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PREFACE TO THE
FIRST EDITION

Until recently the applications of modern algebra were mainly confined to other
branches of mathematics. However, the importance of modern algebra and dis-
crete structures to many areas of science and technology is now growing rapidly.
It is being used extensively in computing science, physics, chemistry, and data
communication as well as in new areas of mathematics such as combinatorics.
We believe that the fundamentals of these applications can now be taught at the
junior level. This book therefore constitutes a one-year course in modern algebra
for those students who have been exposed to some linear algebra. It contains
the essentials of a first course in modern algebra together with a wide variety of
applications.

Modern algebra is usually taught from the point of view of its intrinsic inter-
est, and students are told that applications will appear in later courses. Many
students lose interest when they do not see the relevance of the subject and often
become skeptical of the perennial explanation that the material will be used later.
However, we believe that by providing interesting and nontrivial applications as
we proceed, the student will better appreciate and understand the subject.

We cover all the group, ring, and field theory that is usually contained in a
standard modern algebra course; the exact sections containing this material are
indicated in the table of contents. We stop short of the Sylow theorems and Galois
theory. These topics could only be touched on in a first course, and we feel that
more time should be spent on them if they are to be appreciated.

In Chapter 2 we discuss boolean algebras and their application to switching
circuits. These provide a good example of algebraic structures whose elements
are nonnumerical. However, many instructors may prefer to postpone or omit this
chapter and start with the group theory in Chapters 3 and 4. Groups are viewed
as describing symmetries in nature and in mathematics. In keeping with this view,
the rotation groups of the regular solids are investigated in Chapter 5. This mate-
rial provides a good starting point for students interested in applying group theory
to physics and chemistry. Chapter 6 introduces the Pólya–Burnside method of
enumerating equivalence classes of sets of symmetries and provides a very prac-
tical application of group theory to combinatorics. Monoids are becoming more

ix



x PREFACE TO THE FIRST EDITION

important algebraic structures today; these are discussed in Chapter 7 and are
applied to finite-state machines.

The ring and field theory is covered in Chapters 8–11. This theory is motivated
by the desire to extend the familiar number systems to obtain the Galois fields and
to discover the structure of various subfields of the real and complex numbers.
Groups are used in Chapter 12 to construct latin squares, whereas Galois fields are
used to construct orthogonal latin squares. These can be used to design statistical
experiments. We also indicate the close relationship between orthogonal latin
squares and finite geometries. In Chapter 13 field extensions are used to show
that some famous geometrical constructions, such as the trisection of an angle
and the squaring of the circle, are impossible to perform using only a straightedge
and compass. Finally, Chapter 14 gives an introduction to coding theory using
polynomial and matrix techniques.

We do not give exhaustive treatments of any of the applications. We only go so
far as to give the flavor without becoming too involved in technical complications.
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Figure P.1. Structure of the chapters.
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The interested reader may delve further into any topic by consulting the books
in the bibliography.

It is important to realize that the study of these applications is not the only
reason for learning modern algebra. These examples illustrate the varied uses to
which algebra has been put in the past, and it is extremely likely that many more
different applications will be found in the future.

One cannot understand mathematics without doing numerous examples. There
are a total of over 600 exercises of varying difficulty, at the ends of chapters.
Answers to the odd-numbered exercises are given at the back of the book.

Figure P.1 illustrates the interdependence of the chapters. A solid line indicates
a necessary prerequisite for the whole chapter, and a dashed line indicates a
prerequisite for one section of the chapter. Since the book contains more than
sufficient material for a two-term course, various sections or chapters may be
omitted. The choice of topics will depend on the interests of the students and the
instructor. However, to preserve the essence of the book, the instructor should be
careful not to devote most of the course to the theory, but should leave sufficient
time for the applications to be appreciated.

I would like to thank all my students and colleagues at the University of
Waterloo, especially Harry Davis, D. Ž. Djoković, Denis Higgs, and Keith Rowe,
who offered helpful suggestions during the various stages of the manuscript. I am
very grateful to Michael Boyle, Ian McGee, Juris Stepŕans, and Jack Weiner
for their help in preparing and proofreading the preliminary versions and the
final draft. Finally, I would like to thank Sue Cooper, Annemarie DeBrusk, Lois
Graham, and Denise Stack for their excellent typing of the different drafts, and
Nadia Bahar for tracing all the figures.

Waterloo, Ontario, Canada WILLIAM J. GILBERT

April 1976





PREFACE TO THE
SECOND EDITION

In addition to improvements in exposition, the second edition contains the fol-
lowing new items:

ž New shorter proof of the parity theorem using the action of the symmetric
group on the discriminant polynomial

ž New proof that linear isometries are linear, and more detail about their
relation to orthogonal matrices

ž Appendix on methods of proof for beginning students, including the def-
inition of an implication, proof by contradiction, converses, and logical
equivalence

ž Appendix on basic number theory covering induction, greatest common divi-
sors, least common multiples, and the prime factorization theorem

ž New material on the order of an element and cyclic groups
ž More detail about the lattice of divisors of an integer
ž New historical notes on Fermat’s last theorem, the classification theorem

for finite simple groups, finite affine planes, and more
ž More detail on set theory and composition of functions
ž 26 new exercises, 46 counting parts
ž Updated symbols and notation
ž Updated bibliography

February 2003 WILLIAM J. GILBERT

W. KEITH NICHOLSON
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1
INTRODUCTION

Algebra can be defined as the manipulation of symbols. Its history falls into two
distinct parts, with the dividing date being approximately 1800. The algebra done
before the nineteenth century is called classical algebra, whereas most of that
done later is called modern algebra or abstract algebra.

CLASSICAL ALGEBRA

The technique of introducing a symbol, such as x, to represent an unknown
number in solving problems was known to the ancient Greeks. This symbol could
be manipulated just like the arithmetic symbols until a solution was obtained.
Classical algebra can be characterized by the fact that each symbol always
stood for a number. This number could be integral, real, or complex. However,
in the seventeenth and eighteenth centuries, mathematicians were not quite sure
whether the square root of −1 was a number. It was not until the nineteenth
century and the beginning of modern algebra that a satisfactory explanation of
the complex numbers was given.

The main goal of classical algebra was to use algebraic manipulation to solve
polynomial equations. Classical algebra succeeded in producing algorithms for
solving all polynomial equations in one variable of degree at most four. However,
it was shown by Niels Henrik Abel (1802–1829), by modern algebraic methods,
that it was not always possible to solve a polynomial equation of degree five
or higher in terms of nth roots. Classical algebra also developed methods for
dealing with linear equations containing several variables, but little was known
about the solution of nonlinear equations.

Classical algebra provided a powerful tool for tackling many scientific prob-
lems, and it is still extremely important today. Perhaps the most useful math-
ematical tool in science, engineering, and the social sciences is the method of
solution of a system of linear equations together with all its allied linear algebra.

Modern Algebra with Applications, Second Edition, by William J. Gilbert and W. Keith Nicholson
ISBN 0-471-41451-4 Copyright  2004 John Wiley & Sons, Inc.
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2 1 INTRODUCTION

MODERN ALGEBRA

In the nineteenth century it was gradually realized that mathematical symbols did
not necessarily have to stand for numbers; in fact, it was not necessary that they
stand for anything at all! From this realization emerged what is now known as
modern algebra or abstract algebra.

For example, the symbols could be interpreted as symmetries of an object, as
the position of a switch, as an instruction to a machine, or as a way to design
a statistical experiment. The symbols could be manipulated using some of the
usual rules for numbers. For example, the polynomial 3x2 + 2x − 1 could be
added to and multiplied by other polynomials without ever having to interpret
the symbol x as a number.

Modern algebra has two basic uses. The first is to describe patterns or sym-
metries that occur in nature and in mathematics. For example, it can describe
the different crystal formations in which certain chemical substances are found
and can be used to show the similarity between the logic of switching circuits
and the algebra of subsets of a set. The second basic use of modern algebra is
to extend the common number systems naturally to other useful systems.

BINARY OPERATIONS

The symbols that are to be manipulated are elements of some set, and the manipu-
lation is done by performing certain operations on elements of that set. Examples
of such operations are addition and multiplication on the set of real numbers.

As shown in Figure 1.1, we can visualize an operation as a “black box” with
various inputs coming from a set S and one output, which combines the inputs
in some specified way. If the black box has two inputs, the operation combines
two elements of the set to form a third. Such an operation is called a binary
operation. If there is only one input, the operation is called unary. An example
of a unary operation is finding the reciprocal of a nonzero real number.

If S is a set, the direct product S × S consists of all ordered pairs (a, b)

with a, b ∈ S. Here the term ordered means that (a, b) = (a1, b1) if and only if
a = a1 and b = b1. For example, if we denote the set of all real numbers by R,
then R× R is the euclidean plane.

Using this terminology, a binary operation, �, on a set S is really just a
particular function from S × S to S. We denote the image of the pair (a, b)

a

b
a ∗ b c c ′

Binary operation Unary operation

Figure 1.1



BINARY OPERATIONS 3

under this function by a � b. In other words, the binary operation � assigns to
any two elements a and b of S the element a � b of S. We often refer to an
operation � as being closed to emphasize that each element a � b belongs to
the set S and not to a possibly larger set. Many symbols are used for binary
operations; the most common are +, ·, −, Ž , ÷, ∪, ∩, ∧, and ∨.

A unary operation on S is just a function from S to S. The image of c under
a unary operation is usually denoted by a symbol such as c′, c, c−1, or (−c).

Let P = {1, 2, 3, . . .} be the set of positive integers. Addition and multipli-
cation are both binary operations on P, because, if x, y ∈ P, then x + y and
x · y ∈ P. However, subtraction is not a binary operation on P because, for
instance, 1− 2 /∈ P. Other natural binary operations on P are exponentiation and
the greatest common divisor, since for any two positive integers x and y, xy and
gcd(x, y) are well-defined elements of P.

Addition, multiplication, and subtraction are all binary operations on R because
x + y, x · y, and x − y are real numbers for every pair of real numbers x and y.
The symbol − stands for a binary operation when used in an expression such as
x − y, but it stands for the unary operation of taking the negative when used in
the expression −x. Division is not a binary operation on R because division by
zero is undefined. However, division is a binary operation on R− {0}, the set of
nonzero real numbers.

A binary operation on a finite set can often be presented conveniently by
means of a table. For example, consider the set T = {a, b, c}, containing three
elements. A binary operation � on T is defined by Table 1.1. In this table, x � y

is the element in row x and column y. For example, b � c = b and c � b = a.
One important binary operation is the composition of symmetries of a given

figure or object. Consider a square lying in a plane. The set S of symmetries
of this square is the set of mappings of the square to itself that preserve dis-
tances. Figure 1.2 illustrates the composition of two such symmetries to form a
third symmetry.

Most of the binary operations we use have one or more of the following
special properties. Let � be a binary operation on a set S. This operation is called
associative if a � (b � c) = (a � b) � c for all a, b, c ∈ S. The operation � is called
commutative if a � b = b � a for all a, b ∈ S. The element e ∈ S is said to be
an identity for � if a � e = e � a = a for all a ∈ S.

If � is a binary operation on S that has an identity e, then b is called the
inverse of a with respect to � if a � b = b � a = e. We usually denote the

TABLE 1.1. Binary Operation
on {a , b, c}
� a b c

a b a a

b c a b

c c a b
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12

3 4
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2 3
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Figure 1.2. Composition of symmetries of a square.

inverse of a by a−1; however, if the operation is addition, the inverse is denoted
by −a.

If � and Ž are two binary operations on S, then Ž is said to be distributive over
� if a Ž (b � c) = (a Ž b) � (a Ž c) and (b � c) Ž a = (b Ž a) � (c Ž a) for all a, b, c ∈
S.

Addition and multiplication are both associative and commutative operations
on the set R of real numbers. The identity for addition is 0, whereas the mul-
tiplicative identity is 1. Every real number, a, has an inverse under addition,
namely, its negative, −a. Every nonzero real number a has a multiplicative
inverse, a−1. Furthermore, multiplication is distributive over addition because
a · (b + c) = (a · b)+ (a · c) and (b + c) · a = (b · a)+ (c · a); however, addi-
tion is not distributive over multiplication because a + (b · c) �= (a + b) · (a + c)

in general.
Denote the set of n× n real matrices by Mn(R). Matrix multiplication is an

associative operation on Mn(R), but it is not commutative (unless n = 1). The
matrix I , whose (i, j)th entry is 1 if i = j and 0 otherwise, is the multiplicative
identity. Matrices with multiplicative inverses are called nonsingular.

ALGEBRAIC STRUCTURES

A set, together with one or more operations on the set, is called an algebraic
structure. The set is called the underlying set of the structure. Modern algebra
is the study of these structures; in later chapters, we examine various types of
algebraic structures. For example, a field is an algebraic structure consisting of
a set F together with two binary operations, usually denoted by + and ·, that
satisfy certain conditions. We denote such a structure by (F,+, ·).

In order to understand a particular structure, we usually begin by examining its
substructures. The underlying set of a substructure is a subset of the underlying
set of the structure, and the operations in both structures are the same. For
example, the set of complex numbers, C, contains the set of real numbers, R, as
a subset. The operations of addition and multiplication on C restrict to the same
operations on R, and therefore (R,+, ·) is a substructure of (C,+, ·).
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Two algebraic structures of a particular type may be compared by means of
structure-preserving functions called morphisms. This concept of morphism is
one of the fundamental notions of modern algebra. We encounter it among every
algebraic structure we consider.

More precisely, let (S, �) and (T , Ž ) be two algebraic structures consisting of
the sets S and T , together with the binary operations � on S and Ž on T . Then a
function f : S → T is said to be a morphism from (S, �) to (T , Ž ) if for every
x, y ∈ S,

f (x � y) = f (x) Ž f (y).

If the structures contain more than one operation, the morphism must preserve
all these operations. Furthermore, if the structures have identities, these must be
preserved, too.

As an example of a morphism, consider the set of all integers, Z, under the
operation of addition and the set of positive real numbers, R+, under multiplica-
tion. The function f : Z → R+ defined by f (x) = ex is a morphism from (Z,+)

to (R+, ·). Multiplication of the exponentials ex and ey corresponds to addition
of their exponents x and y.

A vector space is an algebraic structure whose underlying set is a set of
vectors. Its operations consist of the binary operation of addition and, for each
scalar λ, a unary operation of multiplication by λ. A function f : S → T , between
vector spaces, is a morphism if f (x+ y) = f (x)+ f (y) and f (λx) = λf (x) for
all vectors x and y in the domain S and all scalars λ. Such a vector space
morphism is usually called a linear transformation.

A morphism preserves some, but not necessarily all, of the properties of the
domain structure. However, if a morphism between two structures is a bijective
function (that is, one-to-one and onto), it is called an isomorphism, and the
structures are called isomorphic. Isomorphic structures have identical properties,
and they are indistinguishable from an algebraic point of view. For example, two
vector spaces of the same finite dimension over a field F are isomorphic.

One important method of constructing new algebraic structures from old ones
is by means of equivalence relations. If (S, �) is a structure consisting of the set
S with the binary operation � on it, the equivalence relation ∼ on S is said to be
compatible with � if, whenever a ∼ b and c ∼ d , it follows that a � c ∼ b � d .
Such a compatible equivalence relation allows us to construct a new structure
called the quotient structure, whose underlying set is the set of equivalence
classes. For example, the quotient structure of the integers, (Z,+, ·), under the
congruence relation modulo n, is the set of integers modulo n, (Zn,+, ·) (see
Appendix 2).

EXTENDING NUMBER SYSTEMS

In the words of Leopold Kronecker (1823–1891), “God created the natural num-
bers; everything else was man’s handiwork.” Starting with the set of natural
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numbers under addition and multiplication, we show how this can be extended
to other algebraic systems that satisfy properties not held by the natural numbers.
The integers (Z,+, ·) is the smallest system containing the natural numbers, in
which addition has an identity (the zero) and every element has an inverse under
addition (its negative). The integers have an identity under multiplication (the
element 1), but 1 and −1 are the only elements with multiplicative inverses. A
standard construction will produce the field of fractions of the integers, which is
the rational number system (Q,+, ·), and we show that this is the smallest field
containing (Z,+, ·). We can now divide by nonzero elements in Q and solve
every linear equation of the form ax = b (a �= 0). However, not all quadratic
equations have solutions in Q; for example, x2 − 2 = 0 has no rational solution.

The next step is to extend the rationals to the real number system (R,+, ·).
The construction of the real numbers requires the use of nonalgebraic concepts
such as Dedekind cuts or Cauchy sequences, and we will not pursue this, being
content to assume that they have been constructed. Even though many polynomial
equations have real solutions, there are some, such as x2 + 1 = 0, that do not.
We show how to extend the real number system by adjoining a root of x2 + 1
to obtain the complex number system (C,+, ·). The complex number system
is really the end of the line, because Carl Friedrich Gauss (1777–1855), in his
doctoral thesis, proved that any nonconstant polynomial with real or complex
coefficients has a root in the complex numbers. This result is now known as the
fundamental theorem of algebra.

However, the classical number system can be generalized in a different way.
We can look for fields that are not subfields of (C,+, ·). An example of such a
field is the system of integers modulo a prime p, (Zp,+, ·). All the usual oper-
ations of addition, subtraction, multiplication, and division by nonzero elements
can be performed in Zp. We show that these fields can be extended and that
for each prime p and positive integer n, there is a field (GF(pn),+, ·) with pn

elements. These finite fields are called Galois fields after the French mathemati-
cian Évariste Galois. We use Galois fields in the construction of orthogonal latin
squares and in coding theory.
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BOOLEAN ALGEBRAS

A boolean algebra is a good example of a type of algebraic structure in which the
symbols usually represent nonnumerical objects. This algebra is modeled after
the algebra of subsets of a set under the binary operations of union and inter-
section and the unary operation of complementation. However, boolean algebra
has important applications to switching circuits, where each symbol represents a
particular electrical circuit or switch. The origin of boolean algebra dates back
to 1847, when the English mathematician George Boole (1815–1864) published
a slim volume entitled The Mathematical Analysis of Logic, which showed how
algebraic symbols could be applied to logic. The manipulation of logical propo-
sitions by means of boolean algebra is now called the propositional calculus.

At the end of this chapter, we show that any finite boolean algebra is equivalent
to the algebra of subsets of a set; in other words, there is a boolean algebra
isomorphism between the two algebras.

ALGEBRA OF SETS

In this section, we develop some properties of the basic operations on sets. A set
is often referred to informally as a collection of objects called the elements of
the set. This is not a proper definition—collection is just another word for set.
What is clear is that there are sets, and there is a notion of being an element
(or member) of a set. These fundamental ideas are the primitive concepts of
set theory and are left undefined.∗ The fact that a is an element of a set X is
denoted a ∈ X. If every element of X is also an element of Y , we write X ⊆ Y

(equivalently, Y ⊇ X) and say that X is contained in Y , or that X is a subset
of Y . If X and Y have the same elements, we say that X and Y are equal sets
and write X = Y . Hence X = Y if and only if both X ⊆ Y and Y ⊆ X. The set
with no elements is called the empty set and is denoted as Ø.

∗ Certain basic properties of sets must also be assumed (called the axioms of the theory), but it is
not our intention to go into this here.

Modern Algebra with Applications, Second Edition, by William J. Gilbert and W. Keith Nicholson
ISBN 0-471-41451-4 Copyright  2004 John Wiley & Sons, Inc.
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8 2 BOOLEAN ALGEBRAS

Let X be any set. The set of all subsets of X is called the power
set of X and is denoted by P (X). Hence P (X) = {A|A ⊆ X}. Thus if
X = {a, b}, then P (X) = {Ø, {a}, {b}, X}. If X = {1, 2, 3}, then P (X) =
{Ø, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, X}.

If A and B are subsets of a set X, their intersection A ∩ B is defined to be
the set of elements common to A and B, and their union A ∪ B is the set of
elements in A or B (or both). More formally,

A ∩ B = {x|x ∈ A and x ∈ B} and A ∪ B = {x|x ∈ A or x ∈ B}.

The complement of A in X is A = {x|x ∈ X and x /∈ A} and is the set of
elements in X that are not in A. The shaded areas of the Venn diagrams in
Figure 2.1 illustrate these operations.

Union and intersection are both binary operations on the power set P (X),
whereas complementation is a unary operation on P (X). For example, with
X = {a, b}, the tables for the structures (P (X),∩), (P (X),∪) and (P (X), −)

are given in Table 2.1, where we write A for {a} and B for {b}.

Proposition 2.1. The following are some of the more important relations involv-
ing the operations ∩, ∪, and −, holding for all A,B,C ∈ P (X).

(i) A ∩ (B ∩ C) = (A ∩ B) ∩ C. (ii) A ∪ (B ∪ C) = (A ∪ B) ∪ C.
(iii) A ∩ B = B ∩ A. (iv) A ∪ B = B ∪ A.
(v) A ∩ (B ∪ C)

= (A ∩ B) ∪ (A ∩ C).
(vi) A ∪ (B ∩ C)

= (A ∪ B) ∩ (A ∪ C).
(vii) A ∩X = A. (viii) A ∪ Ø = A.
(ix) A ∩ A = Ø. (x) A ∪ A = X.
(xi) A ∩ Ø = Ø. (xii) A ∪X = X.

(xiii) A ∩ (A ∪ B) = A. (xiv) A ∪ (A ∩ B) = A.

A B
X X

A B
X

A

A ∩ B A ∪ B A
–

Figure 2.1. Venn diagrams.

TABLE 2.1. Intersection, Union, and Complements in P ({a , b})
∩ Ø A B X ∪ Ø A B X Subset Complement

Ø Ø Ø Ø Ø Ø Ø A B X Ø X

A Ø A Ø A A A A X X A B

B Ø Ø B B B B X B X B A

X Ø A B X X X X X X X Ø
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(xv) A ∩ A = A. (xvi) A ∪ A = A.
(xvii) (A ∩ B) = A ∪ B. (xviii) (A ∪ B) = A ∩ B.
(xix) X = Ø. (xx) Ø = X.

(xxi) A = A.

Proof. We shall prove relations (v) and (x) and leave the proofs of the others
to the reader.

(v) A ∩ (B ∪ C) = {x|x ∈ A and x ∈ B ∪ C}
= {x|x ∈ A and (x ∈ B or x ∈ C)}
= {x|(x ∈ A and x ∈ B) or (x ∈ A and x ∈ C)}
= {x|x ∈ A ∩ B or x ∈ A ∩ C}
= (A ∩ B) ∪ (A ∩ C).

The Venn diagrams in Figure 2.2 illustrate this result.

(x) A ∪ A = {x|x ∈ A or x ∈ A}
= {x|x ∈ A or (x ∈ X and x /∈ A)}
= {x|(x ∈ X and x ∈ A) or (x ∈ X and x /∈ A)}, since A ⊆ X

= {x|x ∈ X and (x ∈ A or x /∈ A)}
= {x|x ∈ X}, since it is always true that x ∈ A or x /∈ A

= X. �

Relations (i)–(iv), (vii), and (viii) show that ∩ and ∪ are associative and
commutative operations on P (X) with identities X and Ø, respectively. The
only element with an inverse under ∩ is its identity X, and the only element with
an inverse under ∪ is its identity Ø.

Note the duality between ∩ and ∪. If these operations are interchanged in any
relation, the resulting relation is also true.

Another operation on P (X) is the difference of two subsets. It is defined by

A− B = {x|x ∈ A and x /∈ B} = A ∩ B.

Since this operation is neither associative nor commutative, we introduce another
operation A�B, called the symmetric difference, illustrated in Figure 2.3,

A B

C

A ∩ (B ∪ C) (A ∩ B) ∪ (A ∩ C)

A B

C

Figure 2.2. Venn diagrams illustrating a distributive law.
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X
A B

A − B A ∆ B

X
A B

Figure 2.3. Difference and symmetric difference of sets.

defined by

A�B = (A ∩ B) ∪ (A ∩ B) = (A ∪ B)− (A ∩ B) = (A− B) ∪ (B −A).

The symmetric difference of A and B is the set of elements in A or B, but not
in both. This is often referred to as the exclusive OR function of A and B.

Example 2.2. Write down the table for the structure (P (X), �) when X =
{a, b}.

Solution. The table is given in Table 2.2, where we write A for {a} and B

for {b}. �

Proposition 2.3. The operation � is associative and commutative on P (X); it
has an identity Ø, and each element is its own inverse. That is, the following
relations hold for all A,B,C ∈ P (X):

(i) A�(B�C) = (A�B)�C. (ii) A�B = B�A.
(iii) A�Ø = A. (iv) A�A = Ø.

Three further properties of the symmetric difference are:

(v) A�X = A. (vi) A�A = X.
(vii) A ∩ (B�C) = (A ∩ B)�(A ∩ C).

Proof. (ii) follows because the definition of A�B is symmetric in A and B.
To prove (i) observe first that Proposition 2.1 gives

B�C = (B ∩ C) ∪ (B ∩ C) = (B ∪ C) ∩ (B ∪ C)

= (B ∩ B) ∪ (B ∩ C) ∪ (C ∩ B) ∪ (C ∩ C)

= (B ∩ C) ∪ (B ∩ C).

TABLE 2.2. Symmetric Difference in P ({a , b})
� Ø A B X

Ø Ø A B X

A A Ø X B

B B X Ø A

X X B A Ø


