The Microbiology of Anaerobic Digesters
WASTEWATER MICROBIOLOGY SERIES

Editor
Michael H. Gerardi

Nitrification and Denitrification in the Activated Sludge Process
Michael H. Gerardi

Settleability Problems and Loss of Solids in the Activated Sludge Process
Michael H. Gerardi

The Microbiology of Anaerobic Digesters
Michael H. Gerardi
The Microbiology of Anaerobic Digesters

Michael H. Gerardi
To

Mom and Dad
The author extends his sincere appreciation to joVanna Gerardi for computer support and Cristopher Noviello for artwork used in this text.
Contents

Preface ix

PART I OVERVIEW 1
1 Introduction 3
2 Bacteria 11
3 Methane-forming Bacteria 17
4 Respiration 31
5 Anaerobic Food Chain 39
6 Fermentation 43
7 Anaerobic Digestion Stages 51

PART II SUBSTRATES, PRODUCTS, AND BIOGAS 59
8 Substrates and Products 61
9 Biogas 73

PART III OPERATIONAL CONDITIONS 77
10 Introduction to Operational Conditions 79
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 Start-up</td>
</tr>
<tr>
<td>12 Sludge Feed</td>
</tr>
<tr>
<td>13 Retention Times</td>
</tr>
<tr>
<td>14 Temperature</td>
</tr>
<tr>
<td>15 Nutrients</td>
</tr>
<tr>
<td>16 Alkalinity and pH</td>
</tr>
<tr>
<td>17 Toxicity</td>
</tr>
<tr>
<td>18 Mixing</td>
</tr>
</tbody>
</table>

PART IV PROCESS CONTROL AND TROUBLESHOOTING 121

19 Upsets and Unstable Digesters	123
20 Foam and Scum Production and Accumulation	127
21 Supernatant	133
22 Monitoring	135

PART V DIGESTERS 141

| 23 Types of Anaerobic Digesters | 143 |
| 24 Anaerobic Digesters versus Aerobic Digesters | 153 |

References 161

Abbreviations and Acronyms 165

Chemical Compounds and Elements 167

Glossary 171

Index 175
Completely mixed anaerobic digesters are the most commonly used treatment system in North America for the degradation of municipal sludges. Although these suspended-growth systems are not used as commonly at industrial wastewater treatment plants, more and more industrial plants are using fixed-film anaerobic digesters for the treatment of soluble organic compounds in their wastewaters.

Anaerobic digesters perform most of the degradation of organic compounds at wastewater treatment plants. However, digesters often experience operational problems that result in process upsets and increased operational costs. Examples of process upsets and operational problems include foam and scum production, decanting and dewatering difficulties, loss of treatment efficiency, toxic upsets, and “souring” of the digester. Poorly operating anaerobic digesters often contribute to operational problems in other treatment units such as the activated sludge process, gravity thickener, clarifiers, and sludge dewatering facilities.

Because of the importance of anaerobic digesters in wastewater treatment processes, a review of the microbiology of the bacteria and the operational conditions that affect their activity is of value in addressing successful and cost-effective operation. This book provides an in-depth review of the bacteria, their activity, and the operational conditions that affect anaerobic digester performance. The identification of operational problems and troubleshooting and corrective measures for process control are presented.

This book is prepared for an audience of operators and technicians who are responsible for the daily operation of anaerobic digesters. It presents troubleshooting and process control measures to reduce operational costs, maintain treatment efficiency, and prevent system upsets.

The Microbiology of Anaerobic Digesters is the third book in the Wastewater Microbiology Series by John Wiley & Sons. This series is designed for operators and technicians, and it presents a microbiological review of the organisms involved in wastewater treatment processes and provides biological techniques for monitoring and regulating these processes.

Michael H. Gerardi
Linden, Pennsylvania
Part I

Overview
The organic content of sludges and soluble wastes can be reduced by controlled bacterial activity. If the bacterial activity is anaerobic, the reduction in organic content is achieved through sludge digestion. If the bacterial activity is aerobic, the reduction in organic content is achieved through sludge stabilization.

Anaerobic digesters having suspended bacterial growth are commonly used at municipal wastewater treatment plants to degrade (digest) sludges (Figure 1.1). With the development of anaerobic digesters having fixed-film bacterial growth (Figure 1.2), more and more industrial wastewater treatment plants are using anaerobic digesters to degrade soluble organic wastes. Anaerobic digesters represent catabolic (destructive) processes that occur in the absence of free molecular oxygen (O₂).

The goals of anaerobic digesters are to biologically destroy a significant portion of the volatile solids in sludge and to minimize the putrescibility of sludge. The main products of anaerobic digesters are biogas and innocuous digested sludge solids. Biogas consists mostly of methane (CH₄) and carbon dioxide (CO₂).

Primary and secondary sludges are degraded in anaerobic digesters (Figure 1.3). Primary sludge consists of the settled solids from primary clarifiers and any colloidal wastes associated with the solids. Secondary sludge consists mostly of waste-activated sludge or the humus from trickling filters. The mixture of primary and secondary sludges contains 60% to 80% organic matter (dry weight) in the forms of carbohydrates, fats, and proteins.

The mixture of primary and secondary sludges is an ideal medium for bacterial growth. The sludges are rich in substrates (food) and nutrients and contain a large number and diversity of bacteria required for anaerobic digestion.

The anaerobic digester is well known as a treatment process for sludges that contain large amounts of solids (particulate and colloidal wastes). These solids

The Microbiology of Anaerobic Digesters, by Michael H. Gerardi
4 INTRODUCTION

Figure 1.1 Suspended growth anaerobic digesters are commonly used at municipal wastewater treatment plants for the degradation of primary and secondary sludges. These digesters produce several layers as a result of sludge degradation. These layers are from top to bottom: biogas, scum, supernatant, active biomass or sludge, and stabilized solids.

Figure 1.2 Fixed film anaerobic digesters employ the use of a medium such as plastic or rocks on which bacteria grow as a biofilm. Wastewater passing over the medium is absorbed and adsorbed by the biofilm and degraded.
Primary and secondary sludges typically are degraded in suspended growth anaerobic digesters at municipal wastewater treatment plants. The sludges contain relatively large quantities of particulate and colloidal wastes.

require relatively long digestion periods (10–20 days) to allow for the slow bacterial processes of hydrolysis and solubilization of the solids. Once solubilized, the resulting complex organic compounds are degraded to simplistic organic compounds, mostly volatile acids and alcohols, methane, new bacterial cells (C₅H₇O₂N), and a variety of simplistic inorganic compounds such as carbon dioxide and hydrogen gas (H₂).

With the development of fixed-film bacterial growth in anaerobic digesters, many soluble organic wastes can be digested quickly and efficiently. Because the wastes are soluble, time is not required for hydrolysis and solubilization of the wastes.

When sludges are digested, the organic content of the sludges is decreased as volatile materials within the sludges are destroyed, that is, the volume and weight of the solids are reduced. The volatile content for most anaerobic digested sludges is 45%–55% (Figure 1.4).

Anaerobic digesters (Figure 1.5) degrade approximately 80% of the influent organic waste of a conventional municipal wastewater treatment plant. Nearly 30% of the waste is removed by primary clarifiers and transferred to anaerobic digesters, and approximately 50% of the waste is synthesized or transformed into new bacterial cells or solids [mixed-liquor volatile suspended solids (MLVSS) or trickling filter humus]. These synthesized solids also are transferred to anaerobic digesters through the wasting of secondary solids.

Because of the relatively large quantity of organic wastes placed on the anaerobic digestion process, a review of the bacteria, their activity, and the operational factors that influence their activity are critical. This review provides for proper maintenance of digester performance and cost-effective operation and helps to ensure adequate monitoring, troubleshooting, and process control of anaerobic digesters.

Anaerobic sludge digestion consists of a series of bacterial events that convert organic compounds to methane, carbon dioxide, and new bacterial cells. These events are commonly considered as a three-stage process.

The first stage of the process involves the hydrolysis of solids (particulate and colloidal wastes). The hydrolysis of these wastes results in the production of
INTRODUCTION

Digester Feed Sludge 100 kg, 70% Volatile Solids

![Diagram of sludge digestion](Image)

Figure 1.4 The digestion of sludges in anaerobic digesters results in significant reduction in the volatile content of the sludges as well as the volume and weight of the sludges.

Most of the influent organic wastes of a wastewater treatment plant are degraded in an anaerobic digester. Settled solids in the primary clarifier represent approximately 30% of the influent organic wastes, while secondary solids represent approximately 50% of the influent organic wastes. In the activated sludge process much of the organic waste is converted to bacterial cells. These cells represent organic wastes, i.e., upon their death; they serve as a substrate for surviving bacteria.

Figure 1.5 Most of the influent organic wastes of a wastewater treatment plant are degraded in an anaerobic digester. Settled solids in the primary clarifier represent approximately 30% of the influent organic wastes, while secondary solids represent approximately 50% of the influent organic wastes. In the activated sludge process much of the organic waste is converted to bacterial cells. These cells represent organic wastes, i.e., upon their death; they serve as a substrate for surviving bacteria.
simplistic, soluble organic compounds (volatile acids and alcohols). The second stage of the process, acetogenesis, involves the conversion of the volatile acids and alcohols to substrates such as acetic acid or acetate (CH₃COOH) and hydrogen gas that can be used by methane-forming bacteria. The third and final stage of the process, methanogenesis, involves the production of methane and carbon dioxide.

Hydrolysis is the solubilization of particulate organic compounds such as cellulose (Equation 1.1) and colloidal organic compounds such as proteins (Equation 1.2) into simple soluble compounds that can be absorbed by bacterial cells. Once absorbed, these compounds undergo bacterial degradation that results in the production of volatile acids and alcohols such as ethanol (CH₃CH₂OH) and propionate (CH₃CH₂COOH). The volatile acids are converted to acetate and hydrogen gas. Methane production occurs from the degradation of acetate (Equation 1.3) and the reduction of carbon dioxide by hydrogen gas (Equation 1.4).

\[
\text{cellulose} + \text{H}_2\text{O} \rightarrow \text{hydrolysis} \rightarrow \text{soluble sugars} \quad (1.1)
\]

\[
\text{proteins} + \text{H}_2\text{O} \rightarrow \text{hydrolysis} \rightarrow \text{soluble amino acids} \quad (1.2)
\]

\[
\text{CH}_3\text{COOH} \rightarrow \text{CH}_4 + \text{CO}_2 \quad (1.3)
\]

\[
\text{CO}_2 + 4\text{H}_2 \rightarrow \text{CH}_4 + 2\text{H}_2\text{O} \quad (1.4)
\]

In addition to the reduction in volume and weight of sludges, anaerobic digesters provide many attractive features including decreased sludge handling and disposal costs and reductions in numbers of pathogens (Table 1.1). The relatively high temperatures and long detention times of anaerobic digesters significantly reduce the numbers of viruses, pathogenic bacteria and fungi, and parasitic worms. This reduction in numbers of pathogens is an extremely attractive feature in light of the increased attention given by regulatory agencies and the general public with respect to health risks represented by the use of digested sludges (biosolids) for agricultural and land reclamation purposes.

Although anaerobic digesters offer many attractive features, anaerobic digestion of sludges unfortunately has an unwarranted reputation as an unstable and difficult-to-control process. This unwarranted reputation is due to several reasons, including a lack of adequate knowledge of anaerobic digester microbiology and proper operational data (Table 1.2).

<table>
<thead>
<tr>
<th>TABLE 1.1</th>
<th>Attractive Features of Anaerobic Digesters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Able to degrade recalcitrant natural compounds, e.g., lignin</td>
<td></td>
</tr>
<tr>
<td>Able to degrade xenobiotic compounds, e.g., chlorinated aliphatic hydrocarbons</td>
<td></td>
</tr>
<tr>
<td>Control of some filamentous organisms through recycling of sludge and supernatant</td>
<td></td>
</tr>
<tr>
<td>Improved dewaterability of sludge</td>
<td></td>
</tr>
<tr>
<td>Production of methane</td>
<td></td>
</tr>
<tr>
<td>Use of biosolids as a soil additive or conditioner</td>
<td></td>
</tr>
<tr>
<td>Suitable for high-strength industrial wastewater</td>
<td></td>
</tr>
<tr>
<td>Reduction in malodors</td>
<td></td>
</tr>
<tr>
<td>Reduction in numbers of pathogens</td>
<td></td>
</tr>
<tr>
<td>Reduction in sludge handling and disposal costs</td>
<td></td>
</tr>
<tr>
<td>Reduction in volatile content of sludge</td>
<td></td>
</tr>
</tbody>
</table>