
Stephen T. Albin

The Art of Software
Architecture

Design Methods and Techniques

1 228869 FM.qxd 3/3/03 9:59 AM Page i

C1.jpg

1 228869 FM.qxd 3/3/03 9:59 AM Page iv

Stephen T. Albin

The Art of Software
Architecture

Design Methods and Techniques

1 228869 FM.qxd 3/3/03 9:59 AM Page i

Executive Publisher: Joe Wikert
Executive Editor: Robert M. Elliott
Assistant Developmental Editor: Emilie Herman
Editorial Manager: Kathryn A. Malm
Assistant Managing Editor: Vincent Kunkemueller
Text Design & Composition: Wiley Composition Services

This book is printed on acid-free paper. ∞
Copyright © 2003 by Stephen T. Albin. All rights reserved.
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8700. Requests to the Publisher for permission should be
addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis,
IN 46256, (317) 572-3447, fax (317) 572-4447, E-mail: permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the accu-
racy or completeness of the contents of this book and specifically disclaim any implied warranties
of merchantability or fitness for a particular purpose. No warranty may be created or extended by
sales representatives or written sales materials. The advice and strategies contained herein may
not be suitable for your situation. You should consult with a professional where appropriate.
Neither the publisher nor author shall be liable for any loss of profit or any other commercial dam-
ages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993
or fax (317) 572-4002.

Trademarks: Wiley, the Wiley Publishing logo and related trade dress are trademarks or registered
trademarks of Wiley Publishing, Inc., in the United States and other countries, and may not be
used without written permission. All other trademarks are the property of their respective own-
ers. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:

Albin, Stephen, 1967-
The art of software architecture : design methods and

techniques / Stephen T. Albin.
p. cm.

Includes bibliographical references and index.
ISBN 0-471-22886-9

1. Computer software—Development.
2. Computer architecture. I. Title.
QA76.76.D47 A398 2003
005.1—dc21

2002155539

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

1 228869 FM.qxd 3/3/03 9:59 AM Page ii

To Jessie, Morgan, and Hannah
for their love and inspiration.

1 228869 FM.qxd 3/3/03 9:59 AM Page iii

1 228869 FM.qxd 3/3/03 9:59 AM Page iv

Acknowledgments xiii

About the Author xv

Introduction xvii

Chapter 1 Introduction to Software Architecture 1
Evolution of Software Development 2
Fundamentals of Software Engineering 5

Reusable Assets 6
General-Purpose Programming Languages 7
Special-Purpose Programming Languages 8
Modeling Languages and Notations 8

Elements of Software Architecture 9
Components, Connectors, and Qualities 9
Architectural Description 12
Software Architecture versus Software Design Methodologies 13
Types of Architecture 14

Summary 16

Chapter 2 The Software Product Life Cycle 17
Management View 18

Inception Phase 20
Elaboration Phase 20
Construction Phase 21
Transition Phase 21

Software Engineering View 21
Requirements Analysis and Specification 24
Design 25
Implementation and Testing 25
Deployment and Maintenance 26

Contents

v

1 228869 FM.qxd 3/3/03 9:59 AM Page v

Engineering Design View 26
Product Planning: Specification of Information 29
Conceptual Design: Specification of Principle 29
Embodiment Design: Specification of Layout 30
Detail Design: Specification of Production 30

Architectural View 31
Predesign Phase 32
Domain Analysis Phase 33
Schematic Design Phase 34
Design Development Phase 34
Building Phases 34

Synthesizing the Views 35
Summary 37

Chapter 3 The Architecture Design Process 39
Understanding the Problem 41
Identifying Design Elements and Their Relationships 42

Defining System Context 47
Identifying Modules 48
Describing Components and Connectors 50

Evaluating the Architecture 51
Transforming the Architecture 52
Summary 53

Chapter 4 Introduction to Software Design 55
Problems in Software Architectural Design 56
Function, Form, and Fabrication: The Vitruvian Triad 57

Function and Product Planning 58
Form and Interaction Design 59
Cognitive Friction and Architectural Design 60
Fabrication 61
Application Architecture 62
Example 62

The Scope of Design 65
Tasks and Activities of Design 65

Origin of the Task 66
Organization 67
Novelty 68
Production 69
Technology 69
Horizontal Domain 70
Quality Attributes 70

Architecture versus Engineering Design 71
The Psychology and Philosophy of Design 72

Problems, Obstacles, and Solutions 72
Aristotelian Reasoning 73

vi Contents

1 228869 FM.qxd 3/3/03 9:59 AM Page vi

General Methodology of Design 75
Purposeful Thinking 76
Analysis 77
Abstraction 78
Synthesis 78
General Heuristics 79

The Method of Persistent Questions 79
The Method of Negation 79
The Method of Forward Steps 80
The Method of Backward Steps 80
The Method of Factorization 81
The Method of Systematic Variation 81
Division of Labor and Collaboration 81

Summary 82

Chapter 5 Complexity and Modularity 85
Complexity 89

Understanding Complexity 89
Granularity and Context 90

Modularity 95
Architecture and Modules 96
Importing and Exporting 96
Coupling and Cohesion 97
Design Elements and Design Rules 98
Task Structure Matrix 103
Modular Operators 104

Splitting 106
Substituting 109
Augmenting and Excluding 109
Inversion 110
Porting 110

Summary 111

Chapter 6 Models and Knowledge Representation 113
What Are Models? 114

The Language of Models 115
Models and Human Comprehension 117

What Are Models Used For? 117
Systems Analysis Models 119
Systems Inference Models 119
Systems Design Models 120

What Roles Do Models Play? 120
Communication between Stakeholders and the Architect 121
Design Decisions and Design Assessment 121
Guidelines for Detail Design 122
Reusable Technical Artifacts 122

Contents vii

1 228869 FM.qxd 3/3/03 9:59 AM Page vii

Modeling the Problem and Solution Domains 122
Problem Domain Models 123

Understanding the Problem 123
Analyzing the Requirements 123

Solution Domain Models 123
Technology-Independent Models 124
Technology-Dependent Models 124

Views 124
Objectives and Purpose Models 126
Behavioral/Functional Models 127

User Interface Prototypes 128
Scenarios and Threads 128
State Transition Diagrams 129
Process Models 129

Information/Data Models 130
Models of Form 131

Scale Models 131
Components and Connectors 132
Source Code 133

Nonfunctional/Performance Models 133
Summary 133

Chapter 7 Architecture Representation 135
Goals of Architecture Representation 136
Foundations of Software Architecture Representation 137

Fundamental Software Design Views 139
Architecture Description Languages 140

Design Language Elements 141
Composition 143
Abstraction 144
Reusability 144
Configuration 145
Heterogeneity 145
Architecture Analysis 145

First-Class Connectors 146
Modules and Components 146
Example: C2 SADL 148
Applying ADLs 149

Summary 150

Chapter 8 Quality Models and Quality Attributes 151
Process and Product Quality 153
Specifying Quality Requirements 153

Measuring Quality Attributes 154
Quality Requirements and Architectural Design 155
Systems Knowledge and Quality Attributes 156
Barriers to Achieving Quality 156

viii Contents

1 228869 FM.qxd 3/3/03 9:59 AM Page viii

Common Quality Attribute Misunderstandings 157
Specifying Quality Requirements 157
Modeling Methods Don’t Address Quality Attributes 157
Designing for Quality Attributes 157
Solution Catalogues and Quality Attributes 158
Quality Control Is an Afterthought 158

Understanding Quality Models 159
Benefits of Quality Models 166

Architecting with Quality Attributes 167
Functionality 167

Interoperability 168
Security 168

Performance (Efficiency) 168
Resource Efficiency 169

Modifiability 170
Availability and Reliability 170

Recoverability 170
Usability 171
Portability 171

Architecting and Quality Models 173
Summary 174

Chapter 9 Architectural Design Principles 175
Architectural Level of Design 176

Applying Design Principles 176
Using Systems Thinking 177
Example 178

Architecting with Design Operators 179
Decomposition 180

Identifying Functional Components 181
Composition/Aggregation 182
Component Communication 182

Replication 182
Compression 184
Abstraction 185

Virtual Machines and Adaptability 185
Resource Sharing 186

Functional Design Strategies 187
Self-Monitoring 187
Recovery 188
Instrumenting 188

Summary 188

Chapter 10 Applying Architectural Styles and Patterns 189
Defining Architectural Patterns and Style 190

Activation Model 192
Styles and Quality Attributes 195

Contents ix

1 228869 FM.qxd 3/3/03 9:59 AM Page ix

Common Architectural Styles 196
Dataflow Systems 197
Call-and-Return Systems 200
Independent Components 202
Virtual Machines 203
Repositories 204

Example of Applying Architectural Styles 204
Summary 211

Chapter 11 Understanding Metamodels 213
Understanding Metamodels 214

Three-Layer Model of Knowledge Representation 215
Applying Reference Models 219

Seeheim Model 220
Arch/Slinky Model 223
Enterprise Application Reference Model 225
Technology Stacks and Architectural Layers 227

Fundamental Metamodel for Describing Software
Components 230

Examples: Content Management System Reference Models 231
Domain Model 232
Content Collaboration Reference Model 234
Content Management Reference Model 236

Summary 237

Chapter 12 Creating Architectural Descriptions 239
Standardizing Architectural Descriptions 240
Creating an Architectural Description 241

Identify the Architectural Description 242
Identify Stakeholders 243
Select Viewpoints 244
Specify Viewpoints 245

Viewpoint Rationale 246
Viewpoints and Systems Knowledge 247
Interdependence of Views 247
Traceability 248
Methodologies and Viewpoints 248

Specify Views 250
Record View Inconsistencies 250
Create Architectural Rationale 251

Applying the Architectural Description 251
Creating an Architectural Description for an Existing System 252
Performing an Architectural Assessment 253
Specification Pragmatics 253

Summary 254

Chapter 13 Using Architecture Frameworks 255
Software Architecture Frameworks 256

Philosophies of Architecture Frameworks 257

x Contents

1 228869 FM.qxd 3/3/03 9:59 AM Page x

Architecture Framework Goals 258
Methodologies and Architecture Frameworks 258

The 4+1 View Model of Architecture 259
Relationship to IEEE 1471 260
Logical Viewpoint 260

Stakeholders and Concerns Addressed 261
View Construction 261

Process Viewpoint 261
Stakeholders and Concerns Addressed 261
View Construction 262

Development Viewpoint 263
Stakeholders and Concerns Addressed 263
View Construction 263

Physical Viewpoint 263
Stakeholders and Concerns Addressed 263
View Construction 264

Scenario Viewpoint 264
Stakeholders and Concerns Addressed 264
View Construction 264

Model Overloading 264
Architecting with the Unified Process 265

Reference Model for Open Distributed Processing 266
Enterprise Viewpoint 267

Stakeholders and Concerns Addressed 267
View Construction 267

Information Viewpoint 268
Stakeholders and Concerns Addressed 269
View Construction 269

Computational Viewpoint 269
Stakeholders and Concerns Addressed 270
View Construction 270

Engineering Viewpoint 270
Stakeholders and Concerns Addressed 271
View Construction 271

Technology Viewpoint 271
Stakeholders and Concerns Addressed 271
View Construction 272

Summary 272

Chapter 14 Software Architecture Quality 273
Importance of Assessing Software Architecture 275

Content Publishing System Example 275
Enterprise Application Example 277

How to Improve Quality 277
Systematic Design Process 278
Understand the Right Problem 279

System Level View of Requirements 280
Differentiating Design and Requirements 281

Contents xi

1 228869 FM.qxd 3/3/03 9:59 AM Page xi

Assessing Software Architectures 281
Scenarios: Reifying Nonfunctional Requirements 283
The Role of the Architectural Description 285

Architecture Evaluation 285
Assessing Modifiability 287
Assessing Performance 291
Summary 294

Appendix: Bibliography 297

Index 301

xii Contents

1 228869 FM.qxd 3/3/03 4:01 PM Page xii

xiii

I would like to thank Scott Seaton, Steve Richard, and Stuart Thompto at
ListenPoint for allowing me the time to complete this project.

I would also like to thank the staff at Wiley Publishing, Inc., and especially
Emilie Herman for her excellent assistance reviewing and revising the
manuscript.

Finally, I wish to thank my wife, Jessie, for her patience and support, and my
daughters, Morgan and Hannah, for sharing me with this project.

Acknowledgments

1 228869 FM.qxd 3/3/03 9:59 AM Page xiii

1 228869 FM.qxd 3/3/03 9:59 AM Page xiv

Stephen T. Albin is a software engineer and consultant in northern California
and has developed commercial enterprise software applications, platforms,
and technologies. He is a member of the ACM and IEEE Computer and Engi-
neering Management Societies. He can be reached at stevealbin@computer.org.

About the Author

xv

1 228869 FM.qxd 3/3/03 9:59 AM Page xv

1 228869 FM.qxd 3/3/03 9:59 AM Page xvi

Software architecture is often confused with low-level design and the technol-
ogy stack. Technology vendors and popular technology-focused journals tend
to propagate this misunderstanding. As a result, many software engineers
produce architecture descriptions that are nothing more than regurgitated dia-
grams of technology layers. The classic enterprise application architecture is
often a diagram of so-called architectural layers depicting a presentation layer
on top of a business logic layer (or middle-tier) on top of a persistence layer.
This representation communicates nothing about how the system handles the
functional or nonfunctional requirements of the system. It merely shows the
technology to be used and how that technology will be integrated.

There is a temptation to assume that the layers of an application architecture
map directly to individual technologies: Presentation is composed of Java
Servlets and Java Server Pages (JSP); the business layer is composed of Enter-
prise JavaBeans (EJB); and the persistence layer is a relational database man-
agement system (RDBMS). For some simple systems, there is a one-to-one
correspondence between the architectural layers and individual technologies.
Those assumptions quickly become fallacies when the system becomes func-
tionally more complex. Presentation logic may be composed not only of the
servlets and JSP but also of EJBs and data stored in a relational database
(for example, user preferences). Business logic may be composed not only of
middle-tier EJB objects but also stored procedures and database triggers as
well as other component technologies such as business rules engines and
workflow engines.

For one system that I had to redesign, the only architectural description that
existed was just such a technology stack. It depicted how eXtensible Markup
Language (XML) documents would be passed between Java Servlets and

Introduction

xvii

1 228869 FM.qxd 3/3/03 9:59 AM Page xvii

Enterprise JavaBeans as a flexible approach to creating the middle-tier appli-
cation programming interface (API). It said nothing about how the system was
composed of a main business logic subsystem, a security subsystem, and a
reporting subsystem. Instead, it focused on how XML documents would be
mapped to and from the relational database tables. Engineers on the project
would often draw whiteboard diagrams of the system to include these three
subsystems, as well as several other functional modules. The reality was that
these were not modules. There was no separation or decoupling between any
of them. The reporting module was composed of some user interface code that
queried data from the same database tables that the other functions of the sys-
tem operated on. The security logic was just an aspect of the system. There was
no discernable security module; instead, the security logic was embedded in
many objects throughout the system. The development organization struc-
tured itself around the presentation layer and everything else, treating the user
interface as if it were a true module. The resulting system was difficult and
costly to develop and maintain.

Software architecting involves the design of a system from multiple view-
points. The common viewpoints used in software engineering are the technol-
ogy stack (or physical) view, the object (or data) model, and the use case (or
behavioral) view. These viewpoints are useful and necessary because they
capture many types of design decisions and represent many system qualities
such as functionality, information, and physical construction. They do not rep-
resent many other important system quality attributes such as modifiability,
buildability, security, reliability, and performance, nor do they represent non-
operational or business-oriented qualities such as the ability to reduce devel-
opment and maintenance costs.

The problem with representing an architecture with this single technology-
focused view is that we only see a vertical slice through a multidimensional
system. Many architectural decisions cannot be represented in this view. If this
is the only view we create, then we will probably neglect the other views to the
detriment of the system itself.

An often ignored architectural viewpoint is the component or subsystem
view of a system. By definition, a system is an aggregation of cooperating com-
ponents. Without this view the system appears as a single module, despite the
fact that engineers may talk about the security subsystem or the reporting sys-
tem. It’s easy to draw a few boxes and arrows on a whiteboard, but if these
boxes and arrows don’t mean anything, then we shouldn’t bother.

A module has a clear interface that other modules import. The internals of
the module are free to change. A Java Database Connectivity (JDBC) driver is an
example. Applications rely on the published JDBC Java interfaces. Many ven-
dors produce implementations, but they all conform to the same interface and
therefore can be replaced. If an element of code cannot be replaced by another
implementation without causing other elements to change, then that element of

xviii Introduction

1 228869 FM.qxd 3/3/03 9:59 AM Page xviii

code is not a module. What makes a system modular is the relatively small
amount of information shared between the modules and the development
teams designing and implementing those modules. Treating something as if it
were a module will only frustrate the developers and managers.

In the above system, one of the first true decompositions of the system was
the separation of the reporting system from the operational (or transactional)
system. The results were tremendous, especially given the simplicity of the
decomposition. No longer were there performance problems with running
queries against the operational tables. No longer were operational and report-
ing use cases intertwined. The system was much easier to develop and main-
tain. In hindsight, the separation of the system into these two modules seems
obvious and trivial. Yet when no one was looking at the system from this point
of view, it was far from obvious, and the problems incurred were great. This
little design decision can even be expressed as a software architecture pattern:
Separate operational data from analytic data so that the two are loosely coupled
such that they may be designed, developed, and maintained fairly indepen-
dently and so that the system may have better performance.

Software architecture is emerging as a new discipline in software develop-
ment in response to the growing complexity of software systems and the
problems they are attempting to solve. Software is becoming the dominant
component of many systems, and it is necessary for the community to develop
new practices, principles, and standards so that we may somehow manage the
growing complexity.

There are a couple of philosophies concerning how to improve the software
crisis. One approach is to improve the quality of the software development
process. In this school of thought, quality can be improved by using iterative
development techniques, rapid application development (RAD) tools, fre-
quent integration and testing, and keeping careful records so that an organiza-
tion can build up historical data that will aid in improving the process in
future product cycles. It uses iterative/increment development processes like
the Rational Unified Process and the Capability Maturity Model (CMM).
Another approach for improving software quality is to stay away from the
heavyweight planning-oriented processes and instead adopt agile processes
and use of techniques such as RAD and eXtreme Programming (XP).

Most software engineers in the role of software architect have little or no
training in the discipline of software architecture, mostly because there is no
well-developed theory or standard university curriculum. As for prior genera-
tions of untrained software programmers who developed their craft through
trial and error, a lot of rediscovery of principles, patterns, and techniques
occurs. Practitioners and researchers began to document reusable patterns of
software design and engineering processes. There is a body of knowledge
accumulating in the industry and being documented as principles and
patterns in books, conference proceedings, and technical journals. However,

Introduction xix

1 228869 FM.qxd 3/3/03 9:59 AM Page xix

the practicing software architect scarcely has time to keep up with the flow of
information, let alone enough time to synthesize it into practical knowledge.
This book is an attempt to synthesize and distill much of this information so
that the practicing software architect, and especially the beginning software
architect, may be able to fill in the gaps in his or her understanding of software
architecture design.

The Art of Software Architecture presents software architecting independently
of any particular engineering process or organization maturity. It supplies
the software architect with the information and tools necessary to make
sound architectural decisions and create effective software architectures. The
book includes thorough introductions to and applications of methodologies;
design representations and models; technologies (such as object-orientation
and component-orientation); reference models; architectural frameworks; and
analysis, design, and architecture patterns.

No one book can serve as a software architect’s handbook. The subject is
broad and deep, and it is evolving. This book focuses on how software archi-
tects create software architectures. It outlines the discipline and its methodol-
ogies and gives the reader a sense of the scope of the topic. Whereas many
software architecture books focus on a process or a technology-based view,
this book is organized around the fundamentals, models, and techniques of
software architecture design.

This book focuses on the design methods and techniques that a software
architect must practice. You cannot become a good architect by simply reading
about it; you must apply the things you have learned in order to understand
how they should be applied and how best to apply them. One barrier to
effectively using object-oriented design, for example, is the skill in actually
defining the right objects and their relationships. UML and object-oriented
programming languages only help you express your designs; they do not help
you produce good designs. Another barrier is that a solution is only as good as
the problem statement. If the problem statement is confusing, wrong, or miss-
ing, then the design process has no input (“garbage in/garbage out”).

The Goals of This Book

The demands of software development organizations strain software design-
ers. This is especially true of smaller development organizations that do not
have standardized development processes or a lot of experience in architecting
software. These organizations make up about 70 percent of the software orga-
nizations that exist today. Most of these organizations cannot implement
expansive development methodologies or adopt formal software design spec-
ification methods for any number of reasons such as cost of training in time
and money, cost of tools to support the methodology, cost of evangelizing the
methodology in terms of time and personal energy, the risk of introducing a

xx Introduction

1 228869 FM.qxd 3/3/03 9:59 AM Page xx

new methodology while trying to build software, and simply a lack of under-
standing of the practical importance of an effective software architecting
process. Software development organizations need to implement practices
that improve the software architecture without necessarily requiring the orga-
nization to change overnight. The software architects are often the persons
who need to effect this change.

This book is especially for the software architect in the smaller, less mature
software development organization (characterized as predominantly practic-
ing ad hoc development). It provides practical guidance on the generation of
effective software architectures. It will:

■■ Provide a sound understanding of the fundamental concepts of soft-
ware architecture

■■ Serve as a road map through the information and schools of thought in
software architecture

■■ Teach classic software architecting styles, patterns, heuristics, method-
ologies, and models

How This Book Is Organized

Most of the literature on software architecture addresses the structure of soft-
ware but not the design processes and heuristics for generating them. Software
pattern books provide a lot of help in this area because they not only show
abstract software structures but they also provide some techniques for generat-
ing architectures based on these patterns. What seem to be missing are the fun-
damentals of software design, especially from the architecture perspective.

This book provides an integrated view of design methods, processes, prac-
tices, heuristics, and patterns and gives the reader a better sense of the scope of
the topic of software architecture while providing practical guidance for
designing software architectures from analysis through implementation.

In Chapter 1, “Introduction to Software Architecture,” I explore the roots of
software architecture. The fundamental problems of software development,
which comprise the software crisis, are that software is expensive to develop, it
is typically of low quality, and it is often delivered late. Software development
has undergone several small revolutions or paradigm shifts to address these
problems. Each new paradigm incorporates new technologies but still solves
the problems the same basic way.

Software architecture is an emerging discipline that focuses on the design of
software at a level higher than the programming language. It is possible to rea-
son about many qualities of a software system before it is built, based on the
architectural design models or architectural description.

Introduction xxi

1 228869 FM.qxd 3/3/03 9:59 AM Page xxi

In Chapter 2, “The Software Product Life Cycle,” I address the role of soft-
ware architecture in the software product development life cycle. There are
many methodologies and views of software development, which we call
development life-cycle models. Different stakeholders have different perspec-
tives and concerns and need to see different information in order to assess
progress and quality. Architecture provides another viewpoint of the life cycle
that involves developing a system design that balances the competing con-
cerns of all stakeholders.

Chapter 3, “The Architecture Design Process,” presents a general model of
the process of architectural design. A design solution to a problem may be a
concrete artifact like source code, or it may be an abstract artifact like a high-
level model. Software design is a progression of refining abstract problem
statements to executable code. In the middle of this progression is a series of
models that help the problem-solving process.

Design is the process of finding or discovering solutions to problems.
Design methods help us search for these solutions. Models are one way to
manage the complexity of design discovery. Models represent essential knowl-
edge for solving a particular problem while suppressing other knowledge that
may be irrelevant to the problem and the inclusion of which would only hin-
der the design process.

In Chapter 4, “Introduction to Software Design,” I present the fundamental
methods and techniques of software design. Software design can be viewed as
a psychological activity in which a designer is applying design principles to
problems in order to produce solutions. In a systematic design methodology,
we reduce the risk of project failure by producing more than one possible
solution; that is, we search for the solution. In Chapter 5, “Complexity and
Modularity,” precise definitions of complexity, modularity, and the notion of
architectural levels of design are presented. Complexity is one of the main
forces that we attempt to manage with our software development tools and
methods. When not managed, complexity can cause a project to be delivered
late, over budget, or cancelled. Complexity can be measured by the intercon-
nectedness of things. In order for a system or process to exhibit complexity, it
must be an aggregation of multiple interconnected parts. We refer to these con-
nections as dependencies. A fundamental tool in representing a complex system,
the design structure matrix (DSM), is presented.

The design structure matrix can help the architecture find the right modules
for the system and the shared design decisions among modules, which are
called design rules.

Design is about finding solutions to problems. In Chapter 6, “Models and
Knowledge Representation,” we see that problems and solutions are both
forms of systems knowledge. In order to begin a search for a solution, we must
understand the problem. There is a hierarchy of systems knowledge starting
from the most basic knowledge of the types of attributes of a system, the
values of those attributes, generative models that can generate those attribute

xxii Introduction

1 228869 FM.qxd 3/3/03 9:59 AM Page xxii

values, and finally a physical system that implements the generative model.
Models are the means by which we capture and represent knowledge about
the system that we are designing.

In Chapter 7, “Architecture Representation,” we learn about the problems of
describing the component structure of a software system. The classic views of
software have fairly mature modeling notations. However, there are no stan-
dard architecture description languages that are expressive enough to repre-
sent many types of architectural styles and yet still be practical. This chapter
continues the theme of models into the more concrete realm of architecture
representation.

In Chapter 8, “Quality Models and Quality Attributes,” I present classic
system quality attributes and how the architectural design can address them.
A system is understood by understanding its quality attributes. The classic
software quality attribute types include functionality, security, performance,
reliability, and modifiability.

In Chapter 9, “Architectural Design Principles,” we learn about specific
methods and techniques that can help us discover the components of the sys-
tem. Design principles are applied within the context of design methods and
techniques.

Chapter 10, “Applying Architectural Styles and Patterns,” presents the
concept of architectural style and how it influences the architecting process.
Architectural styles are generalized knowledge captured about existing sys-
tem architectures. There is a small set of basic architectural styles from which
an architecture may be derived.

Chapter 11, “Understanding Metamodels,” continues the theme of architec-
ture models. A metamodel is a model for creating models. Well-defined meta-
models can help in the discovery and creation of architectural designs by
reusing domain knowledge. Reference models are metamodels that describe
domain-specific problem decompositions. A reference model may be an
industry standard, such as the common warehouse metamodel or the workflow
reference model or an informal model presented in the software design litera-
ture. In this chapter we see how to use metamodels in the architecture process.

In Chapter 12, “Creating Architectural Descriptions,” I present the IEEE
Recommended Practice for the Description of Software Intensive Systems, Std.
1471. This is a standard framework for software architectural description
based on the concept of multiple views.

Chapter 13, “Using Architecture Frameworks,” continues with the theme of
the architectural description. In this chapter I present the 4+1 View Model of
Architecture and the ISO Reference Model for Open Distributed Computing
(RM-ODP) as specific frameworks for creating an architectural description. The
RM-ODP is a powerful model that prescribes five standard views of architec-
ture: the enterprise viewpoint, the information viewpoint, the computational
viewpoint, the engineering viewpoint, and the technology viewpoint. By fol-
lowing the metamodels of each of these viewpoints, the software architect can

Introduction xxiii

1 228869 FM.qxd 3/3/03 9:59 AM Page xxiii

create a series of architectural models that represent the system in various states
of abstraction.

I end the book with Chapter 14, “Software Architecture Quality.” In this
chapter I return to the subject of quality at the architectural level of design.
Quality cannot be tested into a system, so a system must be designed with
quality. The candidate architecture for a system can be assessed to understand
the quality attribute characteristics of the system described, before actually
constructing the system. A software architecture description can be evaluated
so that we may understand many potential quality attributes of the system
including modifiability, performance, and reliability. Each quality attribute
can be assessed using different assessment techniques.

Who Should Read This Book

Beginning software architects are usually experienced software engineers.
However, the software engineer must make a mental paradigm shift when it
comes to designing software systems at the architectural level. All of his or her
prior knowledge about object-oriented programming is still applicable, but it
must be applied on a different scale, at different levels of abstraction. This
book is useful for understanding how to architect a software system and even
how to design a single module. The design principles can be applied at many
levels of software design. Experienced software architects will find new mate-
rial to broaden their knowledge and provide them with a fresh insight into
software architecting.

Technical managers will gain insight into the processes of software archi-
tecting, as well as the styles of architecture and techniques used to generate
them. This will enable managers to more effectively create project teams,
plans, and schedules, as well as implement reuse plans, conduct design
reviews, and choose an appropriate process framework. Architecture, organi-
zation, and process are interwoven. The architecture of a system influences the
structure of an organization and the process by which a system is realized.
Technical managers will also learn that the architecture of a system addresses
many business- and development-related requirements.

Depending on what you want out of this book, you should have experience
in one or more of the following:

■■ Object-oriented programming with a language such as C++ or Java

■■ Managing object-oriented projects

■■ Object-oriented analysis and design

■■ Other systems analysis and design techniques (for example, structured
analysis)

xxiv Introduction

1 228869 FM.qxd 3/3/03 9:59 AM Page xxiv

1

Software architecture involves the integration of software development
methodologies and models, which distinguishes it from particular analysis
and design methodologies. The structure of complex software solutions
departs from the description of the problem, adding to the complexity of soft-
ware development. Software architecture is a body of methods and techniques
that helps us to manage the complexities of software development.

Software architecture is a natural extension of the software engineering dis-
cipline. In early literature it was simply referred to as programming in the large.
Software architecture presents a view of a software system as components and
connectors. Components encapsulate some coherent set of functionality. Con-
nectors realize the runtime interaction between components. The system
design achieves certain qualities based on its composition from components
and connectors. The architecture of a software system can be specified in a
document called the architectural description. Software architecture design is
not entirely different from existing software design methodologies. Rather it
complements them with additional views of a system that have not been tra-
ditionally handled by methodologies like object-oriented design. We will learn
that software architecture fits within a larger enterprise architecture that also
encompasses business architecture, information technology architecture, and
data architecture.

Introduction to Software
Architecture

C H A P T E R

1

C H A P T E R

228869 Ch01.qxd 3/3/03 9:59 AM Page 1

This chapter begins with a brief discussion of the evolution of software
development, followed by the fundamental engineering techniques that
comprise the discipline of software engineering. Finally, we look at the craft of
software architecture as a discipline that complements software engineering.

Evolution of Software Development

Roughly every decade the software development field experiences a shift in
software design paradigms. Design methodologies and tools must evolve as
the problems and technologies become more complex. Software development
was born around 1949 when the first stored-program computer, the Cam-
bridge EDSAC, was created. Programs were initially created as binary
machine instructions. This approach to programming proved to be slow and
difficult because of the human inability to easily memorize long, complex
binary strings. The notion of a human-readable shorthand for designing pro-
grams was conceived. Initially, the concept behind the programming short-
hand was to allow a program designer to design a program and for a
programmer or coder to manually translate the shorthand into binary code.

In the early 1950s, it became apparent that the majority of a programmer’s
time was spent correcting mistakes in software. One response to this situation
was the creation of program subroutines that allowed programmers to reuse
program fragments that had already been written and debugged, thus
improving the productivity of programmers. By the late 1950s, the handcraft-
ing of programs—even with the aid of reusable subroutines—was becoming
uneconomical. Hence research in the area of automatic programming systems
began. Automatic programming would allow programmers to write programs
in a high-level language code, which was easier to read by humans, that would
then be converted into binary machine instructions by use of another program.
Thus, the first paradigm shift in software development was about to occur.

Experienced binary programmers were reluctant to change their habits to
adopt a new method of working and resisted automatic programming.
However, automatic programming became the dominant paradigm after
International Business Machines (IBM) developed an automatic programming
system for scientific programs called FORTRAN (the Formula Translator).
Automatic programming not only improved programmer productivity but it
also made programs portable across hardware platforms. Porting to new hard-
ware prior to automatic programming required rewriting an entire program,
which was too costly and a hindrance to selling hardware. By the mid-1960s,
FORTRAN had established itself as the dominant language for scientific
programming.

2 Chapter 1

228869 Ch01.qxd 3/3/03 9:59 AM Page 2

During the 1960s, there was a dramatic rise in the number of software devel-
opment contractors and ready-made programs for specific vertical markets,
such as banking and insurance. The term software was coined as an implicit
recognition that software was viewed as an entity in its own right. Software
was also being marketed and sold separately from hardware, which marked a
departure from the earlier practices of giving software away for free as part of
the hardware platform. The hiding of the internal details of an operating
system using abstract programming interfaces improved programmer pro-
ductivity and helped make programs more portable across hardware plat-
forms. Programs could work with logical files instead of physical locations of
bits on a tape or magnetic disk. It was also during this period that extensive
research began in programming languages, which continued through the
1970s.

By the late 1960s, it was clear that software development was unlike the con-
struction of physical structures: You couldn’t simply hire more programmers
to speed up a lagging development project (Brooks, 1975). Software had
become a critical component of many systems, yet was too complex to develop
with any certainty of schedule or quality. This imposed financial and public
safety concerns. The situation became known as the software crisis, and in
response the software development community instituted software engineering
as a discipline. It called for software manufacturing to be based on the same
types of theoretical foundations and practical disciplines that are traditional
for the established branches of engineering.

In 1968, Edsger Dijkstra published a paper on the design of a multipro-
gramming system called “THE” (Dijkstra, 1968). This is one of the first papers
to document the design of a software system using hierarchical layers, from
which the phrase layers of abstraction was derived. Dijkstra organized the
design of the system in layers in order to reduce the overall complexity of
the software. Though the term architecture had not yet been used to describe
software design, this was certainly the first glimpse of software architecture;
programming in the large was a common phrase used to describe this aspect
of software design.

A second paradigm shift occurred in the first half of the 1970s with the
development of structured design and software development models. These
were based on a more organic, evolutionary approach, departing from the
waterfall-based methodologies of hardware engineering. Research into quan-
titative techniques for software design began but never established itself in
mainstream industry, in part due to the inherent qualitative nature of software
systems. During this time researchers began focusing on software design to
address the problems of developing complex software systems. The premise of
this work was that software design is a separate activity from implementation
in software development and that it requires its own tools, techniques, and
modeling languages.

Introduction to Software Architecture 3

228869 Ch01.qxd 3/3/03 9:59 AM Page 3

In 1972 David Parnas published a paper that discussed how modularity in
systems design could improve system flexibility and comprehensibility while
shortening development time (Parnas, 1972). He introduced the programming
world to the concept of information hiding, which is one of the most fundamen-
tal design principles in software development today.

In the 1980s, software engineering research shifted focus toward integrating
designs and design processes into the larger context of software development
process and management. Structured design methods could not scale as soft-
ware systems grew in complexity, and in the latter half of the 1980s a new
design paradigm began to take hold—object-orientation. With object-oriented
programming, software engineers could (in theory) model the problem
domain and solution domain within an implementation language. Research
that led to object orientation can be traced back to the late 1960s with the devel-
opment of Simula, a simulation programming language, and it was later
refined in Smalltalk. Object-oriented programming started to become popular
with C++. At this time there was also a shift in application design metaphors
from text-based terminals to graphical user interfaces (GUIs). Object-oriented
programming was well suited for the development of GUIs. In the late 1980s
and early 1990s, the term software architecture began to appear in literature.

Object-oriented programming was in full swing by the mid-1990s, when the
Internet became the new computing platform. At around the same time, soft-
ware design was experiencing another shift. This time it was not away from the
prior design paradigms, however, but rather toward an integration of methods.
Object orientation was being augmented with design techniques such as
Class/Responsibilities/Collaborators (CRC) cards and use case analysis. Meth-
ods and modeling notations that came out of the structured design movement
were making their way into the object-oriented modeling methods. This
included diagramming techniques such as state transition diagrams and pro-
cessing models.

It was becoming obvious that an integrated, multiviewed approach to
design was required to manage the complexity of designing and developing
large-scale software systems. This multiview approach culminated in the
development of the Unified Modeling Language (UML), which integrates
modeling concepts and notations from many methodologists. It was also dur-
ing the late 1990s that design patterns started becoming a popular way to
share design knowledge.

I believe that we are experiencing a fifth paradigm shift in software develop-
ment, which is the recognition that software architecture is an important aspect
of software development and of the introduction of software architecture meth-
ods and activities into the software development life cycle. This shift, like the last
one, is not one of divergence of design methods but rather one of the integration
of new methods and activities with existing methods and activities.

4 Chapter 1

228869 Ch01.qxd 3/3/03 9:59 AM Page 4

