suited for fabricating metal membrane, capacitive, shunt-type switches [45]. CPW MEMS shunt switches with good insertion loss characteristics, reasonable switching voltages, fast switching speed, and excellent linearity have recently been demonstrated [45]. These switches offer the potential to built new generation of low-loss high-linearity microwave circuits for phased array antennas and communication systems.

1.4.3 Thin Film High-Temperature Superconducting /Ferroelectric Tunable Circuits and Components

Recent advances made in the area of thin film deposition techniques, such as sputtering, laser ablation and chemical vapor deposition, and etching technologies, have resulted in the application of high temperature superconducting (HTS) materials to microwave circuits [46]. The HTS circuits have low microwave surface resistance over a wide range of frequencies. As a result signal propagation takes place along these transmission lines with negligible amount of attenuation. Furthermore the advantage of using CPW is that only one surface of the substrate needs to be coated with HTS material before patterning. Recently HTS low-pass and band-stop CPW filters have been demonstrated in [47] and [48], respectively.

In addition by incorporating ferroelectric materials such as, SrTiO$_3$ with HTS materials such as, YBa$_2$Cu$_3$O$_{7-x}$, low-loss, voltage-tunable MMICs with reduced length scales can be constructed [49] and [50]. These MMICs have potential applications in phased array antenna systems and frequency agile communications systems. Recently voltage tunable CPW YBa$_2$Cu$_3$O$_{7-x}$/SrTiO$_3$ phasewhitters, mixers and filters have been demonstrated [50].

1.4.4 Photonic Bandgap Structures

When an electromagnetic wave propagates along a conductor backed CPW considerable amount of energy leakage takes place. The energy that leaks, propagates along the transverse directions away from the line, and excites a parallel plate mode between the CPW top and bottom ground planes. The parasitic parallel plate mode is the leading cause for crosstalk between adjacent circuits. The cross talk can be suppressed by constructing a photonic bandgap lattice on the CPW top ground planes as demonstrated in [51].

1.4.5 Printed Antennas

A radiating element is constructed from a conventional CPW by widening the center strip conductor to form a rectangular or square patch [52]. This patch produces a single-lobe, linearly polarized pattern directed normal to the plane of the conductors. The advantage gained over conventional microstrip patch antenna is lower crosspolarized radiation from the feed [52]. In [53] a
conductor backed CPW with a series gap in the center strip conductor is used to couple power to a patch through an aperture in the common ground plane. This design offers the flexibility of inserting semiconductor devices in the series gap of the feed for controlling the coupling.

1.5 ORGANIZATION OF THIS BOOK

This book is organized to serve as a text for a graduate course in MICs and MMICs, as well as a reference volume for scientists and engineers in industry. Chapter 1 gives an overview of the advantages, types, and typical applications of CPW.

Chapters 2 through 5 are devoted to the basic structures such as conventional CPW, conductor backed CPW, CPW with finite-width ground planes, elevated CPW, and CPW suspended inside a conducting enclosure. Analytical expressions to compute, the effective dielectric constant and characteristic impedance of the lines are provided.

Chapter 6 discusses coplanar stripline (CPS) and its variants. Analytical expressions to compute, the effective dielectric constant and the characteristic impedance are provided.

Coupled CPWs have several applications in the design of microwave components such as, directional couplers and filters. In Chapter 7 the even-mode and odd-mode characteristics of both edge coupled as well as broadside coupled CPWs are presented.

When an electromagnetic wave propagates along a CPW it suffers attenuation due to conductor and dielectric losses. In Chapter 8 the attenuation characteristics of conventional, micromachined, and superconducting CPWs are discussed.

Discontinuities such as, open circuits and circuit elements, such as air-bridges, are an integral part of practical CPW circuits. A good understanding of their characteristics is essential for design success. Hence Chapter 9 is devoted to CPW discontinuities.

Transitions between CPW and other transmission media are essential for integrating various components and subsystems into a complete system. Chapter 10 presents transitions between CPW and the following transmission lines: microstrip, slotline, coplanar stripline, balanced stripline, and rectangular waveguide.

Coupling of power from one line to another takes place when the lines are placed in close proximity to each other. In Chapter 11 the design and construction of directional couplers are presented. These couplers can be realized using either edge coupled CPW or broadside coupled CPW. In addition the construction and design of hybrid couplers and magic-Ts are also discussed.

Finally, Chapter 12 presents several emerging applications of CPW. These applications include microelectromechanical systems (MEMS) based switches.
and phase shifters, high-temperature superconducting circuits, tunable components based on ferroelectric materials, photonic bandgap structures and printed circuit antennas.

REFERENCES

