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Preface 

This book is intended for the vacuum system user-the university student, 
technician, engineer, manager, or scientist-who wishes a fundamental 
understanding of modern vacuum technology and a user’s perspective of 
modern laboratory and industrial vacuum technology. 

Vacuum technology is largely secondary; it forms part of other 
technologies that are central to analysis, research, development, and 
manufacturing. It is used to provide a process environment. Many 
advances in vacuum technique have resulted from the demands of other 
technologies, although scientists and engineers have studied vacuum for its 
own sake. The average user is process-oriented and becomes immersed in 
vacuum technique only when problems develop with a process or when 
new equipment purchases become necessary. 

A User’s Guide to Vacuum Technology, 3rd Edition focuses on the 
operation, understanding, and selection of equipment for processes used in 
semiconductor, optics, and related technologies. It emphasizes subjects not 
adequately covered elsewhere, while avoiding in-depth treatments of topics 
interesting only to the designer or curator. Residual gas analysis is an 
important topic whose treatment differs from the usual explanation of mass 
filter theory. Components such as the turbomolecular and helium gas 
refrigerator cryogenic pumps are now widely used but not well understood. 
The discussion of gauges, pumps, and materials is a prelude to the central 
discussion of systems. System designs are grouped according to their 
function. Current designs are either single-chamber or multichamber; the 
details of each design are determined by the requirements of an industrial 
or research application. 

In this edition, the discussion of gauges, pumps, and materials has been 
updated, where relevant, to reflect changes in practice. Spinning rotor 
gauges are no longer a laboratory curiosity. Ultrahigh vacuum gauges, 
though limited in their availability, will be a necessity in next-generation 
production deposition systems. Ultraclean, low dead volume metrology 
and valves, along with superior materials and cleaning techniques, have 
made contamination-free manufacturing a reality. 

Ultraclean vacuum, once the domain of the researcher, is now routinely 
used for high-volume production of semiconductor chips and storage 
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media. However, methodologies for reaching low pressures in a clean 
manner have changed significantly. No longer are single-chamber systems 
baked for twenty- four hours. Rather, cassette-based loadhnload chambers 
serve as high-volume interfaces between atmosphere and ultraclean 
process chambers. These chambers, which can be accessed in serial or 
random order, are only exposed to atmosphere during maintenance. 

Large, efficient multichamber medium and highvacuum systems are 
used in high-speed coating of numerous consumer products such as 
window glass, solar cells, video tape, printer paper, eyeglass lenses, 
automobile headlamps, plastic films and security devices. 

The gap in knowledge and training between those who manufacture and 
those who use vacuum equipment continues to widen. It is from this 
perspective that the previous edition of this book has been revised. 
Important formulas have been denoted with a b for emphasis. Easy 
questions have been emphasized with a 'f. 

Thanks are due to countless researchers who, individually and 
collaboratively, have advanced this field by creative solutions to real 
problems; I also thank Dr. Bruce Kendall for his insightful comments and 
thoughtful review. 

J .  F. O'Hanlon 

Tucson, Arizona 
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Its Basis 

An understanding of how vacuum components and systems h c t i o n  
begins with an understanding of the behavior of gases at low pressures. 
Chapter 1 discusses the nature of vacuum technology. Chapter 2 reviews 
basic gas properties. Chapter 3 describes the flow of gases at reduced 
pressures, and Chapter 4 discusses how gas is evolved fiom the surfaces of 
materials. Together, these chapters form the basis of vacuum technology. 
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CHAPTER 1 

Vacuum Technology 

Torricelli is credited with the conceptual understanding of the vacuum 
within a mercury column by 1643. It is written that his good friend Viviani 
actually performed the first experiment, perhaps as early as 1644 [1,2]. His 
discovery was followed in 1650 by Otto von Guericke’s piston vacuum 
pump. Interest in vacuum remained at a low level for more than 200 years, 
when a period of rapid discovery began with McLeod’s invention of the 
compression gauge. In 1905 Gaede, a prolific inventor, designed a rotary 
pump sealed with mercury. The thermal conductivity gauge, diffusion 
pump, ion gauge, and ion pump soon followed, along with processes for 
liquefaction of helium and refinement of organic pumping fluids. They 
formed the basis of a technology that has made possible everything from 
light bulbs to space simulation. The significant discoveries of this early 
period of vacuum science and technology have been summarized in a 
series of historical review papers [2-71. 

A vacuum is a space from which air or other gas has been removed. All 
gas cannot be removed. The amount removed depends on the application, 
and is done for many reasons. At atmospheric pressure molecules 
constantly bombard surfaces. These molecules can bounce from surfaces, 
attach themselves to surfaces, or perhaps chemically react with surfaces. 
Air or other surrounding gas quickly contaminates a cleaned surface. A 
clean surface-for example, a freshly cleaved crystal-will remain clean in 
an ultrahigh vacuum chamber for long periods of time, because the rate of 
molecular bombardment is low. 

Molecules are crowded closely together at atmospheric pressure and 
travel in every direction much like people in a crowded plaza. It is 
impossible for a molecule to travel &om one wall of a chamber to another 
without colliding with many molecules. By reducing the pressure to a 
suitably low value, a molecule from one wall can travel to another without 
a collision. Many effects become possible if molecules can travel long 
distances between collisions. Metals can be evaporated from a pure source 
without reacting in transit. Molecules or atoms can be accelerated to a high 
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4 VACUUM TECHNOLOGY 

energy and sputter away, or be implanted in the bombarded surface. 
Electrons or ions can be scattered from surfaces and be collected. The 
energy changes they undergo on scattering or release from a surface can be 
used to probe or analyze the surface or underlying layers. For convenience 
the subatmospheric pressure scale has been divided into several ranges. 
Table 1.1 lists these ranges. 

The required vacuum level depends on the application. Epitaxial growth 
of semiconductor films (reduced pressure epitaxy) and laser etching of 
metals are two processes that are performed in the low vacuum range. 
Sputtering, plasma etching and deposition, low-pressure chemical vapor 
deposition, ion plating, and gas filling of encapsulated heat transfer modules 
are examples of processes performed in the medium vacuum range. 

Pressures in the high vacuum range are needed for the manufacture of 
traditional low- and high-tech devices such as microwave, power, cathode 
ray and photomultiplier tubes, light bulbs, architectural and automotive 
glazing, decorative packaging, degassing of metals, vapor deposition, and 
ion implantation. A number of medium technology applications including 
medical, microwave susceptors, electrostatic dissipation films, and aseptic 
packaging use films fabricated in a vacuum environment [8]. Retail 
security, bank note security, and laser and inkjet paper have joined this 
group- 

The background pressure must be reduced to the very high vacuum 
range for electron microscopy, mass spectroscopy, crystal growth, and x- 
ray and electron beam lithography, and storage media production. For ease 
of reading, we call the very high vacuum region “high vacuum” and call 
the pumps “high vacuum pumps.” 

Pressures in the ultrahigh vacuum range were formerly the domain of the 
surface analyst, materials researcher, or accelerator technologist. Critical 
high-volume production applications, such as semiconductor devices, thin- 

Table 1.1 Vacuum Ranges 

Pressure Range 
Degree of Vacuum (Pa)” 

Low lo5 > P > 3 . 3 ~ 1 0 ~  
Medium 3 . 3 ~ 1 0 ~  1 P > lo-’ 
High lo-’ 1 P > lo4 
Very high 104 2 P > l o 7  
Ultrahigh 2 P > i o - * O  
Extreme ultrahigh 10-’O > P 

Suurce: Reprinted with permission h m  D i c t i o q  for 
Vacuum Science and Technology, M. Kaminsky and J. M. 
Iafferty, Eds., American Vacuum Society, New York, 1980. 
” 101323.3 Pa = 1 atmosphere. 
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film media heads, and extreme UV lithography systems, require ultrahigh 
vacuum base pressures to improve yield by reducing gaseous impurity 
contamination. Additionally, processes carried out in these systems must be 
free of particle contamination, so we call them ultraclean vacuum systems. 

A vacuum system is a combination of pumps, valves, and pipes, which 
creates a region of low pressure. It can be anything from a simple 
mechanical pump or aspirator for exhausting a vacuum storage container to 
a complex system such as an underground accelerator with miles of piping 
that is maintained at ultrahigh vacuum. 

Removal of air at atmospheric pressure is usually done with a 
displacement pump. A displacement pump is one that removes the air from 
the chamber and expels it to the atmosphere. Rotary vane and piston 
pumps are examples of pumps used to exhaust gases at atmospheric 
pressure. Liquid nitrogen capture pumps or sorption pumps have also been 
designed for exhausting gases at atmospheric pressure. They are used only 
on small chambers because of their finite gas sorption. 

Rotary vane, piston and sorption pumps have low-pressure limits in the 
range lO’’-lO” Pa. Pumps that will function in a rarefied atmosphere are 
required to operate below this pressure range. Several displacement and 
capture pumps can remove air at these low pressures. The diffusion pump 
was the first high vacuum pump. It is a displacement pump. Its outlet 
pressure is below atmosphere. The turbomolecular pump, a system of high- 
speed rotating turbine blades, can also pump gas at low pressures. The 
outlet pressures of these two pumps need to be kept in the range 0.5-50 Pa, 
so they must exhaust into a rotary vane or piston “backing” pump, or “fore” 
pump. If the diffision or turbomolecular pump exhaust gas flow would 
otherwise be too great, a lobe blower will be placed between the exhaust of 
the diffusion or turbomolecular pump and the inlet of the rotary pump to 
pump gas at an increased speed in this intermediate pressure region. 

Capture pumps can effectively remove gas from a chamber at low 
pressure. They do so by freezing molecules on a wall (cryogenic pump), 
chemically reacting with the molecules (getter pump), or accelerating the 
molecules to a high velocity and burying them in a metal wall (ion pump). 
Capture pumps are more useful as high vacuum pumps than as atmospheric 
exhaust pumps because the number of molecules to be captured at high 
vacuum is less than the number removed during initial evacuation from 
atmosphere. 

Air is the most important gas to understand, because it is in every 
vacuum system. It contains at least a dozen constituents, whose major 
constituents are described in Table 1.2. The differing ways in which pumps 
remove air, and gauges measure its pressure, can be understood in terms of 
the partial pressures of its components. The concentrations listed in Table 
1.2 are those of dry atmospheric air at sea level (total pressure 
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Table 1.2 Components of Dry Atmospheric Air 

Content Pressure 
Constituent (vol. %) (PPm) (Pa) 

N2 
0 2  
co* 
Ar 
Ne 
He 
Kr 
Xe 
H2 
cH4 
N20 

78.084 f 0.004 
20.946 f 0.002 
0.037 
0.934 f 0.001 

18.18 50.04 
5.24 5 0.004 
1.14 f 0.01 
0.087 f 0.001 
0.5 
2. 
0.5 f 0.1 

79,117 
21,223 
37.5 

946.357 
1.842 
0.51 
0.1 16 
0.009 
0.051 
0.203 
0.05 1 

Source: Reprinted with permission from The Handbook of Chemistry and 
Physics, 59th ed., R C. Weast, Ed., copyright 1978, The Chemical Rubber 
Publishing Co., CRC Press, Inc., West Palm Beach, FL 33409. 
a Carbon dioxide data from Mama Kea, Hawaii, 2000. Data since 1955 are 
available as: http://stratus.mlo.hawaii.govhjects/GASES/co2graph.htrn. 

101,323.2 Pa or 760 Torr). The partial pressure of water vapor is not given 
in this table, because it constantly changes. At 20°C a relative humidity of 
50% corresponds to a partial pressure of 1165 Pa (8.75 Torr), making it the 
third largest constituent of air. The total pressure changes rapidly with 
altitude, as shown in Fig. 1.1, whereas its proportions change slowly but 
significantly. In outer space the atmosphere is mainly HZ with some He [6]. 

In the pressure region below 10 Pa, gases evolving from material 
surfaces contribute more molecules per second to the total gas load than do 
the gases originally filling the chamber. The correct pump is not the only 
requirement needed to reach low pressures-the materials of construction, 
techniques for joining components, surface cleaning techniques, and 
operational procedures are all critically important. In the remaining 
chapters the pumps, gauges, and materials of construction and operational 
techniques are described in terms of fundamental gas behavior. The focus 
is on the understanding and operation of vacuum systems for a variety of 
technological applications. 

1.1 UNITS OF MEASUREMENT 

Units of measurement present problems in many disciplines and vacuum 
technology is no exception. The use of noncoherent vacuum units has been 
common in the US long after the adoption of System International. 
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-*OL -; -$ -4 1 -A -I -; d 1’ ; A 4 
Loglo Pressure 

Fig. 1.1 Relation between the atmospheric pressure and the geometric altitude. Reprinted 
with permission h m  The Handbook ofchemistry and Physics, 59th ed., R. C. Weast, Ed. 
copyright 1978, The Chemical Rubber Publishing Co., CRC Press, Inc., West Palm Beach, 
FL 33409. 

The meter-kilogram-second (MKS) system was first introduced over a 
half-century ago; its use became commonplace only after a decade or more 
of classroom education by instructors committed to change. In a similar 
manner, those who teach vacuum technique will lead the way to routine 
use of SI units. Instruments are manufactured for use in a global 
economy and their readings can be displayed in several formats. The 
advantages of using a coherent unit system are manifold. Calculations 
become straightforward and logical and the chance for error is reduced. 
Incoherent units such as permeation constant, the volume of gas (at 
standard temperature and pressure) per material thickness per material area 
per sec pressure difference, are cumbersome. Additionally, these 
permeation units mask their relation to solubility and diffusion. Ultimately, 
SI units will be routinely used. To assist with this change, dual labels have 
been added throughout the text. Basic SI units for pressure (Pa), time (s) 
and length (m) will be assumed in all formulas, unless noted differently 
within a formula statement. 
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CHAPTER 2 

Gas Properties 

In this chapter we discuss the properties of gases at atmospheric and 
reduced pressures. The properties developed here are based on the kinetic 
picture of a gas. Kinetic theory has its limitations, but with it we are able to 
describe particle motion, pressure, effusion, viscosity, diffusion, thermal 
conductivity, and thermal transpiration of ideal gases. We will use these 
ideas as the starting point for discussing gas flow, gauges, pumps and systems. 

2.1 KINETIC PICTURE OF A GAS 

The kinetic picture of a gas is based on several assumptions. (i) The 
volume of gas under consideration contains a large number of molecules. 
A cubic meter of gas at a pressure of lo5 Pa and a temperature of 22°C 
contains 2 . 4 8 ~ 1 0 ~ ~  molecules, whereas at a pressure of Pa, a very high 
vacuum, it contains 2 . 5 ~ 1 0 ' ~  molecules. Indeed, any volume and pressure 
normally used in the laboratory will contain a large number of molecules. 
(i i)  Adjacent molecules are separated by distances that are large compared 
with their individual diameters. If we could stop all molecules 
instantaneously and place them on the coordinates of a grid, the average 
spacing between them would be about 3 . 4 ~  1 0-9 m at atmospheric pressure 
(1 O5 Pa). The diameter of most molecules is of order 2 4 x  lo-'' m and their 
separation distances are -6-15 times their diameter at atmospheric 
pressures. For extremely low pressures, say Pa, the separation distance 
is about 3x10" m. (iii) Molecules are in a constant state of motion. All 
directions of motion are equally likely and all velocities are possible, 
although not equally probable. (iv) Molecules exert no force on one 
another except when they collide. If this is true, then molecules will be 
uniformly distributed throughout the volume and travel in straight lines 
until they collide with a wall or with one another. 

Using these assumptions, many interesting properties of ideal gases have 
been derived. Some elementary properties are reviewed here. 

9 
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2.1.1 Velocity Distribution 

As the individual molecules move about they collide with elastic 
collisions. Elastic collisions conserve energy, whereas the colliding 
particle's velocity is changed after each collision. We stated that all 
velocities are possible, but not with equal probability. The distribution of 
particle velocities calculated by Maxwell and Boltzmann is 

312 
dn - 2N m 2 -rnv2/(2kT) __- - 
dv z1l2 ( 2 k T )  

rn is the particle mass and T is the Kelvin temperature. The relation 
between the Kelvin scale and the Celsius scale is T(K) = 273.16 + T C ) .  
In (2.1) N is the total number of particles, and k is Boltzmann's constant. 
Figure 2.1 illustrates (2.1) for nitrogen molecules (air) at three 
temperatures. It is a plot of the relative number of molecules between velocity 
v and v + dv. We see that there are no molecules with zero or infiite velocity, 
and that the peak or most probable velocity vp is a function of the average gas 
temperature. The particle velocity also depends on the molecular mass, the 
peak velocity can be expressed as vp = (2kT/m)". The arithmetic mean or 
average velocity v is useful when describing particle flow. 

112 v'(s) b (2.2) 
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Fig. 2.1 Relative velocity distribution of air at O"C, 25"C, and 400°C. 


